|
from .functions import defun, defun_wrapped |
|
|
|
@defun |
|
def qp(ctx, a, q=None, n=None, **kwargs): |
|
r""" |
|
Evaluates the q-Pochhammer symbol (or q-rising factorial) |
|
|
|
.. math :: |
|
|
|
(a; q)_n = \prod_{k=0}^{n-1} (1-a q^k) |
|
|
|
where `n = \infty` is permitted if `|q| < 1`. Called with two arguments, |
|
``qp(a,q)`` computes `(a;q)_{\infty}`; with a single argument, ``qp(q)`` |
|
computes `(q;q)_{\infty}`. The special case |
|
|
|
.. math :: |
|
|
|
\phi(q) = (q; q)_{\infty} = \prod_{k=1}^{\infty} (1-q^k) = |
|
\sum_{k=-\infty}^{\infty} (-1)^k q^{(3k^2-k)/2} |
|
|
|
is also known as the Euler function, or (up to a factor `q^{-1/24}`) |
|
the Dedekind eta function. |
|
|
|
**Examples** |
|
|
|
If `n` is a positive integer, the function amounts to a finite product:: |
|
|
|
>>> from mpmath import * |
|
>>> mp.dps = 25; mp.pretty = True |
|
>>> qp(2,3,5) |
|
-725305.0 |
|
>>> fprod(1-2*3**k for k in range(5)) |
|
-725305.0 |
|
>>> qp(2,3,0) |
|
1.0 |
|
|
|
Complex arguments are allowed:: |
|
|
|
>>> qp(2-1j, 0.75j) |
|
(0.4628842231660149089976379 + 4.481821753552703090628793j) |
|
|
|
The regular Pochhammer symbol `(a)_n` is obtained in the |
|
following limit as `q \to 1`:: |
|
|
|
>>> a, n = 4, 7 |
|
>>> limit(lambda q: qp(q**a,q,n) / (1-q)**n, 1) |
|
604800.0 |
|
>>> rf(a,n) |
|
604800.0 |
|
|
|
The Taylor series of the reciprocal Euler function gives |
|
the partition function `P(n)`, i.e. the number of ways of writing |
|
`n` as a sum of positive integers:: |
|
|
|
>>> taylor(lambda q: 1/qp(q), 0, 10) |
|
[1.0, 1.0, 2.0, 3.0, 5.0, 7.0, 11.0, 15.0, 22.0, 30.0, 42.0] |
|
|
|
Special values include:: |
|
|
|
>>> qp(0) |
|
1.0 |
|
>>> findroot(diffun(qp), -0.4) # location of maximum |
|
-0.4112484791779547734440257 |
|
>>> qp(_) |
|
1.228348867038575112586878 |
|
|
|
The q-Pochhammer symbol is related to the Jacobi theta functions. |
|
For example, the following identity holds:: |
|
|
|
>>> q = mpf(0.5) # arbitrary |
|
>>> qp(q) |
|
0.2887880950866024212788997 |
|
>>> root(3,-2)*root(q,-24)*jtheta(2,pi/6,root(q,6)) |
|
0.2887880950866024212788997 |
|
|
|
""" |
|
a = ctx.convert(a) |
|
if n is None: |
|
n = ctx.inf |
|
else: |
|
n = ctx.convert(n) |
|
if n < 0: |
|
raise ValueError("n cannot be negative") |
|
if q is None: |
|
q = a |
|
else: |
|
q = ctx.convert(q) |
|
if n == 0: |
|
return ctx.one + 0*(a+q) |
|
infinite = (n == ctx.inf) |
|
same = (a == q) |
|
if infinite: |
|
if abs(q) >= 1: |
|
if same and (q == -1 or q == 1): |
|
return ctx.zero * q |
|
raise ValueError("q-function only defined for |q| < 1") |
|
elif q == 0: |
|
return ctx.one - a |
|
maxterms = kwargs.get('maxterms', 50*ctx.prec) |
|
if infinite and same: |
|
|
|
def terms(): |
|
t = 1 |
|
yield t |
|
k = 1 |
|
x1 = q |
|
x2 = q**2 |
|
while 1: |
|
yield (-1)**k * x1 |
|
yield (-1)**k * x2 |
|
x1 *= q**(3*k+1) |
|
x2 *= q**(3*k+2) |
|
k += 1 |
|
if k > maxterms: |
|
raise ctx.NoConvergence |
|
return ctx.sum_accurately(terms) |
|
|
|
def factors(): |
|
k = 0 |
|
r = ctx.one |
|
while 1: |
|
yield 1 - a*r |
|
r *= q |
|
k += 1 |
|
if k >= n: |
|
return |
|
if k > maxterms: |
|
raise ctx.NoConvergence |
|
return ctx.mul_accurately(factors) |
|
|
|
@defun_wrapped |
|
def qgamma(ctx, z, q, **kwargs): |
|
r""" |
|
Evaluates the q-gamma function |
|
|
|
.. math :: |
|
|
|
\Gamma_q(z) = \frac{(q; q)_{\infty}}{(q^z; q)_{\infty}} (1-q)^{1-z}. |
|
|
|
|
|
**Examples** |
|
|
|
Evaluation for real and complex arguments:: |
|
|
|
>>> from mpmath import * |
|
>>> mp.dps = 25; mp.pretty = True |
|
>>> qgamma(4,0.75) |
|
4.046875 |
|
>>> qgamma(6,6) |
|
121226245.0 |
|
>>> qgamma(3+4j, 0.5j) |
|
(0.1663082382255199834630088 + 0.01952474576025952984418217j) |
|
|
|
The q-gamma function satisfies a functional equation similar |
|
to that of the ordinary gamma function:: |
|
|
|
>>> q = mpf(0.25) |
|
>>> z = mpf(2.5) |
|
>>> qgamma(z+1,q) |
|
1.428277424823760954685912 |
|
>>> (1-q**z)/(1-q)*qgamma(z,q) |
|
1.428277424823760954685912 |
|
|
|
""" |
|
if abs(q) > 1: |
|
return ctx.qgamma(z,1/q)*q**((z-2)*(z-1)*0.5) |
|
return ctx.qp(q, q, None, **kwargs) / \ |
|
ctx.qp(q**z, q, None, **kwargs) * (1-q)**(1-z) |
|
|
|
@defun_wrapped |
|
def qfac(ctx, z, q, **kwargs): |
|
r""" |
|
Evaluates the q-factorial, |
|
|
|
.. math :: |
|
|
|
[n]_q! = (1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1}) |
|
|
|
or more generally |
|
|
|
.. math :: |
|
|
|
[z]_q! = \frac{(q;q)_z}{(1-q)^z}. |
|
|
|
**Examples** |
|
|
|
>>> from mpmath import * |
|
>>> mp.dps = 25; mp.pretty = True |
|
>>> qfac(0,0) |
|
1.0 |
|
>>> qfac(4,3) |
|
2080.0 |
|
>>> qfac(5,6) |
|
121226245.0 |
|
>>> qfac(1+1j, 2+1j) |
|
(0.4370556551322672478613695 + 0.2609739839216039203708921j) |
|
|
|
""" |
|
if ctx.isint(z) and ctx._re(z) > 0: |
|
n = int(ctx._re(z)) |
|
return ctx.qp(q, q, n, **kwargs) / (1-q)**n |
|
return ctx.qgamma(z+1, q, **kwargs) |
|
|
|
@defun |
|
def qhyper(ctx, a_s, b_s, q, z, **kwargs): |
|
r""" |
|
Evaluates the basic hypergeometric series or hypergeometric q-series |
|
|
|
.. math :: |
|
|
|
\,_r\phi_s \left[\begin{matrix} |
|
a_1 & a_2 & \ldots & a_r \\ |
|
b_1 & b_2 & \ldots & b_s |
|
\end{matrix} ; q,z \right] = |
|
\sum_{n=0}^\infty |
|
\frac{(a_1;q)_n, \ldots, (a_r;q)_n} |
|
{(b_1;q)_n, \ldots, (b_s;q)_n} |
|
\left((-1)^n q^{n\choose 2}\right)^{1+s-r} |
|
\frac{z^n}{(q;q)_n} |
|
|
|
where `(a;q)_n` denotes the q-Pochhammer symbol (see :func:`~mpmath.qp`). |
|
|
|
**Examples** |
|
|
|
Evaluation works for real and complex arguments:: |
|
|
|
>>> from mpmath import * |
|
>>> mp.dps = 25; mp.pretty = True |
|
>>> qhyper([0.5], [2.25], 0.25, 4) |
|
-0.1975849091263356009534385 |
|
>>> qhyper([0.5], [2.25], 0.25-0.25j, 4) |
|
(2.806330244925716649839237 + 3.568997623337943121769938j) |
|
>>> qhyper([1+j], [2,3+0.5j], 0.25, 3+4j) |
|
(9.112885171773400017270226 - 1.272756997166375050700388j) |
|
|
|
Comparing with a summation of the defining series, using |
|
:func:`~mpmath.nsum`:: |
|
|
|
>>> b, q, z = 3, 0.25, 0.5 |
|
>>> qhyper([], [b], q, z) |
|
0.6221136748254495583228324 |
|
>>> nsum(lambda n: z**n / qp(q,q,n)/qp(b,q,n) * q**(n*(n-1)), [0,inf]) |
|
0.6221136748254495583228324 |
|
|
|
""" |
|
|
|
|
|
|
|
a_s = [ctx.convert(a) for a in a_s] |
|
b_s = [ctx.convert(b) for b in b_s] |
|
q = ctx.convert(q) |
|
z = ctx.convert(z) |
|
r = len(a_s) |
|
s = len(b_s) |
|
d = 1+s-r |
|
maxterms = kwargs.get('maxterms', 50*ctx.prec) |
|
def terms(): |
|
t = ctx.one |
|
yield t |
|
qk = 1 |
|
k = 0 |
|
x = 1 |
|
while 1: |
|
for a in a_s: |
|
p = 1 - a*qk |
|
t *= p |
|
for b in b_s: |
|
p = 1 - b*qk |
|
if not p: |
|
raise ValueError |
|
t /= p |
|
t *= z |
|
x *= (-1)**d * qk ** d |
|
qk *= q |
|
t /= (1 - qk) |
|
k += 1 |
|
yield t * x |
|
if k > maxterms: |
|
raise ctx.NoConvergence |
|
return ctx.sum_accurately(terms) |
|
|