Transformers
Safetensors
English
llm-jp-3-13b
momiji8888 commited on
Commit
c19e5ac
·
verified ·
1 Parent(s): d1762d5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -167
README.md CHANGED
@@ -1,199 +1,120 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
 
 
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
 
 
 
 
 
 
 
 
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
 
 
 
 
176
 
177
- [More Information Needed]
 
 
 
 
 
 
178
 
179
- **APA:**
 
180
 
181
- [More Information Needed]
 
182
 
183
- ## Glossary [optional]
 
 
 
 
 
 
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
 
 
 
190
 
191
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - llm-jp-3-13b
5
+ - transformers
6
+ license: apache-2.0
7
+ datasets:
8
+ - kinokokoro/ichikara-instruction-003
9
+ language:
10
+ - en
11
+ base_model:
12
+ - llm-jp/llm-jp-3-13b
13
  ---
14
 
 
 
 
 
 
 
 
15
 
16
  ### Model Description
17
 
18
+ llm-jp-3.13bをベースモデルにichikara-instruction-003でSFTを実施したモデル
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
+ 配布されたLoRA_templateをベースに以下のとおりパラメータを変更。
21
+ ・PEFTのLoRAのスケーリング係数を調整。
22
+ ・学習の評価バッチサイズ、購買累積回数及び学習率を調整。auto_find_batch_sizeをTrueに設定。
23
+ ・SFTの設定にneftune_noise_alphaを追加。
 
24
 
 
25
 
26
+ ### Sample Uses
27
 
28
+ 以下は、elyza-tasks-100-TV_0.jsonlのためのコードです。
29
+ 本コードは、生成されたjsonlファイルを講座の課題として提出することを目的としています。
30
+ 動作環境はOmunicampusを想定しています(動作確認済)。
31
 
 
32
 
 
33
 
34
+ 以下は推論用コード(Python)です。
35
 
 
36
 
37
+ from transformers import (
38
+ AutoModelForCausalLM,
39
+ AutoTokenizer,
40
+ BitsAndBytesConfig,
41
+ )
42
+ from peft import PeftModel
43
+ import torch
44
+ from tqdm import tqdm
45
+ import json
46
 
47
+ HF_TOKEN = "****(your token)"
48
 
49
+ # ベースとなるモデル(llm-jp/llm-jp-3-13b)と学習したLoRAのアダプタID(momiji8888/momijillm-jp-3-finetune3)
50
+ model_id = "models/models--llm-jp--llm-jp-3-13b/snapshots/cd3823f4c1fcbb0ad2e2af46036ab1b0ca13192a"
51
 
52
+ adapter_id = "momiji8888/momijillm-jp-3-finetune3"
53
 
54
+ # QLoRA config
55
+ bnb_config = BitsAndBytesConfig(
56
+ load_in_4bit=True,
57
+ bnb_4bit_quant_type="nf4",
58
+ bnb_4bit_compute_dtype=torch.bfloat16,
59
+ )
60
 
61
+ # Load model
62
+ model = AutoModelForCausalLM.from_pretrained(
63
+ model_id,
64
+ quantization_config=bnb_config,
65
+ device_map="auto",
66
+ token = HF_TOKEN
67
+ )
68
 
69
+ # Load tokenizer
70
+ tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN)
71
 
72
+ # 元のモデルにLoRAのアダプタを統合
73
+ model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
74
 
75
+ # elyza-tasks-100-TVのデータセットの読み込み
76
+ with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
77
+ item = ""
78
+ for line in f:
79
+ line = line.strip()
80
+ item += line
81
+ if item.endswith("}"):
82
+ datasets.append(json.loads(item))
83
+ item = ""
84
 
85
+ # 推論の実行、結果の取得
86
+ results = []
87
+ for data in tqdm(datasets):
88
 
89
+ input = data["input"]
90
 
91
+ prompt = f"""### 指示
92
+ {input}
93
+ ### 回答
94
+ """
95
 
96
+ tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
97
+ attention_mask = torch.ones_like(tokenized_input)
98
+ with torch.no_grad():
99
+ outputs = model.generate(
100
+ tokenized_input,
101
+ attention_mask=attention_mask,
102
+ max_new_tokens=150,
103
+ do_sample=False,
104
+ repetition_penalty=1.2,
105
+ pad_token_id=tokenizer.eos_token_id
106
+ )[0]
107
+ output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
108
 
109
+ results.append({"task_id": data["task_id"], "input": input, "output": output})
110
 
111
+ # 結果をJsonlで出力し、Omunicampus上に保存
112
+ import re
113
+ jsonl_id = re.sub(".*/", "", adapter_id)
114
+ with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
115
+ for result in results:
116
+ json.dump(result, f, ensure_ascii=False)
117
+ f.write('\n')
118
 
 
119
 
120
+ (以上)