mmillet commited on
Commit
71f2f12
·
1 Parent(s): a0ed797

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: xlm-roberta-base_single_finetuned_on_cedr_augmented
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # xlm-roberta-base_single_finetuned_on_cedr_augmented
19
+
20
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.4650
23
+ - Accuracy: 0.8820
24
+ - F1: 0.8814
25
+ - Precision: 0.8871
26
+ - Recall: 0.8820
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 0.0001
46
+ - train_batch_size: 64
47
+ - eval_batch_size: 64
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 20
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
57
+ | 0.8868 | 1.0 | 69 | 0.4939 | 0.8403 | 0.8376 | 0.8431 | 0.8403 |
58
+ | 0.4248 | 2.0 | 138 | 0.3969 | 0.8779 | 0.8768 | 0.8798 | 0.8779 |
59
+ | 0.3197 | 3.0 | 207 | 0.4019 | 0.8758 | 0.8757 | 0.8758 | 0.8758 |
60
+ | 0.2737 | 4.0 | 276 | 0.3915 | 0.8831 | 0.8827 | 0.8847 | 0.8831 |
61
+ | 0.2053 | 5.0 | 345 | 0.4445 | 0.8643 | 0.8650 | 0.8714 | 0.8643 |
62
+ | 0.1705 | 6.0 | 414 | 0.4650 | 0.8820 | 0.8814 | 0.8871 | 0.8820 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.20.1
68
+ - Pytorch 1.11.0+cu113
69
+ - Datasets 2.3.2
70
+ - Tokenizers 0.12.1