mmomm25 commited on
Commit
6407c7c
·
verified ·
1 Parent(s): 3bdf995

Model save

Browse files
Files changed (1) hide show
  1. README.md +126 -0
README.md ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: Xrenya/pvt-small-224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ - precision
12
+ - recall
13
+ model-index:
14
+ - name: pvt-small-224-ConcreteClassifier-PVT
15
+ results:
16
+ - task:
17
+ name: Image Classification
18
+ type: image-classification
19
+ dataset:
20
+ name: imagefolder
21
+ type: imagefolder
22
+ config: default
23
+ split: train
24
+ args: default
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value:
29
+ accuracy: 0.17665369649805449
30
+ - name: F1
31
+ type: f1
32
+ value:
33
+ f1: 0.04289493575207861
34
+ - name: Precision
35
+ type: precision
36
+ value:
37
+ precision: 0.025236242356864926
38
+ - name: Recall
39
+ type: recall
40
+ value:
41
+ recall: 0.14285714285714285
42
+ ---
43
+
44
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
45
+ should probably proofread and complete it, then remove this comment. -->
46
+
47
+ # pvt-small-224-ConcreteClassifier-PVT
48
+
49
+ This model is a fine-tuned version of [Xrenya/pvt-small-224](https://huggingface.co/Xrenya/pvt-small-224) on the imagefolder dataset.
50
+ It achieves the following results on the evaluation set:
51
+ - Loss: 1.9419
52
+ - Accuracy: {'accuracy': 0.17665369649805449}
53
+ - F1: {'f1': 0.04289493575207861}
54
+ - Precision: {'precision': 0.025236242356864926}
55
+ - Recall: {'recall': 0.14285714285714285}
56
+
57
+ ## Model description
58
+
59
+ More information needed
60
+
61
+ ## Intended uses & limitations
62
+
63
+ More information needed
64
+
65
+ ## Training and evaluation data
66
+
67
+ More information needed
68
+
69
+ ## Training procedure
70
+
71
+ ### Training hyperparameters
72
+
73
+ The following hyperparameters were used during training:
74
+ - learning_rate: 0.001
75
+ - train_batch_size: 2
76
+ - eval_batch_size: 2
77
+ - seed: 42
78
+ - gradient_accumulation_steps: 4
79
+ - total_train_batch_size: 8
80
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
81
+ - lr_scheduler_type: constant
82
+ - lr_scheduler_warmup_ratio: 0.1
83
+ - num_epochs: 30
84
+
85
+ ### Training results
86
+
87
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
88
+ |:-------------:|:-----:|:-----:|:---------------:|:---------------------------------:|:---------------------------:|:-----------------------------------:|:-------------------------------:|
89
+ | 1.981 | 1.0 | 1927 | 1.9584 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} |
90
+ | 1.951 | 2.0 | 3854 | 1.9447 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} |
91
+ | 1.9799 | 3.0 | 5781 | 1.9498 | {'accuracy': 0.13618677042801555} | {'f1': 0.03424657534246575} | {'precision': 0.019455252918287935} | {'recall': 0.14285714285714285} |
92
+ | 1.9458 | 4.0 | 7708 | 1.9412 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} |
93
+ | 1.9444 | 5.0 | 9635 | 1.9408 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} |
94
+ | 1.9441 | 6.0 | 11562 | 1.9427 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} |
95
+ | 1.9379 | 7.0 | 13489 | 1.9433 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} |
96
+ | 1.9529 | 8.0 | 15416 | 1.9432 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} |
97
+ | 1.9305 | 9.0 | 17343 | 1.9463 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} |
98
+ | 1.94 | 10.0 | 19270 | 1.9412 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} |
99
+ | 1.945 | 11.0 | 21197 | 1.9432 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} |
100
+ | 1.9294 | 12.0 | 23124 | 1.9444 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} |
101
+ | 1.9339 | 13.0 | 25051 | 1.9415 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} |
102
+ | 1.934 | 14.0 | 26978 | 1.9408 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} |
103
+ | 1.9275 | 15.0 | 28905 | 1.9423 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} |
104
+ | 1.9539 | 16.0 | 30832 | 1.9440 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} |
105
+ | 1.9584 | 17.0 | 32759 | 1.9412 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} |
106
+ | 1.9409 | 18.0 | 34686 | 1.9405 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} |
107
+ | 1.9522 | 19.0 | 36613 | 1.9405 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} |
108
+ | 1.9296 | 20.0 | 38540 | 1.9410 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} |
109
+ | 1.9272 | 21.0 | 40467 | 1.9412 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} |
110
+ | 1.9399 | 22.0 | 42394 | 1.9413 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} |
111
+ | 1.9258 | 23.0 | 44321 | 1.9413 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} |
112
+ | 1.9481 | 24.0 | 46248 | 1.9422 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} |
113
+ | 1.948 | 25.0 | 48175 | 1.9423 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} |
114
+ | 1.918 | 26.0 | 50102 | 1.9416 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} |
115
+ | 1.938 | 27.0 | 52029 | 1.9414 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} |
116
+ | 1.9207 | 28.0 | 53956 | 1.9410 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} |
117
+ | 1.9472 | 29.0 | 55883 | 1.9404 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} |
118
+ | 1.9355 | 30.0 | 57810 | 1.9419 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} |
119
+
120
+
121
+ ### Framework versions
122
+
123
+ - Transformers 4.37.2
124
+ - Pytorch 2.1.0
125
+ - Datasets 2.17.1
126
+ - Tokenizers 0.15.2