Model save
Browse files
README.md
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/vit-base-patch16-224-in21k
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- f1
|
11 |
+
- precision
|
12 |
+
- recall
|
13 |
+
model-index:
|
14 |
+
- name: vit-base-patch16-224-in21k-FINALAsphaltLaneClassifier-detectorVIT30epochs
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Image Classification
|
18 |
+
type: image-classification
|
19 |
+
dataset:
|
20 |
+
name: imagefolder
|
21 |
+
type: imagefolder
|
22 |
+
config: default
|
23 |
+
split: train
|
24 |
+
args: default
|
25 |
+
metrics:
|
26 |
+
- name: Accuracy
|
27 |
+
type: accuracy
|
28 |
+
value:
|
29 |
+
accuracy: 0.9566563467492261
|
30 |
+
- name: F1
|
31 |
+
type: f1
|
32 |
+
value:
|
33 |
+
f1: 0.9461566578410928
|
34 |
+
- name: Precision
|
35 |
+
type: precision
|
36 |
+
value:
|
37 |
+
precision: 0.9423611549883112
|
38 |
+
- name: Recall
|
39 |
+
type: recall
|
40 |
+
value:
|
41 |
+
recall: 0.9539001371299508
|
42 |
+
---
|
43 |
+
|
44 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
45 |
+
should probably proofread and complete it, then remove this comment. -->
|
46 |
+
|
47 |
+
# vit-base-patch16-224-in21k-FINALAsphaltLaneClassifier-detectorVIT30epochs
|
48 |
+
|
49 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
50 |
+
It achieves the following results on the evaluation set:
|
51 |
+
- Loss: 0.0975
|
52 |
+
- Accuracy: {'accuracy': 0.9566563467492261}
|
53 |
+
- F1: {'f1': 0.9461566578410928}
|
54 |
+
- Precision: {'precision': 0.9423611549883112}
|
55 |
+
- Recall: {'recall': 0.9539001371299508}
|
56 |
+
|
57 |
+
## Model description
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Intended uses & limitations
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training and evaluation data
|
66 |
+
|
67 |
+
More information needed
|
68 |
+
|
69 |
+
## Training procedure
|
70 |
+
|
71 |
+
### Training hyperparameters
|
72 |
+
|
73 |
+
The following hyperparameters were used during training:
|
74 |
+
- learning_rate: 5e-05
|
75 |
+
- train_batch_size: 4
|
76 |
+
- eval_batch_size: 4
|
77 |
+
- seed: 42
|
78 |
+
- gradient_accumulation_steps: 4
|
79 |
+
- total_train_batch_size: 16
|
80 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
81 |
+
- lr_scheduler_type: linear
|
82 |
+
- lr_scheduler_warmup_ratio: 0.1
|
83 |
+
- num_epochs: 30
|
84 |
+
|
85 |
+
### Training results
|
86 |
+
|
87 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
88 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------------------------------:|:--------------------------:|:---------------------------------:|:------------------------------:|
|
89 |
+
| 1.5913 | 0.9907 | 80 | 1.5129 | {'accuracy': 0.7461300309597523} | {'f1': 0.4885568839223056} | {'precision': 0.4547963454156366} | {'recall': 0.5477280156914024} |
|
90 |
+
| 0.7749 | 1.9938 | 161 | 0.6719 | {'accuracy': 0.9009287925696594} | {'f1': 0.6806448452120003} | {'precision': 0.7905629458261038} | {'recall': 0.7018633540372671} |
|
91 |
+
| 0.5529 | 2.9969 | 242 | 0.3765 | {'accuracy': 0.9318885448916409} | {'f1': 0.7729713140316855} | {'precision': 0.8042461260433723} | {'recall': 0.7677395068699416} |
|
92 |
+
| 0.3601 | 4.0 | 323 | 0.3341 | {'accuracy': 0.9164086687306502} | {'f1': 0.9093567346926615} | {'precision': 0.915458654820357} | {'recall': 0.9270074301130202} |
|
93 |
+
| 0.3851 | 4.9907 | 403 | 0.2551 | {'accuracy': 0.934984520123839} | {'f1': 0.926734220728561} | {'precision': 0.9242424242424241} | {'recall': 0.9466851299149436} |
|
94 |
+
| 0.2516 | 5.9938 | 484 | 0.1777 | {'accuracy': 0.9566563467492261} | {'f1': 0.9489876384049758} | {'precision': 0.9485110663983903} | {'recall': 0.9513860880320507} |
|
95 |
+
| 0.3202 | 6.9969 | 565 | 0.1609 | {'accuracy': 0.9535603715170279} | {'f1': 0.9443998949860868} | {'precision': 0.940001409828996} | {'recall': 0.9518387064970916} |
|
96 |
+
| 0.1857 | 8.0 | 646 | 0.1253 | {'accuracy': 0.9752321981424149} | {'f1': 0.9704532058943071} | {'precision': 0.9726055258065137} | {'recall': 0.9685497387360742} |
|
97 |
+
| 0.1644 | 8.9907 | 726 | 0.1459 | {'accuracy': 0.9628482972136223} | {'f1': 0.9542014027428277} | {'precision': 0.9523602484472049} | {'recall': 0.9575972681562742} |
|
98 |
+
| 0.2962 | 9.9938 | 807 | 0.1678 | {'accuracy': 0.9411764705882353} | {'f1': 0.9353845975481633} | {'precision': 0.9327564716246771} | {'recall': 0.9513233488388769} |
|
99 |
+
| 0.2872 | 10.9969 | 888 | 0.1710 | {'accuracy': 0.9318885448916409} | {'f1': 0.9062805146820121} | {'precision': 0.9236623237302658} | {'recall': 0.9092948114687246} |
|
100 |
+
| 0.2152 | 12.0 | 969 | 0.1278 | {'accuracy': 0.9659442724458205} | {'f1': 0.9592268907563025} | {'precision': 0.9600795718006697} | {'recall': 0.9590268254864528} |
|
101 |
+
| 0.2789 | 12.9907 | 1049 | 0.1574 | {'accuracy': 0.9473684210526315} | {'f1': 0.9401668121351615} | {'precision': 0.9386473340716037} | {'recall': 0.9479712833750101} |
|
102 |
+
| 0.0852 | 13.9938 | 1130 | 0.1197 | {'accuracy': 0.9628482972136223} | {'f1': 0.9543105052140121} | {'precision': 0.9504212454212454} | {'recall': 0.9594794439514935} |
|
103 |
+
| 0.1408 | 14.9969 | 1211 | 0.0921 | {'accuracy': 0.9690402476780186} | {'f1': 0.9595474426584376} | {'precision': 0.9564392324093817} | {'recall': 0.9638084482804979} |
|
104 |
+
| 0.1505 | 16.0 | 1292 | 0.0999 | {'accuracy': 0.9566563467492261} | {'f1': 0.947061703879608} | {'precision': 0.9442258268685393} | {'recall': 0.953062120763984} |
|
105 |
+
| 0.0824 | 16.9907 | 1372 | 0.1027 | {'accuracy': 0.9597523219814241} | {'f1': 0.9507999691104512} | {'precision': 0.9465755000825951} | {'recall': 0.9603936436234574} |
|
106 |
+
| 0.1285 | 17.9938 | 1453 | 0.1084 | {'accuracy': 0.9473684210526315} | {'f1': 0.9384258178429205} | {'precision': 0.9349180559553895} | {'recall': 0.9514264203705197} |
|
107 |
+
| 0.1324 | 18.9969 | 1534 | 0.1069 | {'accuracy': 0.9628482972136223} | {'f1': 0.9542723501653} | {'precision': 0.9523602484472049} | {'recall': 0.9575972681562744} |
|
108 |
+
| 0.1132 | 20.0 | 1615 | 0.0916 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461584792019574} | {'precision': 0.941292743433966} | {'recall': 0.9548412250275603} |
|
109 |
+
| 0.1222 | 20.9907 | 1695 | 0.1144 | {'accuracy': 0.9535603715170279} | {'f1': 0.9435095063666493} | {'precision': 0.9403516555363565} | {'recall': 0.9507945470678391} |
|
110 |
+
| 0.0937 | 21.9938 | 1776 | 0.1278 | {'accuracy': 0.9504643962848297} | {'f1': 0.9421323702425201} | {'precision': 0.9393214628508746} | {'recall': 0.9519148898030886} |
|
111 |
+
| 0.0806 | 22.9969 | 1857 | 0.0985 | {'accuracy': 0.9597523219814241} | {'f1': 0.9496711025800274} | {'precision': 0.9460811144381124} | {'recall': 0.9561677108260959} |
|
112 |
+
| 0.0916 | 24.0 | 1938 | 0.1051 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461566578410928} | {'precision': 0.9423611549883112} | {'recall': 0.9539001371299508} |
|
113 |
+
| 0.1396 | 24.9907 | 2018 | 0.1085 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461566578410928} | {'precision': 0.9423611549883112} | {'recall': 0.9539001371299508} |
|
114 |
+
| 0.0688 | 25.9938 | 2099 | 0.1062 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461566578410928} | {'precision': 0.9423611549883112} | {'recall': 0.9539001371299508} |
|
115 |
+
| 0.0807 | 26.9969 | 2180 | 0.1021 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461566578410928} | {'precision': 0.9423611549883112} | {'recall': 0.9539001371299508} |
|
116 |
+
| 0.1431 | 28.0 | 2261 | 0.0979 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461566578410928} | {'precision': 0.9423611549883112} | {'recall': 0.9539001371299508} |
|
117 |
+
| 0.092 | 28.9907 | 2341 | 0.0970 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461566578410928} | {'precision': 0.9423611549883112} | {'recall': 0.9539001371299508} |
|
118 |
+
| 0.0881 | 29.7214 | 2400 | 0.0975 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461566578410928} | {'precision': 0.9423611549883112} | {'recall': 0.9539001371299508} |
|
119 |
+
|
120 |
+
|
121 |
+
### Framework versions
|
122 |
+
|
123 |
+
- Transformers 4.43.3
|
124 |
+
- Pytorch 2.3.1
|
125 |
+
- Datasets 2.20.0
|
126 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 343239356
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c92d9338a193b788a492ee5e8769f8a7d2f2af28653a7e8b861f50c57241cfd
|
3 |
size 343239356
|
runs/Oct01_10-46-36_CARL-Mechanical-PC/events.out.tfevents.1727750835.CARL-Mechanical-PC.3560.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d8c5df4a1db9ccc231055004edf985a6ffe6c8728d6414405fbccb961f4e09f
|
3 |
+
size 64411
|