|
|
|
|
|
import math |
|
from typing import List |
|
|
|
import mlx.core as mx |
|
from mlx.utils import tree_map |
|
|
|
|
|
class OptimizerState(dict): |
|
"""The optimizer state implements a recursively defined |
|
:class:`collections.defaultdict`, namely a missing key in an optimizer |
|
state is an :class:`OptimizerState`. |
|
|
|
.. note:: |
|
:meth:`OptimizerState.get` in contrast to a normal dictionary also sets |
|
the key to the ``default`` value if the ``key`` was not present in the |
|
dictionary. |
|
""" |
|
|
|
def __getitem__(self, key): |
|
if key not in self: |
|
self[key] = OptimizerState() |
|
return super().__getitem__(key) |
|
|
|
def get(self, key, default): |
|
"""If ``key`` doesn't exist set its value to ``default`` and then return it.""" |
|
if key not in self: |
|
self[key] = default |
|
return super().__getitem__(key) |
|
|
|
|
|
class Optimizer: |
|
"""The base class for all optimizers. It allows us to implement an |
|
optimizer on a per-parameter basis and apply it to a parameter tree. |
|
|
|
Attributes: |
|
state (OptimizerState): It holds the optimizer's state dictionary. |
|
""" |
|
|
|
def __init__(self): |
|
self.state = OptimizerState() |
|
|
|
def update(self, model: "mlx.nn.Module", gradients: dict): |
|
"""Apply the gradients to the parameters of the model and update the |
|
model with the new parameters. |
|
|
|
Args: |
|
model (mlx.nn.Module): An mlx module to be updated. |
|
gradients (dict): A Python tree of gradients, most likely computed |
|
via :func:`mlx.nn.value_and_grad`. |
|
""" |
|
model.update(self.apply_gradients(gradients, model)) |
|
|
|
def apply_gradients(self, gradients: dict, model: dict): |
|
"""Apply the gradients to the parameters and return the updated parameters. |
|
|
|
Can be used to update a model via |
|
``model.update(opt.apply_gradients(grads, model))`` which is precisely |
|
how :meth:`Optimizer.update` is implemented. |
|
|
|
Args: |
|
gradients (dict): A Python tree of gradients. |
|
model (dict): A Python tree of parameters. It can be a superset of |
|
the gradients. In that case the returned python tree |
|
will be of the same structure as the gradients. |
|
""" |
|
return tree_map(self.apply_single, gradients, model, self.state) |
|
|
|
def apply_single( |
|
self, gradient: mx.array, parameter: mx.array, state: OptimizerState |
|
): |
|
"""To be extended by the children classes to implement each optimizer's |
|
update.""" |
|
raise NotImplementedError() |
|
|
|
|
|
class SGD(Optimizer): |
|
r"""Stochastic gradient descent optimizer. |
|
|
|
Updates a parameter :math:`w` with a gradient :math:`g` as follows |
|
|
|
.. math:: |
|
|
|
v_{t+1} &= \mu v_t + (1 - \tau) g_t \\ |
|
w_{t+1} &= w_t - \lambda v_{t+1} |
|
|
|
Args: |
|
learning_rate (float): The learning rate :math:`\lambda`. |
|
momentum (float, optional): The momentum strength :math:`\mu`. Default: ``0`` |
|
weight_decay (float, optional): The weight decay (L2 penalty). Default: ``0`` |
|
dampening (float, optional): Dampening for momentum :math:`\tau`. Default: ``0`` |
|
nesterov (bool, optional): Enables Nesterov momentum. Default: ``False`` |
|
""" |
|
|
|
def __init__( |
|
self, |
|
learning_rate: float, |
|
momentum: float = 0.0, |
|
weight_decay: float = 0.0, |
|
dampening: float = 0.0, |
|
nesterov: bool = False, |
|
): |
|
if nesterov and (momentum <= 0 or dampening != 0): |
|
raise ValueError( |
|
"Nesterov momentum requires a momentum and zero dampening." |
|
) |
|
super().__init__() |
|
|
|
self.learning_rate = learning_rate |
|
self.momentum = momentum |
|
self.weight_decay = weight_decay |
|
self.dampening = dampening |
|
self.nesterov = nesterov |
|
|
|
def apply_single( |
|
self, gradient: mx.array, parameter: mx.array, state: OptimizerState |
|
): |
|
"""Performs the SGD parameter update and stores :math:`v` in the |
|
optimizer state.""" |
|
if self.momentum <= 0: |
|
return parameter - self.learning_rate * gradient |
|
|
|
v = state.get("v", mx.zeros_like(gradient)) |
|
|
|
if self.weight_decay != 0: |
|
gradient += self.weight_decay * parameter |
|
|
|
v = self.momentum * v |
|
if self.dampening > 0: |
|
v += (1 - self.dampening) * gradient |
|
else: |
|
v += gradient |
|
|
|
if self.nesterov: |
|
update = gradient + self.momentum * v |
|
else: |
|
update = v |
|
state["v"] = v |
|
return parameter - self.learning_rate * update |
|
|
|
|
|
class RMSprop(Optimizer): |
|
r"""Implementation of the RMSprop optimizer [1]. |
|
|
|
[1]: Tieleman, T. and Hinton, G. 2012. Lecture 6.5-rmsprop, coursera: Neural networks for machine learning |
|
|
|
.. math:: |
|
|
|
v_{t+1} &= \alpha v_t + (1 - \alpha) g_t^2 \\ |
|
w_{t+1} &= w_t - \lambda \frac{g_t}{\sqrt{v_{t+1}} + \epsilon} |
|
|
|
Args: |
|
learning_rate (float): The learning rate :math:`\lambda`. |
|
alpha (float, optional): The smoothing constant :math:`\alpha`. |
|
Default: ``0.99`` |
|
eps (float, optional): The term :math:`\epsilon` added to the denominator |
|
to improve numerical stability. Default: ``1e-8`` |
|
""" |
|
|
|
def __init__(self, learning_rate: float, alpha: float = 0.99, eps: float = 1e-8): |
|
super().__init__() |
|
|
|
self.learning_rate = learning_rate |
|
self.alpha = alpha |
|
self.eps = eps |
|
|
|
if self.alpha < 0.0: |
|
raise ValueError( |
|
f"RMSprop alpha should be >=0, {self.alpha} was provided instead" |
|
) |
|
if self.eps < 0.0: |
|
raise ValueError( |
|
f"RMSprop epsilon should be >0, {self.eps} was provided instead" |
|
) |
|
|
|
def apply_single( |
|
self, gradient: mx.array, parameter: mx.array, state: OptimizerState |
|
): |
|
"""Performs the RMSprop parameter update and stores :math:`v` in the optimizer state.""" |
|
lr = self.learning_rate |
|
alpha = self.alpha |
|
eps = self.eps |
|
|
|
v = state.get("v", mx.zeros_like(gradient)) |
|
v = alpha * v + (1 - alpha) * mx.square(gradient) |
|
state["v"] = v |
|
|
|
return parameter - lr * gradient / (mx.sqrt(v) + eps) |
|
|
|
|
|
class Adagrad(Optimizer): |
|
r"""Implementation of the Adagrad optimizer [1]. |
|
|
|
Our Adagrad implementation follows the original paper. In detail, |
|
|
|
[1]: Duchi, J., Hazan, E. and Singer, Y., 2011. Adaptive subgradient methods |
|
for online learning and stochastic optimization. JMLR 2011. |
|
|
|
.. math:: |
|
|
|
v_{t+1} &= v_t + g_t^2 \\ |
|
w_{t+1} &= w_t - \lambda \frac{g_t}{\sqrt{v_{t+1}} + \epsilon} |
|
|
|
Args: |
|
learning_rate (float): The learning rate :math:`\lambda`. |
|
eps (float, optional): The term :math:`\epsilon` added to the |
|
denominator to improve numerical stability. Default: ``1e-8`` |
|
""" |
|
|
|
def __init__(self, learning_rate: float, eps: float = 1e-8): |
|
super().__init__() |
|
|
|
self.learning_rate = learning_rate |
|
self.eps = eps |
|
|
|
if self.eps < 0.0: |
|
raise ValueError( |
|
f"Adagrad epsilon should be >0, {self.eps} was provided instead" |
|
) |
|
|
|
def apply_single( |
|
self, gradient: mx.array, parameter: mx.array, state: OptimizerState |
|
): |
|
"""Performs the Adagrad parameter update and stores :math:`v` in the |
|
optimizer state.""" |
|
lr = self.learning_rate |
|
eps = self.eps |
|
|
|
v = state.get("v", mx.zeros_like(gradient)) |
|
v = v + mx.square(gradient) |
|
state["v"] = v |
|
|
|
return parameter - lr * gradient / (mx.sqrt(v) + eps) |
|
|
|
|
|
class AdaDelta(Optimizer): |
|
r"""Implementation of the AdaDelta optimizer with learning rate[1]. |
|
|
|
Our AdaDelta implementation follows the original paper. In detail, |
|
|
|
[1]: Zeiler, M.D., 2012. ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701. |
|
|
|
.. math:: |
|
|
|
v_{t+1} &= \rho v_t + (1 - \rho) g_t^2 \\ |
|
\Delta w_{t+1} &= \frac{\sqrt{u_t + \epsilon}}{\sqrt{v_{t+1} + \epsilon}} g_t \\ |
|
u_{t+1} &= \rho u_t + (1 - \rho) \Delta w_{t+1}^2 \\ |
|
w_{t+1} &= w_t - \lambda \Delta w_{t+1} |
|
|
|
Args: |
|
learning_rate (float): The learning rate :math:`\lambda`. |
|
rho (float, optional): The coefficient :math:`\rho` used for computing a |
|
running average of squared gradients. Default: ``0.9`` |
|
eps (float, optional): The term :math:`\epsilon` added to the denominator to improve |
|
numerical stability. Default: `1e-8` |
|
""" |
|
|
|
def __init__(self, learning_rate: float, rho: float = 0.9, eps: float = 1e-6): |
|
super().__init__() |
|
|
|
self.learning_rate = learning_rate |
|
self.rho = rho |
|
self.eps = eps |
|
if self.rho < 0.0: |
|
raise ValueError( |
|
f"AdaDelta rho should be >=0, {self.rho} was provided instead" |
|
) |
|
if self.eps < 0.0: |
|
raise ValueError( |
|
f"AdaDelta epsilon should be >0, {self.eps} was provided instead" |
|
) |
|
|
|
def apply_single( |
|
self, gradient: mx.array, parameter: mx.array, state: OptimizerState |
|
): |
|
"""Performs the AdaDelta parameter update and stores :math:`v` and |
|
:math:`u` in the optimizer state.""" |
|
lr = self.learning_rate |
|
rho = self.rho |
|
eps = self.eps |
|
|
|
v = state.get("v", mx.zeros_like(gradient)) |
|
u = state.get("s", mx.zeros_like(gradient)) |
|
|
|
v = rho * v + (1 - rho) * mx.square(gradient) |
|
d = mx.sqrt(u + eps) / mx.sqrt(v + eps) * gradient |
|
u = rho * u + (1 - rho) * mx.square(d) |
|
|
|
state["v"] = v |
|
state["u"] = u |
|
|
|
return parameter - lr * d |
|
|
|
|
|
class Adam(Optimizer): |
|
r"""Implementation of the Adam optimizer [1]. |
|
|
|
Our Adam implementation follows the original paper and omits the bias |
|
correction in the first and second moment estimates. In detail, |
|
|
|
[1]: Kingma, D.P. and Ba, J., 2015. Adam: A method for stochastic |
|
optimization. ICLR 2015. |
|
|
|
.. math:: |
|
|
|
m_{t+1} &= \beta_1 m_t + (1 - \beta_1) g_t \\ |
|
v_{t+1} &= \beta_2 v_t + (1 - \beta_2) g_t^2 \\ |
|
w_{t+1} &= w_t - \lambda \frac{m_{t+1}}{\sqrt{v_{t+1} + \epsilon}} |
|
|
|
Args: |
|
learning_rate (float): The learning rate :math:`\lambda`. |
|
betas (Tuple[float, float], optional): The coefficients |
|
:math:`(\beta_1, \beta_2)` used for computing running averages of the |
|
gradient and its square. Default: ``(0.9, 0.999)`` |
|
eps (float, optional): The term :math:`\epsilon` added to the |
|
denominator to improve numerical stability. Default: ``1e-8`` |
|
""" |
|
|
|
def __init__( |
|
self, learning_rate: float, betas: List[float] = [0.9, 0.999], eps: float = 1e-8 |
|
): |
|
super().__init__() |
|
|
|
self.learning_rate = learning_rate |
|
self.betas = betas |
|
self.eps = eps |
|
|
|
def apply_single( |
|
self, gradient: mx.array, parameter: mx.array, state: OptimizerState |
|
): |
|
"""Performs the Adam parameter update and stores :math:`v` and |
|
:math:`m` in the optimizer state.""" |
|
lr = self.learning_rate |
|
b1, b2 = self.betas |
|
eps = self.eps |
|
|
|
m = state.get("m", gradient) |
|
v = state.get("v", mx.square(gradient)) |
|
m = b1 * m + (1 - b1) * gradient |
|
v = b2 * v + (1 - b2) * mx.square(gradient) |
|
state["m"] = m |
|
state["v"] = v |
|
|
|
return parameter - lr * m / (mx.sqrt(v) + eps) |
|
|
|
|
|
class AdamW(Adam): |
|
r"""Implementation of the AdamW optimizer [1]. |
|
|
|
Following the above convention, in contrast with [1], we do not use bias |
|
correction in the first and second moments for AdamW. We update the weights |
|
with a weight_decay (:math:`\lambda`) value: |
|
|
|
[1]: Loshchilov, I. and Hutter, F., 2019. Decoupled weight decay |
|
regularization. ICLR 2019. |
|
|
|
.. math:: |
|
|
|
m_{t+1} &= \beta_1 m_t + (1 - \beta_1) g_t \\ |
|
v_{t+1} &= \beta_2 v_t + (1 - \beta_2) g_t^2 \\ |
|
w_{t+1} &= w_t - \alpha (\frac{m_{t+1}}{\sqrt{v_{t+1} + \epsilon}} + \lambda w_t) |
|
|
|
Args: |
|
learning_rate (float): The learning rate :math:`\alpha`. |
|
betas (Tuple[float, float], optional): The coefficients |
|
:math:`(\beta_1, \beta_2)` used for computing running averages of the |
|
gradient and its square. Default: ``(0.9, 0.999)`` |
|
eps (float, optional): The term :math:`\epsilon` added to the |
|
denominator to improve numerical stability. Default: ``1e-8`` |
|
weight_decay (float, optional): The weight decay :math:`\lambda`. |
|
Default: ``0``. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
learning_rate: float, |
|
betas: List[float] = [0.9, 0.999], |
|
eps: float = 1e-8, |
|
weight_decay: float = 0.01, |
|
): |
|
super().__init__(learning_rate=learning_rate, betas=betas, eps=eps) |
|
self.weight_decay = weight_decay |
|
|
|
def apply_single( |
|
self, gradient: mx.array, parameter: mx.array, state: OptimizerState |
|
): |
|
"""Performs the AdamW parameter update by modifying the parameters |
|
passed into Adam. |
|
""" |
|
|
|
return super().apply_single( |
|
gradient, parameter * (1 - self.learning_rate * self.weight_decay), state |
|
) |
|
|
|
|
|
class Adamax(Adam): |
|
r"""Implementation of the Adamax optimizer. It is a variant of Adam based |
|
on the infinity norm [1]. |
|
|
|
Our Adam implementation follows the original paper and omits the bias |
|
correction in the first and second moment estimates. In detail, |
|
|
|
[1]: Kingma, D.P. and Ba, J., 2015. Adam: A method for stochastic |
|
optimization. ICLR 2015. |
|
|
|
.. math:: |
|
|
|
m_{t+1} &= \beta_1 m_t + (1 - \beta_1) g_t \\ |
|
v_{t+1} &= \max(\beta_2 v_t, |g_t|) \\ |
|
w_{t+1} &= w_t - \lambda \frac{m_{t+1}}{v_{t+1} + \epsilon} |
|
|
|
Args: |
|
learning_rate (float): The learning rate :math:`\lambda`. |
|
betas (Tuple[float, float], optional): The coefficients |
|
:math:`(\beta_1, \beta_2)` used for computing running averages of the |
|
gradient and its square. Default: ``(0.9, 0.999)`` |
|
eps (float, optional): The term :math:`\epsilon` added to the |
|
denominator to improve numerical stability. Default: ``1e-8`` |
|
""" |
|
|
|
def __init__( |
|
self, learning_rate: float, betas: List[float] = [0.9, 0.999], eps: float = 1e-8 |
|
): |
|
super().__init__(learning_rate, betas, eps) |
|
|
|
def apply_single( |
|
self, gradient: mx.array, parameter: mx.array, state: OptimizerState |
|
): |
|
"""Performs the Adamax parameter update and stores :math:`v` and |
|
:math:`m` in the optimizer state.""" |
|
lr = self.learning_rate |
|
b1, b2 = self.betas |
|
eps = self.eps |
|
|
|
m = state.get("m", mx.zeros_like(gradient)) |
|
v = state.get("v", mx.zeros_like(gradient)) |
|
|
|
m = b1 * m + (1 - b1) * gradient |
|
v = mx.maximum(b2 * v, mx.abs(gradient)) |
|
state["m"] = m |
|
state["v"] = v |
|
|
|
return parameter - lr * m / (v + eps) |
|
|
|
|
|
class Lion(Optimizer): |
|
r"""Implementation of the Lion optimizer [1]. |
|
|
|
Since updates are computed through the sign operation, they tend to |
|
have larger norm than for other optimizers such as SGD and Adam. |
|
We recommend a learning rate that is 3-10x smaller than AdamW and a |
|
weight decay 3-10x larger than AdamW to maintain the strength |
|
(lr * wd). Our Lion implementation follows the original paper. In |
|
detail, |
|
|
|
[1]: Chen, X. Symbolic Discovery of Optimization Algorithms. arXiv |
|
preprint arXiv:2302.06675. |
|
|
|
.. math:: |
|
|
|
c_{t + 1} &= \beta_1 m_t + (1 - \beta_1) g_t |
|
m_{t + 1} &= \beta_2 m_t + (1 - \beta_2) g_t |
|
w_{t + 1} &= w_t - \eta (\text{sign}(c_t) + \lambda w_t) |
|
|
|
Args: |
|
learning_rate (float): The learning rate :math:`\eta`. |
|
betas (Tuple[float, float], optional): The coefficients |
|
:math:`(\beta_1, \beta_2)` used for computing the gradient |
|
momentum and update direction. Default: ``(0.9, 0.99)`` |
|
weight_decay (float, optional): The weight decay :math:`\lambda`. Default: ``0.0`` |
|
""" |
|
|
|
def __init__( |
|
self, |
|
learning_rate: float, |
|
betas: List[float] = [0.9, 0.99], |
|
weight_decay: float = 0.0, |
|
): |
|
super().__init__() |
|
|
|
self.learning_rate = learning_rate |
|
self.betas = betas |
|
self.weight_decay = weight_decay |
|
|
|
def apply_single( |
|
self, gradient: mx.array, parameter: mx.array, state: OptimizerState |
|
): |
|
"""Performs the Lion parameter update and stores :math:`m` |
|
in the optimizer state.""" |
|
lr = self.learning_rate |
|
b1, b2 = self.betas |
|
weight_decay = self.weight_decay |
|
|
|
m = state.get("m", gradient) |
|
c = b1 * m + (1 - b1) * gradient |
|
state["m"] = b2 * m + (1 - b2) * gradient |
|
if weight_decay > 0: |
|
parameter = (1 - lr * weight_decay) * parameter |
|
return parameter - lr * mx.sign(c) |
|
|