monai
medical
katielink's picture
update with new lr scheduler api in inference
993902a
{
"imports": [
"$import torch",
"$from datetime import datetime",
"$from pathlib import Path"
],
"bundle_root": ".",
"model_dir": "$@bundle_root + '/models'",
"output_dir": "$@bundle_root + '/output'",
"create_output_dir": "$Path(@output_dir).mkdir(exist_ok=True)",
"device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
"output_postfix": "$datetime.now().strftime('sample_%Y%m%d_%H%M%S')",
"spatial_dims": 3,
"image_channels": 1,
"latent_channels": 8,
"latent_shape": [
8,
36,
44,
28
],
"autoencoder_def": {
"_target_": "generative.networks.nets.AutoencoderKL",
"spatial_dims": "@spatial_dims",
"in_channels": "@image_channels",
"out_channels": "@image_channels",
"latent_channels": "@latent_channels",
"num_channels": [
64,
128,
256
],
"num_res_blocks": 2,
"norm_num_groups": 32,
"norm_eps": 1e-06,
"attention_levels": [
false,
false,
false
],
"with_encoder_nonlocal_attn": false,
"with_decoder_nonlocal_attn": false
},
"network_def": {
"_target_": "generative.networks.nets.DiffusionModelUNet",
"spatial_dims": "@spatial_dims",
"in_channels": "@latent_channels",
"out_channels": "@latent_channels",
"num_channels": [
256,
256,
512
],
"attention_levels": [
false,
true,
true
],
"num_head_channels": [
0,
64,
64
],
"num_res_blocks": 2
},
"load_autoencoder_path": "$@bundle_root + '/models/model_autoencoder.pt'",
"load_autoencoder": "$@autoencoder_def.load_state_dict(torch.load(@load_autoencoder_path))",
"autoencoder": "$@autoencoder_def.to(@device)",
"load_diffusion_path": "$@model_dir + '/model.pt'",
"load_diffusion": "$@network_def.load_state_dict(torch.load(@load_diffusion_path))",
"diffusion": "$@network_def.to(@device)",
"noise_scheduler": {
"_target_": "generative.networks.schedulers.DDIMScheduler",
"_requires_": [
"@load_diffusion",
"@load_autoencoder"
],
"num_train_timesteps": 1000,
"beta_start": 0.0015,
"beta_end": 0.0195,
"schedule": "scaled_linear_beta",
"clip_sample": false
},
"noise": "$torch.randn([1]+@latent_shape).to(@device)",
"set_timesteps": "$@noise_scheduler.set_timesteps(num_inference_steps=50)",
"inferer": {
"_target_": "scripts.ldm_sampler.LDMSampler",
"_requires_": "@set_timesteps"
},
"sample": "$@inferer.sampling_fn(@noise, @autoencoder, @diffusion, @noise_scheduler)",
"saver": {
"_target_": "SaveImage",
"_requires_": "@create_output_dir",
"output_dir": "@output_dir",
"output_postfix": "@output_postfix"
},
"generated_image": "$@sample",
"run": [
"$@saver(@generated_image[0])"
]
}