Commit
·
1fd4c82
1
Parent(s):
cca4cac
Second Test
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander.zip +3 -0
- ppo-LunarLander/_stable_baselines3_version +1 -0
- ppo-LunarLander/data +99 -0
- ppo-LunarLander/policy.optimizer.pth +3 -0
- ppo-LunarLander/policy.pth +3 -0
- ppo-LunarLander/pytorch_variables.pth +3 -0
- ppo-LunarLander/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -21.59 +/- 79.61
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f38bc9d1b40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f38bc9d1bd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f38bc9d1c60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f38bc9d1cf0>", "_build": "<function ActorCriticPolicy._build at 0x7f38bc9d1d80>", "forward": "<function ActorCriticPolicy.forward at 0x7f38bc9d1e10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f38bc9d1ea0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f38bc9d1f30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f38bc9d1fc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f38bc9d2050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f38bc9d20e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f38bc9d2170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f38bc9c3040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689097572419026505, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIA5sD183f4+jdxkPFk4hr7rgV09PddsPQAAAAAAAAAAg3OMPs8NPz+GJtU9H/eQvuW+4j1S+1u9AAAAAAAAAAAAN6k9eUYKP6pFkr3Eh72+Oprvu/QMujwAAAAAAAAAAKVWpr5Xqgg8MLlcvH5Q3rkK7zW9VZKJOwAAgD8AAIA/TW73PcE5oj9WpZI+pED+vp2esz0b8108AAAAAAAAAADtMwS+9jiqPyjRJL821dy+Wm7yvWe3yr0AAAAAAAAAAEBSmD3K8gg+7sVjvb3V2r0m5Mk8ZlItvQAAAAAAAAAAhlMUPrNvJz8eUvs9UpybvqdDjT1j2i89AAAAAAAAAACzsBu++xGUO46b4rlfuk83ADUtvQ4BCDkAAIA/AACAP4Bng72hwgs/iHS0O3qQbr6S7mI8U1TePAAAAAAAAAAAswRCvmFhrLyboti7rudauoY7Gj7V5Sc7AACAPwAAgD9mAqO8MhCnP6OjVL4apwm/cgCYvNYtR70AAAAAAAAAAPYcWb7mcz4/265PvtDNt76KupG9Ej3xuwAAAAAAAAAATcakvjYzDj0uK1O89tanOZB1ML7FvJ87AACAPwAAgD8zQ5g63/3xPjfomL2nzZC+KjpJvE3xM7wAAAAAAAAAABr0TD5fAdU83ov4vYVVNDvdW6s+tIIVvgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCqX27FsHmMAWyUTaUBjAF0lEdAlaMzJuEVWXV9lChoBkdAcaHX9itq6GgHTRYBaAhHQJW6ZfD1oQF1fZQoaAZHQDHrogV45cVoB0uvaAhHQJW6nXlKbrl1fZQoaAZHQHB/+wxFiKBoB01PAWgIR0CVuuZid8RddX2UKGgGR0A/bZB9kSVXaAdL7WgIR0CVu2J6Y3NtdX2UKGgGR0Ax80A93bEhaAdL5WgIR0CVvMWXkYGddX2UKGgGR0BvsihL5AQhaAdNRAFoCEdAlb2IPK+zt3V9lChoBkdAbIZzHS4OMGgHTVgBaAhHQJXBGgYgq3F1fZQoaAZHQHBvle8f3exoB01RAWgIR0CVw26T4cm0dX2UKGgGR8BDeqbBoEjgaAdLpGgIR0CVxU4xk/bCdX2UKGgGR0BwhnAN5MURaAdNRgFoCEdAlcZj9n9NvnV9lChoBkdAcN7JHiFTN2gHTSUBaAhHQJXIQ04zabp1fZQoaAZHQE8zYxtYSxtoB0vyaAhHQJXLgxVQyh11fZQoaAZHQFd+YYzi0fJoB03oA2gIR0CVzcZVXFLndX2UKGgGR0Bhd1gtvn8saAdN6ANoCEdAlc57bUPQOXV9lChoBkdAcCkd43WFvmgHTW8BaAhHQJXPVnoPkJd1fZQoaAZHQG+yPBJqZc9oB000AWgIR0CV0hWMju8cdX2UKGgGR0BwRuF9KEnLaAdNUgFoCEdAldLjdxhlUnV9lChoBkdAcSsT/Q0GeWgHTUYBaAhHQJXVnvMKTjh1fZQoaAZHQGswWnKnvUloB024AWgIR0CV1fSXMQmNdX2UKGgGR0BsqrOPeYUnaAdNEAFoCEdAldYPuTibUnV9lChoBkdAXUl38n/kvWgHTegDaAhHQJXWbCl7+kx1fZQoaAZHQGu1nSWqtHRoB03DAmgIR0CV1wKxLTQWdX2UKGgGR0BvaEIAwPAgaAdNAAFoCEdAldcpmqYJFHV9lChoBkfAKQ/h2nsLOWgHS81oCEdAldgBqj8DS3V9lChoBkdAcKEi7TUiIWgHTQQBaAhHQJXY60/nnuB1fZQoaAZHQG7VYYaYNRZoB00ZAmgIR0CV2Yt03fhudX2UKGgGR8BBN2saKk2xaAdL8GgIR0CV2haiKziTdX2UKGgGR0BsOkdq+JxeaAdNGwFoCEdAldssNH6MznV9lChoBkdAa7QzvZyuIWgHTY0BaAhHQJXbTuF6Avt1fZQoaAZHQGFt0HIIWxhoB03oA2gIR0CV3mG0/nnudX2UKGgGR0A1UluWKMvRaAdLs2gIR0CV4FU2DQJHdX2UKGgGR0BwPovi97F9aAdNKAFoCEdAleGC75Ec83V9lChoBkdAa7+98JD3NGgHTRUBaAhHQJXhtdu5z5p1fZQoaAZHQHEEcdtEXtVoB00PAWgIR0CV4q4lQdjodX2UKGgGR0BwkXTfBN21aAdNTAFoCEdAleMxGH58B3V9lChoBkdAcAeD+zdDY2gHTTUBaAhHQJXjR8uzyBl1fZQoaAZHQHBL40ALiMpoB00MAWgIR0CV5NK+i8FqdX2UKGgGR0Bwa9APd2xIaAdNNgFoCEdAleVFWbPQfXV9lChoBkdAbbpUQ04zamgHTagBaAhHQJXmfnmq5sl1fZQoaAZHwDFfSb6P8yhoB0vMaAhHQJXm+XpnpSt1fZQoaAZHQGnC8TzundhoB00nAWgIR0CV5xd4FA3UdX2UKGgGR0Bsj3r8iwB6aAdNNwJoCEdAlejk8aGYbHV9lChoBkdAaz3s41gpjWgHTeMBaAhHQJXpNg1FYuF1fZQoaAZHQG0uLbg0j1RoB02qAWgIR0CWBLXS0BwNdX2UKGgGR0Bu77YukDZEaAdNegJoCEdAlgTIRIz3y3V9lChoBkdAbdfHfdhy82gHTSIBaAhHQJYF2mtQsPJ1fZQoaAZHQHAuH+MqBmRoB01rAWgIR0CWCxDneSB9dX2UKGgGR0BsLMi8nNPhaAdNWgFoCEdAlgtpkoWpInV9lChoBkdAb6orFOwgT2gHTSwBaAhHQJYLydAgPmR1fZQoaAZHQHB30haC+URoB01XAWgIR0CWC94X40uUdX2UKGgGR0BwYhL/S6UaaAdNJAFoCEdAlgvmznied3V9lChoBkdAcnQ6fJ3gUGgHTV4BaAhHQJYMNoIv8Il1fZQoaAZHwDRA8EFGG21oB0vKaAhHQJYMPollbvB1fZQoaAZHQHFDpksjFAFoB00TAWgIR0CWDG4Cp3otdX2UKGgGR0BgggSi/O+qaAdN6ANoCEdAlgy8uez2OHV9lChoBkdAbmpeyAxzrGgHTSIBaAhHQJYNWwC8vmJ1fZQoaAZHQG8itGd7OVxoB00uAWgIR0CWDZxY7q6fdX2UKGgGR0BraEzQ/oq1aAdNBQFoCEdAlg48+zMRpXV9lChoBkdAAZNwBHTZx2gHS99oCEdAlg/WMfigkHV9lChoBkdAIjblRxcVxmgHS6ZoCEdAlhB+oHcDbXV9lChoBkdAcN739rGipWgHTQgBaAhHQJYQl3Tuv2Z1fZQoaAZHQC30jC53C9BoB0uYaAhHQJYQ9TdcjaB1fZQoaAZHQHDdI33pOetoB00kAWgIR0CWEXoqTbFkdX2UKGgGR0Bt+3MOf/WEaAdL9GgIR0CWE6HzH0btdX2UKGgGR0AZIYFaB7NTaAdLzGgIR0CWFDW+XZ5BdX2UKGgGR0BtR1DlYEGJaAdNEQFoCEdAlhTEKArhBXV9lChoBkdAbKiAtFrmAGgHTSABaAhHQJYU/4i5d4V1fZQoaAZHQGxQTCk43m5oB00XAWgIR0CWFV1/DtPYdX2UKGgGR0BvO2Z/kNnXaAdNGwFoCEdAlhYZamoBJnV9lChoBkdAcIrmxt52QmgHTS0BaAhHQJYWM2AG0NV1fZQoaAZHQGvE9FOO801oB006AWgIR0CWFj+/xlQNdX2UKGgGR0A20DHwPRReaAdNGQFoCEdAlhau/+Kjz3V9lChoBkdAbJrFkxyn1mgHTWUBaAhHQJYaeLm6oVF1fZQoaAZHQG+w+0G/vfFoB00bAWgIR0CWGoLOzIFNdX2UKGgGR0BwH17pmmLtaAdNKQFoCEdAlhswOWjXWnV9lChoBkdAcIsBtDUmUmgHTUIBaAhHQJYbQNlRP451fZQoaAZHQG3cXwsoUi9oB00bAWgIR0CWG7446wMZdX2UKGgGR0Bn2F1p0wJxaAdNVgFoCEdAlh1NaY/mknV9lChoBkdAb+boBaLXMGgHS/RoCEdAlh2aDf3vhXV9lChoBkdAbEzfCyhSL2gHTQ8BaAhHQJYfUQiA2AJ1fZQoaAZHQG+UwdCE6DJoB00rAWgIR0CWIBVaOgg6dX2UKGgGR0Bh5/DBMzuXaAdN6ANoCEdAliC4s7MgU3V9lChoBkdAcRG8baRISWgHTSEBaAhHQJYg1ld1Mdt1fZQoaAZHQG0sn752yLRoB01YAWgIR0CWIQlHz6JqdX2UKGgGR0BuyEP+XJHRaAdNHwFoCEdAliFsSf16FHV9lChoBkfAQ0VC5VfeDWgHS7ZoCEdAliIihWYF7nV9lChoBkdAcisvn8sMAmgHTYUBaAhHQJYiIJBw++x1fZQoaAZHQHHHFHJ9y95oB013AWgIR0CWJAAB1cMWdX2UKGgGR0Bt4PHFPznSaAdNDQFoCEdAliSWnsLORnV9lChoBkdAbnafpUxVQ2gHTS0BaAhHQJYnJLeyiVV1fZQoaAZHQHD1awljVhFoB01YAWgIR0CWJ5ZH/cWTdX2UKGgGR0BwWcYdhiLEaAdNSAFoCEdAlifA1zhgmnV9lChoBkdAcOQrbQC0W2gHTRIBaAhHQJYoHbJwKjV1fZQoaAZHQA9laKUFB6doB0vOaAhHQJYoc593KSx1fZQoaAZHQG5V7tiQT25oB00nAWgIR0CWKJoYvWYndX2UKGgGR8AtngKF7D2raAdL2mgIR0CWKTO4XoC/dX2UKGgGR0BvbQ/cFhXsaAdNIQFoCEdAlio69oN/fHV9lChoBkdAcEJ/NZ/0/WgHTQ4BaAhHQJYq90W/JvJ1fZQoaAZHQCez8HfMwDhoB00sAWgIR0CWK2LM9r44dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ec8f233b5b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ec8f233b640>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ec8f233b6d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ec8f233b760>", "_build": "<function ActorCriticPolicy._build at 0x7ec8f233b7f0>", "forward": "<function ActorCriticPolicy.forward at 0x7ec8f233b880>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ec8f233b910>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ec8f233b9a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ec8f233ba30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ec8f233bac0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ec8f233bb50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ec8f233bbe0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ec8f233cd00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689616624059712644, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAXr71sroM8SLWvvSy0Qr6SF0U9tAUqPQAAAAAAAAAAU3Ejvtd2XjyS/wE8sX2Fuqg62r01G4I7AACAPwAAgD8tHjE+hZKMPPSmAzuPUk452GUWPqxZOLoAAIA/AACAP7PuSz1S0Na5bb2Su/exhjgJ+lS7a3cnOgAAgD8AAIA/2vMavjgB17v3QYW88tGauoswOD1/v4I7AACAPwAAgD/gRSo+W4mgP7u08D6B+re+r+olPhblUz4AAAAAAAAAAKaZ0r0B1/s+YWzFvSOHiL6FKDu8ojQSvQAAAAAAAAAAM9NHO+JAtD9JJbw9C74qvZqjm7qUtqK7AAAAAAAAAABtF1w+SAj7OwF6xrrXQbg810IpPvH3n70AAIA/AACAP2bDIr1ciwW6oaeNu5TaITiixo06AzhENgAAgD8AAIA/hqyZvvjYlT2rNL09Fdx3vlETAT64MNi7AAAAAAAAAADNUmI+I6kTPWl7oLwaYUk8agy6PqVbf70AAIA/AACAP7OcGT0UHJS6bOoLO2QPgzY1E886M/8fugAAgD8AAIA/QIjEvbgun7n/y7Q6zQu4tLUkC7sCvta5AACAPwAAAABNvke9e46Quqb/Wrsiudm0rpV+urOTezoAAIA/AACAP5qOQD3DFRS6EJqlu3XAlzZeNde7yWjBOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF/xUN8VpK2MAWyUTegDjAF0lEdAkuYJ7HAAQ3V9lChoBkdAXTcuOCGvfWgHTegDaAhHQJL0PEVFhG91fZQoaAZHQFmLrI5o4+9oB03oA2gIR0CS9fEvTPSldX2UKGgGR8AmvZHNHH3laAdNYwFoCEdAkv310DEFXHV9lChoBkdAWErAWSEDhmgHTegDaAhHQJMGxRNyo4x1fZQoaAZHQFmEWJ79hqloB03oA2gIR0CTDsObRWtEdX2UKGgGR0Bhaxib2Dg7aAdN6ANoCEdAkxM8YMvysnV9lChoBkdAX5ehSLqD9WgHTegDaAhHQJMULYmLLp11fZQoaAZHQFt0aLXL/0doB03oA2gIR0CTG/xqfvnbdX2UKGgGR0BeLxoEjgQ6aAdN6ANoCEdAkyXwAQxvenV9lChoBkdAXvDIq9XcQGgHTegDaAhHQJMoBIy0rsl1fZQoaAZHQF7ZI0qH449oB03oA2gIR0CTLHL/CIk7dX2UKGgGR8BFbYOUdJaraAdNcgFoCEdAkzG0jopx3nV9lChoBkdAWfbGDL8rJGgHTegDaAhHQJMyQLH+6y11fZQoaAZHQGBdNiYsunNoB03oA2gIR0CTN/cYZVGTdX2UKGgGR0Bh9w2jwhGIaAdN6ANoCEdAkz51jRUm2XV9lChoBkdAW8Yn0Cih4GgHTegDaAhHQJNDTySV4X51fZQoaAZHQGBLtXo1UERoB03oA2gIR0CTRZLB9Cu2dX2UKGgGR0AOlT72tdRjaAdN9AFoCEdAk0kcDB/I83V9lChoBkdAYG7rVOKwZGgHTegDaAhHQJNP6IP9UCJ1fZQoaAZHQFx57hNucc5oB03oA2gIR0CTUPa8pTdddX2UKGgGR0Ba9EiY9gWraAdN6ANoCEdAk1V3RLK3eHV9lChoBkdAJGB73PAwf2gHTWEBaAhHQJNXRZr56+p1fZQoaAZHQGE5z/hl18toB03oA2gIR0CTW1ojfNzKdX2UKGgGR0Bf4wYpDu0DaAdN6ANoCEdAk2bmy9mHxnV9lChoBkdAYq16BRQ792gHTegDaAhHQJNn0SkCV8l1fZQoaAZHQGAhhCdBjWloB03oA2gIR0CTf8x+KCQLdX2UKGgGR0BaZW8yvcJuaAdN6ANoCEdAk4ITWsijcnV9lChoBkdAZvWa99MK1GgHTcUBaAhHQJOEMPNFBpp1fZQoaAZHQFxiYmb9ZRtoB03oA2gIR0CThZmMOwxGdX2UKGgGR0BiWLLlmvnsaAdN6ANoCEdAk4mItxuKoHV9lChoBkdAX5r62v0ROGgHTegDaAhHQJOJ52X9itt1fZQoaAZHwDLbUPQOWjZoB01aAWgIR0CTjFyxiXpodX2UKGgGR0BSa0078vVWaAdN6ANoCEdAk43e58Sf2HV9lChoBkdAWc5UYKpkw2gHTegDaAhHQJOWgqbz9TB1fZQoaAZHQFyrMdcSoOxoB03oA2gIR0CTmLhSLqD9dX2UKGgGR0BgPnmV7hNuaAdN6ANoCEdAk5zwQcxTKnV9lChoBkdAYjgLfDUExWgHTegDaAhHQJOlGTxG2Cx1fZQoaAZHQFdowWWQfZFoB03oA2gIR0CTpq2P1ct5dX2UKGgGR8BMBi8nNPgvaAdN1wFoCEdAk6qbnPmganV9lChoBkdAU6HzFuNxVGgHTegDaAhHQJOuObPQfIV1fZQoaAZHQFaVzjFQ2uRoB03oA2gIR0CTt5jtoi9qdX2UKGgGR0BiInYJ3PiUaAdN6ANoCEdAk8URePaL43V9lChoBkdAWzukyk9EC2gHTegDaAhHQJPYGE0zj3p1fZQoaAZHQFdcby6MBIZoB03oA2gIR0CT2lGEwnIAdX2UKGgGR0BV750nw5NoaAdN6ANoCEdAk9xrDAJswnV9lChoBkdAYW3C+De0omgHTegDaAhHQJPin0PH1e11fZQoaAZHQFxwMTewcHZoB03oA2gIR0CT40PzWf9QdX2UKGgGR0BiAgAEMb3oaAdN6ANoCEdAk+dlRk3CK3V9lChoBkdAYPyLXtjTa2gHTegDaAhHQJPp3OC5Etx1fZQoaAZHQF3NnO0LMLZoB03oA2gIR0CT+AynUDuCdX2UKGgGR0BSMgOJ+DvmaAdN6ANoCEdAk/ptQXQ+lnV9lChoBkc/yyGahHskZGgHTUgBaAhHQJP8Oqfe1rt1fZQoaAZHQGJGbzK9wm5oB03oA2gIR0CT/vfkWAPNdX2UKGgGR8BUWvek56t1aAdNVAFoCEdAk/8xigCfYnV9lChoBkdAVKH+3pfQbGgHTegDaAhHQJQGq0lZ5iV1fZQoaAZHwE5rcmBvrGBoB019AWgIR0CUB233pOerdX2UKGgGR0BcUnKB/ZuiaAdN6ANoCEdAlAfVKf4AS3V9lChoBkdAX2S+g13t8mgHTegDaAhHQJQKLs4T9Kp1fZQoaAZHwE4WfZmI0qJoB02CAWgIR0CUC/KSPluFdX2UKGgGR0BffbEDQqqfaAdN6ANoCEdAlAxuVLSNO3V9lChoBkfANudbor4FimgHTRQBaAhHQJQO1KEnLJV1fZQoaAZHQGDaWu5jH4poB03oA2gIR0CUEauFpPAPdX2UKGgGR0BPxDvE0iyIaAdN6ANoCEdAlBvfCZWq+HV9lChoBkdAXmSQCCBf8mgHTegDaAhHQJQ0ofEGZ/l1fZQoaAZHQF/axQSBbwBoB03oA2gIR0CUQBswco6TdX2UKGgGR0BXxMan752yaAdN6ANoCEdAlENNSQ5my3V9lChoBkdAXhQRxtHhCWgHTegDaAhHQJRQH8m8dxR1fZQoaAZHQF9SBTn7pFFoB03oA2gIR0CUVITo+wC9dX2UKGgGR0BbZUMTewcHaAdN6ANoCEdAlFcxO+IuXnV9lChoBkdAXpd03fhuO2gHTegDaAhHQJRXbEjxCpp1fZQoaAZHQGF5vwVj7Q9oB03oA2gIR0CUYIRuTA32dX2UKGgGR0BXhuBUaQ3haAdN6ANoCEdAlGGf2f02+HV9lChoBkdAUzjpwCKaX2gHTegDaAhHQJRiLHFPznR1fZQoaAZHQEc3aePJaJRoB03oA2gIR0CUZYlRxcVydX2UKGgGR0BcHKptJnQIaAdN6ANoCEdAlGgTw2ETQHV9lChoBkdAYQ+bwSamXWgHTegDaAhHQJRouFGoaUB1fZQoaAZHQFBbzxgAp8ZoB03oA2gIR0CUbDBSDRMOdX2UKGgGR0BWcDHfdhy9aAdN6ANoCEdAlHAByjpLVXV9lChoBkdAX/TcGkep42gHTegDaAhHQJR5o0rK/211fZQoaAZHQGR/S/CZWq9oB03aAWgIR0CUhyoRZlnRdX2UKGgGR0BgpzXJ5mh/aAdN6ANoCEdAlIsLS/j81nV9lChoBkdAVM0mmce8w2gHTegDaAhHQJSVhCgK4QV1fZQoaAZHQFueJYkmhM9oB03oA2gIR0CUmICaqjrSdX2UKGgGR0BfsvnSv1UVaAdN6ANoCEdAlKj4Nd7fHnV9lChoBkdAXeRHqeK8+WgHTegDaAhHQJSuPAqNIbx1fZQoaAZHQFdM0IkZ75VoB03oA2gIR0CUsLJA+pwTdX2UKGgGR0BgeMOAiFCcaAdN6ANoCEdAlLDpOBUaQ3V9lChoBkfALHus1baAWmgHTUEBaAhHQJS0kvHtF8Z1fZQoaAZHQGHGz8gpz91oB03oA2gIR0CUt5+fh/AkdX2UKGgGR0BkMLxiG34LaAdN6ANoCEdAlLin0f5k9XV9lChoBkdATbNH6MzdlGgHTegDaAhHQJS60m4RVZN1fZQoaAZHQFhLyk9ECvJoB03oA2gIR0CUvIUZNwirdX2UKGgGR0Bj8koDxLCfaAdN6ANoCEdAlLzz7VJ+UnV9lChoBkdAWF43EQ5FPWgHTegDaAhHQJS/KkBS1md1fZQoaAZHQF1/AeJYT0xoB03oA2gIR0CUwZSgXdj5dX2UKGgGR0A81V2zOX3QaAdNVQFoCEdAlMY/vv0AcXV9lChoBkdAVZHeEZiuuGgHTegDaAhHQJTLFGXokiV1fZQoaAZHQGFkwazeGfxoB03oA2gIR0CU3FJ/5LyudX2UKGgGR0BhHC3y7PIGaAdN6ANoCEdAlOBLUXpGF3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 1228, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1170db8851b259890b5cdffa084455caddb67fb82ab7881d1969e114063e4d20
|
3 |
+
size 146760
|
ppo-LunarLander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ec8f233b5b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ec8f233b640>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ec8f233b6d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ec8f233b760>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ec8f233b7f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ec8f233b880>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ec8f233b910>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ec8f233b9a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ec8f233ba30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ec8f233bac0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ec8f233bb50>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ec8f233bbe0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ec8f233cd00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1689616624059712644,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAXr71sroM8SLWvvSy0Qr6SF0U9tAUqPQAAAAAAAAAAU3Ejvtd2XjyS/wE8sX2Fuqg62r01G4I7AACAPwAAgD8tHjE+hZKMPPSmAzuPUk452GUWPqxZOLoAAIA/AACAP7PuSz1S0Na5bb2Su/exhjgJ+lS7a3cnOgAAgD8AAIA/2vMavjgB17v3QYW88tGauoswOD1/v4I7AACAPwAAgD/gRSo+W4mgP7u08D6B+re+r+olPhblUz4AAAAAAAAAAKaZ0r0B1/s+YWzFvSOHiL6FKDu8ojQSvQAAAAAAAAAAM9NHO+JAtD9JJbw9C74qvZqjm7qUtqK7AAAAAAAAAABtF1w+SAj7OwF6xrrXQbg810IpPvH3n70AAIA/AACAP2bDIr1ciwW6oaeNu5TaITiixo06AzhENgAAgD8AAIA/hqyZvvjYlT2rNL09Fdx3vlETAT64MNi7AAAAAAAAAADNUmI+I6kTPWl7oLwaYUk8agy6PqVbf70AAIA/AACAP7OcGT0UHJS6bOoLO2QPgzY1E886M/8fugAAgD8AAIA/QIjEvbgun7n/y7Q6zQu4tLUkC7sCvta5AACAPwAAAABNvke9e46Quqb/Wrsiudm0rpV+urOTezoAAIA/AACAP5qOQD3DFRS6EJqlu3XAlzZeNde7yWjBOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF/xUN8VpK2MAWyUTegDjAF0lEdAkuYJ7HAAQ3V9lChoBkdAXTcuOCGvfWgHTegDaAhHQJL0PEVFhG91fZQoaAZHQFmLrI5o4+9oB03oA2gIR0CS9fEvTPSldX2UKGgGR8AmvZHNHH3laAdNYwFoCEdAkv310DEFXHV9lChoBkdAWErAWSEDhmgHTegDaAhHQJMGxRNyo4x1fZQoaAZHQFmEWJ79hqloB03oA2gIR0CTDsObRWtEdX2UKGgGR0Bhaxib2Dg7aAdN6ANoCEdAkxM8YMvysnV9lChoBkdAX5ehSLqD9WgHTegDaAhHQJMULYmLLp11fZQoaAZHQFt0aLXL/0doB03oA2gIR0CTG/xqfvnbdX2UKGgGR0BeLxoEjgQ6aAdN6ANoCEdAkyXwAQxvenV9lChoBkdAXvDIq9XcQGgHTegDaAhHQJMoBIy0rsl1fZQoaAZHQF7ZI0qH449oB03oA2gIR0CTLHL/CIk7dX2UKGgGR8BFbYOUdJaraAdNcgFoCEdAkzG0jopx3nV9lChoBkdAWfbGDL8rJGgHTegDaAhHQJMyQLH+6y11fZQoaAZHQGBdNiYsunNoB03oA2gIR0CTN/cYZVGTdX2UKGgGR0Bh9w2jwhGIaAdN6ANoCEdAkz51jRUm2XV9lChoBkdAW8Yn0Cih4GgHTegDaAhHQJNDTySV4X51fZQoaAZHQGBLtXo1UERoB03oA2gIR0CTRZLB9Cu2dX2UKGgGR0AOlT72tdRjaAdN9AFoCEdAk0kcDB/I83V9lChoBkdAYG7rVOKwZGgHTegDaAhHQJNP6IP9UCJ1fZQoaAZHQFx57hNucc5oB03oA2gIR0CTUPa8pTdddX2UKGgGR0Ba9EiY9gWraAdN6ANoCEdAk1V3RLK3eHV9lChoBkdAJGB73PAwf2gHTWEBaAhHQJNXRZr56+p1fZQoaAZHQGE5z/hl18toB03oA2gIR0CTW1ojfNzKdX2UKGgGR0Bf4wYpDu0DaAdN6ANoCEdAk2bmy9mHxnV9lChoBkdAYq16BRQ792gHTegDaAhHQJNn0SkCV8l1fZQoaAZHQGAhhCdBjWloB03oA2gIR0CTf8x+KCQLdX2UKGgGR0BaZW8yvcJuaAdN6ANoCEdAk4ITWsijcnV9lChoBkdAZvWa99MK1GgHTcUBaAhHQJOEMPNFBpp1fZQoaAZHQFxiYmb9ZRtoB03oA2gIR0CThZmMOwxGdX2UKGgGR0BiWLLlmvnsaAdN6ANoCEdAk4mItxuKoHV9lChoBkdAX5r62v0ROGgHTegDaAhHQJOJ52X9itt1fZQoaAZHwDLbUPQOWjZoB01aAWgIR0CTjFyxiXpodX2UKGgGR0BSa0078vVWaAdN6ANoCEdAk43e58Sf2HV9lChoBkdAWc5UYKpkw2gHTegDaAhHQJOWgqbz9TB1fZQoaAZHQFyrMdcSoOxoB03oA2gIR0CTmLhSLqD9dX2UKGgGR0BgPnmV7hNuaAdN6ANoCEdAk5zwQcxTKnV9lChoBkdAYjgLfDUExWgHTegDaAhHQJOlGTxG2Cx1fZQoaAZHQFdowWWQfZFoB03oA2gIR0CTpq2P1ct5dX2UKGgGR8BMBi8nNPgvaAdN1wFoCEdAk6qbnPmganV9lChoBkdAU6HzFuNxVGgHTegDaAhHQJOuObPQfIV1fZQoaAZHQFaVzjFQ2uRoB03oA2gIR0CTt5jtoi9qdX2UKGgGR0BiInYJ3PiUaAdN6ANoCEdAk8URePaL43V9lChoBkdAWzukyk9EC2gHTegDaAhHQJPYGE0zj3p1fZQoaAZHQFdcby6MBIZoB03oA2gIR0CT2lGEwnIAdX2UKGgGR0BV750nw5NoaAdN6ANoCEdAk9xrDAJswnV9lChoBkdAYW3C+De0omgHTegDaAhHQJPin0PH1e11fZQoaAZHQFxwMTewcHZoB03oA2gIR0CT40PzWf9QdX2UKGgGR0BiAgAEMb3oaAdN6ANoCEdAk+dlRk3CK3V9lChoBkdAYPyLXtjTa2gHTegDaAhHQJPp3OC5Etx1fZQoaAZHQF3NnO0LMLZoB03oA2gIR0CT+AynUDuCdX2UKGgGR0BSMgOJ+DvmaAdN6ANoCEdAk/ptQXQ+lnV9lChoBkc/yyGahHskZGgHTUgBaAhHQJP8Oqfe1rt1fZQoaAZHQGJGbzK9wm5oB03oA2gIR0CT/vfkWAPNdX2UKGgGR8BUWvek56t1aAdNVAFoCEdAk/8xigCfYnV9lChoBkdAVKH+3pfQbGgHTegDaAhHQJQGq0lZ5iV1fZQoaAZHwE5rcmBvrGBoB019AWgIR0CUB233pOerdX2UKGgGR0BcUnKB/ZuiaAdN6ANoCEdAlAfVKf4AS3V9lChoBkdAX2S+g13t8mgHTegDaAhHQJQKLs4T9Kp1fZQoaAZHwE4WfZmI0qJoB02CAWgIR0CUC/KSPluFdX2UKGgGR0BffbEDQqqfaAdN6ANoCEdAlAxuVLSNO3V9lChoBkfANudbor4FimgHTRQBaAhHQJQO1KEnLJV1fZQoaAZHQGDaWu5jH4poB03oA2gIR0CUEauFpPAPdX2UKGgGR0BPxDvE0iyIaAdN6ANoCEdAlBvfCZWq+HV9lChoBkdAXmSQCCBf8mgHTegDaAhHQJQ0ofEGZ/l1fZQoaAZHQF/axQSBbwBoB03oA2gIR0CUQBswco6TdX2UKGgGR0BXxMan752yaAdN6ANoCEdAlENNSQ5my3V9lChoBkdAXhQRxtHhCWgHTegDaAhHQJRQH8m8dxR1fZQoaAZHQF9SBTn7pFFoB03oA2gIR0CUVITo+wC9dX2UKGgGR0BbZUMTewcHaAdN6ANoCEdAlFcxO+IuXnV9lChoBkdAXpd03fhuO2gHTegDaAhHQJRXbEjxCpp1fZQoaAZHQGF5vwVj7Q9oB03oA2gIR0CUYIRuTA32dX2UKGgGR0BXhuBUaQ3haAdN6ANoCEdAlGGf2f02+HV9lChoBkdAUzjpwCKaX2gHTegDaAhHQJRiLHFPznR1fZQoaAZHQEc3aePJaJRoB03oA2gIR0CUZYlRxcVydX2UKGgGR0BcHKptJnQIaAdN6ANoCEdAlGgTw2ETQHV9lChoBkdAYQ+bwSamXWgHTegDaAhHQJRouFGoaUB1fZQoaAZHQFBbzxgAp8ZoB03oA2gIR0CUbDBSDRMOdX2UKGgGR0BWcDHfdhy9aAdN6ANoCEdAlHAByjpLVXV9lChoBkdAX/TcGkep42gHTegDaAhHQJR5o0rK/211fZQoaAZHQGR/S/CZWq9oB03aAWgIR0CUhyoRZlnRdX2UKGgGR0BgpzXJ5mh/aAdN6ANoCEdAlIsLS/j81nV9lChoBkdAVM0mmce8w2gHTegDaAhHQJSVhCgK4QV1fZQoaAZHQFueJYkmhM9oB03oA2gIR0CUmICaqjrSdX2UKGgGR0BfsvnSv1UVaAdN6ANoCEdAlKj4Nd7fHnV9lChoBkdAXeRHqeK8+WgHTegDaAhHQJSuPAqNIbx1fZQoaAZHQFdM0IkZ75VoB03oA2gIR0CUsLJA+pwTdX2UKGgGR0BgeMOAiFCcaAdN6ANoCEdAlLDpOBUaQ3V9lChoBkfALHus1baAWmgHTUEBaAhHQJS0kvHtF8Z1fZQoaAZHQGHGz8gpz91oB03oA2gIR0CUt5+fh/AkdX2UKGgGR0BkMLxiG34LaAdN6ANoCEdAlLin0f5k9XV9lChoBkdATbNH6MzdlGgHTegDaAhHQJS60m4RVZN1fZQoaAZHQFhLyk9ECvJoB03oA2gIR0CUvIUZNwirdX2UKGgGR0Bj8koDxLCfaAdN6ANoCEdAlLzz7VJ+UnV9lChoBkdAWF43EQ5FPWgHTegDaAhHQJS/KkBS1md1fZQoaAZHQF1/AeJYT0xoB03oA2gIR0CUwZSgXdj5dX2UKGgGR0A81V2zOX3QaAdNVQFoCEdAlMY/vv0AcXV9lChoBkdAVZHeEZiuuGgHTegDaAhHQJTLFGXokiV1fZQoaAZHQGFkwazeGfxoB03oA2gIR0CU3FJ/5LyudX2UKGgGR0BhHC3y7PIGaAdN6ANoCEdAlOBLUXpGF3VlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 1228,
|
87 |
+
"n_epochs": 5,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e0d15b4f7b2233851bd188c7b9c6933f2a37ba63dd2790962afd645caace54a
|
3 |
+
size 87929
|
ppo-LunarLander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:627a37b1ae9f61b6a2e5d724d51c577eecda45fd115930b5c17e5852fd7ee5f5
|
3 |
+
size 43329
|
ppo-LunarLander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": -21.5903928, "std_reward": 79.60958251325924, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-17T18:17:38.102936"}
|