momori-chegg commited on
Commit
1edb99a
1 Parent(s): 5b8ae93

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +1 -100
README.md CHANGED
@@ -16,103 +16,4 @@ tags:
16
  | Bob | 19 |
17
 
18
  # Model Card for Mixtral-8x7B
19
- The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mistral-8x7B outperforms Llama 2 70B on most benchmarks we tested.
20
-
21
- For full details of this model please read our [release blog post](https://mistral.ai/news/mixtral-of-experts/).
22
-
23
- ## Warning
24
- This repo contains weights that are compatible with [vLLM](https://github.com/vllm-project/vllm) serving of the model as well as Hugging Face [transformers](https://github.com/huggingface/transformers) library. It is based on the original Mixtral [torrent release](magnet:?xt=urn:btih:5546272da9065eddeb6fcd7ffddeef5b75be79a7&dn=mixtral-8x7b-32kseqlen&tr=udp%3A%2F%http://2Fopentracker.i2p.rocks%3A6969%2Fannounce&tr=http%3A%2F%http://2Ftracker.openbittorrent.com%3A80%2Fannounce), but the file format and parameter names are different. Please note that model cannot (yet) be instantiated with HF.
25
-
26
- ## Run the model
27
-
28
-
29
- ```python
30
- from transformers import AutoModelForCausalLM, AutoTokenizer
31
-
32
- model_id = "mistralai/Mixtral-8x7B-v0.1"
33
- tokenizer = AutoTokenizer.from_pretrained(model_id)
34
-
35
- model = AutoModelForCausalLM.from_pretrained(model_id)
36
-
37
- text = "Hello my name is"
38
- inputs = tokenizer(text, return_tensors="pt")
39
-
40
- outputs = model.generate(**inputs, max_new_tokens=20)
41
- print(tokenizer.decode(outputs[0], skip_special_tokens=True))
42
- ```
43
-
44
- By default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem:
45
-
46
- ### In half-precision
47
-
48
- Note `float16` precision only works on GPU devices
49
-
50
- <details>
51
- <summary> Click to expand </summary>
52
-
53
- ```diff
54
- + import torch
55
- from transformers import AutoModelForCausalLM, AutoTokenizer
56
-
57
- model_id = "mistralai/Mixtral-8x7B-v0.1"
58
- tokenizer = AutoTokenizer.from_pretrained(model_id)
59
-
60
- + model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16).to(0)
61
-
62
- text = "Hello my name is"
63
- + inputs = tokenizer(text, return_tensors="pt").to(0)
64
-
65
- outputs = model.generate(**inputs, max_new_tokens=20)
66
- print(tokenizer.decode(outputs[0], skip_special_tokens=True))
67
- ```
68
- </details>
69
-
70
- ### Lower precision using (8-bit & 4-bit) using `bitsandbytes`
71
-
72
- <details>
73
- <summary> Click to expand </summary>
74
-
75
- ```diff
76
- + import torch
77
- from transformers import AutoModelForCausalLM, AutoTokenizer
78
-
79
- model_id = "mistralai/Mixtral-8x7B-v0.1"
80
- tokenizer = AutoTokenizer.from_pretrained(model_id)
81
-
82
- + model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
83
-
84
- text = "Hello my name is"
85
- + inputs = tokenizer(text, return_tensors="pt").to(0)
86
-
87
- outputs = model.generate(**inputs, max_new_tokens=20)
88
- print(tokenizer.decode(outputs[0], skip_special_tokens=True))
89
- ```
90
- </details>
91
-
92
- ### Load the model with Flash Attention 2
93
-
94
- <details>
95
- <summary> Click to expand </summary>
96
-
97
- ```diff
98
- + import torch
99
- from transformers import AutoModelForCausalLM, AutoTokenizer
100
-
101
- model_id = "mistralai/Mixtral-8x7B-v0.1"
102
- tokenizer = AutoTokenizer.from_pretrained(model_id)
103
-
104
- + model = AutoModelForCausalLM.from_pretrained(model_id, use_flash_attention_2=True)
105
-
106
- text = "Hello my name is"
107
- + inputs = tokenizer(text, return_tensors="pt").to(0)
108
-
109
- outputs = model.generate(**inputs, max_new_tokens=20)
110
- print(tokenizer.decode(outputs[0], skip_special_tokens=True))
111
- ```
112
- </details>
113
-
114
- ## Notice
115
- Mixtral-8x7B is a pretrained base model and therefore does not have any moderation mechanisms.
116
-
117
- # The Mistral AI Team
118
- Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
 
16
  | Bob | 19 |
17
 
18
  # Model Card for Mixtral-8x7B
19
+ The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Expert