María Navas Loro commited on
Commit
0cdd08c
·
1 Parent(s): 3598698

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: roberta-finetuned-WebClassification-v2-smalllinguaESv2
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # roberta-finetuned-WebClassification-v2-smalllinguaESv2
19
+
20
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 1.3862
23
+ - Accuracy: 0.6909
24
+ - F1: 0.6909
25
+ - Precision: 0.6909
26
+ - Recall: 0.6909
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
57
+ | No log | 1.0 | 28 | 2.9841 | 0.2 | 0.2000 | 0.2 | 0.2 |
58
+ | No log | 2.0 | 56 | 2.8109 | 0.1636 | 0.1636 | 0.1636 | 0.1636 |
59
+ | No log | 3.0 | 84 | 2.5334 | 0.3455 | 0.3455 | 0.3455 | 0.3455 |
60
+ | No log | 4.0 | 112 | 2.1164 | 0.5273 | 0.5273 | 0.5273 | 0.5273 |
61
+ | No log | 5.0 | 140 | 1.9152 | 0.5818 | 0.5818 | 0.5818 | 0.5818 |
62
+ | No log | 6.0 | 168 | 1.6678 | 0.6182 | 0.6182 | 0.6182 | 0.6182 |
63
+ | No log | 7.0 | 196 | 1.5647 | 0.6545 | 0.6545 | 0.6545 | 0.6545 |
64
+ | No log | 8.0 | 224 | 1.4473 | 0.6727 | 0.6727 | 0.6727 | 0.6727 |
65
+ | No log | 9.0 | 252 | 1.3862 | 0.6909 | 0.6909 | 0.6909 | 0.6909 |
66
+ | No log | 10.0 | 280 | 1.3647 | 0.6909 | 0.6909 | 0.6909 | 0.6909 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.31.0.dev0
72
+ - Pytorch 2.0.0
73
+ - Datasets 2.1.0
74
+ - Tokenizers 0.13.3