|
from typing import Dict, List, Any |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
import torch |
|
from peft import PeftModel |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
|
|
base_model_name = "snorkelai/Snorkel-Mistral-PairRM-DPO" |
|
lora_adaptor = "mogaio/Snorkel-Mistral-PairRM-DPO-Freakonomics_MTD-TCD-Lora" |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(base_model_name) |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
|
|
self.bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
) |
|
|
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
base_model_name, |
|
quantization_config=self.bnb_config, |
|
device_map="auto", |
|
) |
|
self.model.config.use_cache = False |
|
|
|
self.inference_model = PeftModel.from_pretrained(self.model, lora_adaptor, from_transformers=True) |
|
|
|
|
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: |
|
INTRO = "A chat between a curious user and a human like artificial intelligence assistant. The assistant gives helpful, intelligent, detailed, and polite answers to the user's questions." |
|
prompt = "" |
|
|
|
|
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", None) |
|
chat_history = ' \n '.join(str(x) for x in inputs) |
|
prompt = INTRO+'\n ' + chat_history |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
inputs = self.tokenizer(prompt+' \n >> <assistant>:', return_tensors="pt").to(device) |
|
inputs = {k: v.to('cuda') for k, v in inputs.items()} |
|
|
|
output = self.inference_model.generate(input_ids=inputs["input_ids"],pad_token_id=self.tokenizer.pad_token_id, max_new_tokens=64, do_sample=True, temperature=0.9, top_p=0.9, repetition_penalty=1.5, early_stopping=True, length_penalty = -0.3, num_beams=5, num_return_sequences=1) |
|
response_raw = self.tokenizer.batch_decode(output.detach().cpu().numpy(), skip_special_tokens=True) |
|
response_ls = response_raw[0].split('>>') |
|
response_ = response_ls[1].split('<assistant>:')[1] |
|
response_ = response_.split('<user>')[0] |
|
response_ = response_.split('Instruction:')[0] |
|
|
|
response_ = response_.replace('\n','') |
|
response = '<assistant>:' + response_.strip() |
|
|
|
return [{"generated_reply": response}] |