|
|
|
|
|
from .libmp.backend import basestring, exec_ |
|
|
|
from .libmp import (MPZ, MPZ_ZERO, MPZ_ONE, int_types, repr_dps, |
|
round_floor, round_ceiling, dps_to_prec, round_nearest, prec_to_dps, |
|
ComplexResult, to_pickable, from_pickable, normalize, |
|
from_int, from_float, from_npfloat, from_Decimal, from_str, to_int, to_float, to_str, |
|
from_rational, from_man_exp, |
|
fone, fzero, finf, fninf, fnan, |
|
mpf_abs, mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, mpf_mul_int, |
|
mpf_div, mpf_rdiv_int, mpf_pow_int, mpf_mod, |
|
mpf_eq, mpf_cmp, mpf_lt, mpf_gt, mpf_le, mpf_ge, |
|
mpf_hash, mpf_rand, |
|
mpf_sum, |
|
bitcount, to_fixed, |
|
mpc_to_str, |
|
mpc_to_complex, mpc_hash, mpc_pos, mpc_is_nonzero, mpc_neg, mpc_conjugate, |
|
mpc_abs, mpc_add, mpc_add_mpf, mpc_sub, mpc_sub_mpf, mpc_mul, mpc_mul_mpf, |
|
mpc_mul_int, mpc_div, mpc_div_mpf, mpc_pow, mpc_pow_mpf, mpc_pow_int, |
|
mpc_mpf_div, |
|
mpf_pow, |
|
mpf_pi, mpf_degree, mpf_e, mpf_phi, mpf_ln2, mpf_ln10, |
|
mpf_euler, mpf_catalan, mpf_apery, mpf_khinchin, |
|
mpf_glaisher, mpf_twinprime, mpf_mertens, |
|
int_types) |
|
|
|
from . import rational |
|
from . import function_docs |
|
|
|
new = object.__new__ |
|
|
|
class mpnumeric(object): |
|
"""Base class for mpf and mpc.""" |
|
__slots__ = [] |
|
def __new__(cls, val): |
|
raise NotImplementedError |
|
|
|
class _mpf(mpnumeric): |
|
""" |
|
An mpf instance holds a real-valued floating-point number. mpf:s |
|
work analogously to Python floats, but support arbitrary-precision |
|
arithmetic. |
|
""" |
|
__slots__ = ['_mpf_'] |
|
|
|
def __new__(cls, val=fzero, **kwargs): |
|
"""A new mpf can be created from a Python float, an int, a |
|
or a decimal string representing a number in floating-point |
|
format.""" |
|
prec, rounding = cls.context._prec_rounding |
|
if kwargs: |
|
prec = kwargs.get('prec', prec) |
|
if 'dps' in kwargs: |
|
prec = dps_to_prec(kwargs['dps']) |
|
rounding = kwargs.get('rounding', rounding) |
|
if type(val) is cls: |
|
sign, man, exp, bc = val._mpf_ |
|
if (not man) and exp: |
|
return val |
|
v = new(cls) |
|
v._mpf_ = normalize(sign, man, exp, bc, prec, rounding) |
|
return v |
|
elif type(val) is tuple: |
|
if len(val) == 2: |
|
v = new(cls) |
|
v._mpf_ = from_man_exp(val[0], val[1], prec, rounding) |
|
return v |
|
if len(val) == 4: |
|
if val not in (finf, fninf, fnan): |
|
sign, man, exp, bc = val |
|
val = normalize(sign, MPZ(man), exp, bc, prec, rounding) |
|
v = new(cls) |
|
v._mpf_ = val |
|
return v |
|
raise ValueError |
|
else: |
|
v = new(cls) |
|
v._mpf_ = mpf_pos(cls.mpf_convert_arg(val, prec, rounding), prec, rounding) |
|
return v |
|
|
|
@classmethod |
|
def mpf_convert_arg(cls, x, prec, rounding): |
|
if isinstance(x, int_types): return from_int(x) |
|
if isinstance(x, float): return from_float(x) |
|
if isinstance(x, basestring): return from_str(x, prec, rounding) |
|
if isinstance(x, cls.context.constant): return x.func(prec, rounding) |
|
if hasattr(x, '_mpf_'): return x._mpf_ |
|
if hasattr(x, '_mpmath_'): |
|
t = cls.context.convert(x._mpmath_(prec, rounding)) |
|
if hasattr(t, '_mpf_'): |
|
return t._mpf_ |
|
if hasattr(x, '_mpi_'): |
|
a, b = x._mpi_ |
|
if a == b: |
|
return a |
|
raise ValueError("can only create mpf from zero-width interval") |
|
raise TypeError("cannot create mpf from " + repr(x)) |
|
|
|
@classmethod |
|
def mpf_convert_rhs(cls, x): |
|
if isinstance(x, int_types): return from_int(x) |
|
if isinstance(x, float): return from_float(x) |
|
if isinstance(x, complex_types): return cls.context.mpc(x) |
|
if isinstance(x, rational.mpq): |
|
p, q = x._mpq_ |
|
return from_rational(p, q, cls.context.prec) |
|
if hasattr(x, '_mpf_'): return x._mpf_ |
|
if hasattr(x, '_mpmath_'): |
|
t = cls.context.convert(x._mpmath_(*cls.context._prec_rounding)) |
|
if hasattr(t, '_mpf_'): |
|
return t._mpf_ |
|
return t |
|
return NotImplemented |
|
|
|
@classmethod |
|
def mpf_convert_lhs(cls, x): |
|
x = cls.mpf_convert_rhs(x) |
|
if type(x) is tuple: |
|
return cls.context.make_mpf(x) |
|
return x |
|
|
|
man_exp = property(lambda self: self._mpf_[1:3]) |
|
man = property(lambda self: self._mpf_[1]) |
|
exp = property(lambda self: self._mpf_[2]) |
|
bc = property(lambda self: self._mpf_[3]) |
|
|
|
real = property(lambda self: self) |
|
imag = property(lambda self: self.context.zero) |
|
|
|
conjugate = lambda self: self |
|
|
|
def __getstate__(self): return to_pickable(self._mpf_) |
|
def __setstate__(self, val): self._mpf_ = from_pickable(val) |
|
|
|
def __repr__(s): |
|
if s.context.pretty: |
|
return str(s) |
|
return "mpf('%s')" % to_str(s._mpf_, s.context._repr_digits) |
|
|
|
def __str__(s): return to_str(s._mpf_, s.context._str_digits) |
|
def __hash__(s): return mpf_hash(s._mpf_) |
|
def __int__(s): return int(to_int(s._mpf_)) |
|
def __long__(s): return long(to_int(s._mpf_)) |
|
def __float__(s): return to_float(s._mpf_, rnd=s.context._prec_rounding[1]) |
|
def __complex__(s): return complex(float(s)) |
|
def __nonzero__(s): return s._mpf_ != fzero |
|
|
|
__bool__ = __nonzero__ |
|
|
|
def __abs__(s): |
|
cls, new, (prec, rounding) = s._ctxdata |
|
v = new(cls) |
|
v._mpf_ = mpf_abs(s._mpf_, prec, rounding) |
|
return v |
|
|
|
def __pos__(s): |
|
cls, new, (prec, rounding) = s._ctxdata |
|
v = new(cls) |
|
v._mpf_ = mpf_pos(s._mpf_, prec, rounding) |
|
return v |
|
|
|
def __neg__(s): |
|
cls, new, (prec, rounding) = s._ctxdata |
|
v = new(cls) |
|
v._mpf_ = mpf_neg(s._mpf_, prec, rounding) |
|
return v |
|
|
|
def _cmp(s, t, func): |
|
if hasattr(t, '_mpf_'): |
|
t = t._mpf_ |
|
else: |
|
t = s.mpf_convert_rhs(t) |
|
if t is NotImplemented: |
|
return t |
|
return func(s._mpf_, t) |
|
|
|
def __cmp__(s, t): return s._cmp(t, mpf_cmp) |
|
def __lt__(s, t): return s._cmp(t, mpf_lt) |
|
def __gt__(s, t): return s._cmp(t, mpf_gt) |
|
def __le__(s, t): return s._cmp(t, mpf_le) |
|
def __ge__(s, t): return s._cmp(t, mpf_ge) |
|
|
|
def __ne__(s, t): |
|
v = s.__eq__(t) |
|
if v is NotImplemented: |
|
return v |
|
return not v |
|
|
|
def __rsub__(s, t): |
|
cls, new, (prec, rounding) = s._ctxdata |
|
if type(t) in int_types: |
|
v = new(cls) |
|
v._mpf_ = mpf_sub(from_int(t), s._mpf_, prec, rounding) |
|
return v |
|
t = s.mpf_convert_lhs(t) |
|
if t is NotImplemented: |
|
return t |
|
return t - s |
|
|
|
def __rdiv__(s, t): |
|
cls, new, (prec, rounding) = s._ctxdata |
|
if isinstance(t, int_types): |
|
v = new(cls) |
|
v._mpf_ = mpf_rdiv_int(t, s._mpf_, prec, rounding) |
|
return v |
|
t = s.mpf_convert_lhs(t) |
|
if t is NotImplemented: |
|
return t |
|
return t / s |
|
|
|
def __rpow__(s, t): |
|
t = s.mpf_convert_lhs(t) |
|
if t is NotImplemented: |
|
return t |
|
return t ** s |
|
|
|
def __rmod__(s, t): |
|
t = s.mpf_convert_lhs(t) |
|
if t is NotImplemented: |
|
return t |
|
return t % s |
|
|
|
def sqrt(s): |
|
return s.context.sqrt(s) |
|
|
|
def ae(s, t, rel_eps=None, abs_eps=None): |
|
return s.context.almosteq(s, t, rel_eps, abs_eps) |
|
|
|
def to_fixed(self, prec): |
|
return to_fixed(self._mpf_, prec) |
|
|
|
def __round__(self, *args): |
|
return round(float(self), *args) |
|
|
|
mpf_binary_op = """ |
|
def %NAME%(self, other): |
|
mpf, new, (prec, rounding) = self._ctxdata |
|
sval = self._mpf_ |
|
if hasattr(other, '_mpf_'): |
|
tval = other._mpf_ |
|
%WITH_MPF% |
|
ttype = type(other) |
|
if ttype in int_types: |
|
%WITH_INT% |
|
elif ttype is float: |
|
tval = from_float(other) |
|
%WITH_MPF% |
|
elif hasattr(other, '_mpc_'): |
|
tval = other._mpc_ |
|
mpc = type(other) |
|
%WITH_MPC% |
|
elif ttype is complex: |
|
tval = from_float(other.real), from_float(other.imag) |
|
mpc = self.context.mpc |
|
%WITH_MPC% |
|
if isinstance(other, mpnumeric): |
|
return NotImplemented |
|
try: |
|
other = mpf.context.convert(other, strings=False) |
|
except TypeError: |
|
return NotImplemented |
|
return self.%NAME%(other) |
|
""" |
|
|
|
return_mpf = "; obj = new(mpf); obj._mpf_ = val; return obj" |
|
return_mpc = "; obj = new(mpc); obj._mpc_ = val; return obj" |
|
|
|
mpf_pow_same = """ |
|
try: |
|
val = mpf_pow(sval, tval, prec, rounding) %s |
|
except ComplexResult: |
|
if mpf.context.trap_complex: |
|
raise |
|
mpc = mpf.context.mpc |
|
val = mpc_pow((sval, fzero), (tval, fzero), prec, rounding) %s |
|
""" % (return_mpf, return_mpc) |
|
|
|
def binary_op(name, with_mpf='', with_int='', with_mpc=''): |
|
code = mpf_binary_op |
|
code = code.replace("%WITH_INT%", with_int) |
|
code = code.replace("%WITH_MPC%", with_mpc) |
|
code = code.replace("%WITH_MPF%", with_mpf) |
|
code = code.replace("%NAME%", name) |
|
np = {} |
|
exec_(code, globals(), np) |
|
return np[name] |
|
|
|
_mpf.__eq__ = binary_op('__eq__', |
|
'return mpf_eq(sval, tval)', |
|
'return mpf_eq(sval, from_int(other))', |
|
'return (tval[1] == fzero) and mpf_eq(tval[0], sval)') |
|
|
|
_mpf.__add__ = binary_op('__add__', |
|
'val = mpf_add(sval, tval, prec, rounding)' + return_mpf, |
|
'val = mpf_add(sval, from_int(other), prec, rounding)' + return_mpf, |
|
'val = mpc_add_mpf(tval, sval, prec, rounding)' + return_mpc) |
|
|
|
_mpf.__sub__ = binary_op('__sub__', |
|
'val = mpf_sub(sval, tval, prec, rounding)' + return_mpf, |
|
'val = mpf_sub(sval, from_int(other), prec, rounding)' + return_mpf, |
|
'val = mpc_sub((sval, fzero), tval, prec, rounding)' + return_mpc) |
|
|
|
_mpf.__mul__ = binary_op('__mul__', |
|
'val = mpf_mul(sval, tval, prec, rounding)' + return_mpf, |
|
'val = mpf_mul_int(sval, other, prec, rounding)' + return_mpf, |
|
'val = mpc_mul_mpf(tval, sval, prec, rounding)' + return_mpc) |
|
|
|
_mpf.__div__ = binary_op('__div__', |
|
'val = mpf_div(sval, tval, prec, rounding)' + return_mpf, |
|
'val = mpf_div(sval, from_int(other), prec, rounding)' + return_mpf, |
|
'val = mpc_mpf_div(sval, tval, prec, rounding)' + return_mpc) |
|
|
|
_mpf.__mod__ = binary_op('__mod__', |
|
'val = mpf_mod(sval, tval, prec, rounding)' + return_mpf, |
|
'val = mpf_mod(sval, from_int(other), prec, rounding)' + return_mpf, |
|
'raise NotImplementedError("complex modulo")') |
|
|
|
_mpf.__pow__ = binary_op('__pow__', |
|
mpf_pow_same, |
|
'val = mpf_pow_int(sval, other, prec, rounding)' + return_mpf, |
|
'val = mpc_pow((sval, fzero), tval, prec, rounding)' + return_mpc) |
|
|
|
_mpf.__radd__ = _mpf.__add__ |
|
_mpf.__rmul__ = _mpf.__mul__ |
|
_mpf.__truediv__ = _mpf.__div__ |
|
_mpf.__rtruediv__ = _mpf.__rdiv__ |
|
|
|
|
|
class _constant(_mpf): |
|
"""Represents a mathematical constant with dynamic precision. |
|
When printed or used in an arithmetic operation, a constant |
|
is converted to a regular mpf at the working precision. A |
|
regular mpf can also be obtained using the operation +x.""" |
|
|
|
def __new__(cls, func, name, docname=''): |
|
a = object.__new__(cls) |
|
a.name = name |
|
a.func = func |
|
a.__doc__ = getattr(function_docs, docname, '') |
|
return a |
|
|
|
def __call__(self, prec=None, dps=None, rounding=None): |
|
prec2, rounding2 = self.context._prec_rounding |
|
if not prec: prec = prec2 |
|
if not rounding: rounding = rounding2 |
|
if dps: prec = dps_to_prec(dps) |
|
return self.context.make_mpf(self.func(prec, rounding)) |
|
|
|
@property |
|
def _mpf_(self): |
|
prec, rounding = self.context._prec_rounding |
|
return self.func(prec, rounding) |
|
|
|
def __repr__(self): |
|
return "<%s: %s~>" % (self.name, self.context.nstr(self(dps=15))) |
|
|
|
|
|
class _mpc(mpnumeric): |
|
""" |
|
An mpc represents a complex number using a pair of mpf:s (one |
|
for the real part and another for the imaginary part.) The mpc |
|
class behaves fairly similarly to Python's complex type. |
|
""" |
|
|
|
__slots__ = ['_mpc_'] |
|
|
|
def __new__(cls, real=0, imag=0): |
|
s = object.__new__(cls) |
|
if isinstance(real, complex_types): |
|
real, imag = real.real, real.imag |
|
elif hasattr(real, '_mpc_'): |
|
s._mpc_ = real._mpc_ |
|
return s |
|
real = cls.context.mpf(real) |
|
imag = cls.context.mpf(imag) |
|
s._mpc_ = (real._mpf_, imag._mpf_) |
|
return s |
|
|
|
real = property(lambda self: self.context.make_mpf(self._mpc_[0])) |
|
imag = property(lambda self: self.context.make_mpf(self._mpc_[1])) |
|
|
|
def __getstate__(self): |
|
return to_pickable(self._mpc_[0]), to_pickable(self._mpc_[1]) |
|
|
|
def __setstate__(self, val): |
|
self._mpc_ = from_pickable(val[0]), from_pickable(val[1]) |
|
|
|
def __repr__(s): |
|
if s.context.pretty: |
|
return str(s) |
|
r = repr(s.real)[4:-1] |
|
i = repr(s.imag)[4:-1] |
|
return "%s(real=%s, imag=%s)" % (type(s).__name__, r, i) |
|
|
|
def __str__(s): |
|
return "(%s)" % mpc_to_str(s._mpc_, s.context._str_digits) |
|
|
|
def __complex__(s): |
|
return mpc_to_complex(s._mpc_, rnd=s.context._prec_rounding[1]) |
|
|
|
def __pos__(s): |
|
cls, new, (prec, rounding) = s._ctxdata |
|
v = new(cls) |
|
v._mpc_ = mpc_pos(s._mpc_, prec, rounding) |
|
return v |
|
|
|
def __abs__(s): |
|
prec, rounding = s.context._prec_rounding |
|
v = new(s.context.mpf) |
|
v._mpf_ = mpc_abs(s._mpc_, prec, rounding) |
|
return v |
|
|
|
def __neg__(s): |
|
cls, new, (prec, rounding) = s._ctxdata |
|
v = new(cls) |
|
v._mpc_ = mpc_neg(s._mpc_, prec, rounding) |
|
return v |
|
|
|
def conjugate(s): |
|
cls, new, (prec, rounding) = s._ctxdata |
|
v = new(cls) |
|
v._mpc_ = mpc_conjugate(s._mpc_, prec, rounding) |
|
return v |
|
|
|
def __nonzero__(s): |
|
return mpc_is_nonzero(s._mpc_) |
|
|
|
__bool__ = __nonzero__ |
|
|
|
def __hash__(s): |
|
return mpc_hash(s._mpc_) |
|
|
|
@classmethod |
|
def mpc_convert_lhs(cls, x): |
|
try: |
|
y = cls.context.convert(x) |
|
return y |
|
except TypeError: |
|
return NotImplemented |
|
|
|
def __eq__(s, t): |
|
if not hasattr(t, '_mpc_'): |
|
if isinstance(t, str): |
|
return False |
|
t = s.mpc_convert_lhs(t) |
|
if t is NotImplemented: |
|
return t |
|
return s.real == t.real and s.imag == t.imag |
|
|
|
def __ne__(s, t): |
|
b = s.__eq__(t) |
|
if b is NotImplemented: |
|
return b |
|
return not b |
|
|
|
def _compare(*args): |
|
raise TypeError("no ordering relation is defined for complex numbers") |
|
|
|
__gt__ = _compare |
|
__le__ = _compare |
|
__gt__ = _compare |
|
__ge__ = _compare |
|
|
|
def __add__(s, t): |
|
cls, new, (prec, rounding) = s._ctxdata |
|
if not hasattr(t, '_mpc_'): |
|
t = s.mpc_convert_lhs(t) |
|
if t is NotImplemented: |
|
return t |
|
if hasattr(t, '_mpf_'): |
|
v = new(cls) |
|
v._mpc_ = mpc_add_mpf(s._mpc_, t._mpf_, prec, rounding) |
|
return v |
|
v = new(cls) |
|
v._mpc_ = mpc_add(s._mpc_, t._mpc_, prec, rounding) |
|
return v |
|
|
|
def __sub__(s, t): |
|
cls, new, (prec, rounding) = s._ctxdata |
|
if not hasattr(t, '_mpc_'): |
|
t = s.mpc_convert_lhs(t) |
|
if t is NotImplemented: |
|
return t |
|
if hasattr(t, '_mpf_'): |
|
v = new(cls) |
|
v._mpc_ = mpc_sub_mpf(s._mpc_, t._mpf_, prec, rounding) |
|
return v |
|
v = new(cls) |
|
v._mpc_ = mpc_sub(s._mpc_, t._mpc_, prec, rounding) |
|
return v |
|
|
|
def __mul__(s, t): |
|
cls, new, (prec, rounding) = s._ctxdata |
|
if not hasattr(t, '_mpc_'): |
|
if isinstance(t, int_types): |
|
v = new(cls) |
|
v._mpc_ = mpc_mul_int(s._mpc_, t, prec, rounding) |
|
return v |
|
t = s.mpc_convert_lhs(t) |
|
if t is NotImplemented: |
|
return t |
|
if hasattr(t, '_mpf_'): |
|
v = new(cls) |
|
v._mpc_ = mpc_mul_mpf(s._mpc_, t._mpf_, prec, rounding) |
|
return v |
|
t = s.mpc_convert_lhs(t) |
|
v = new(cls) |
|
v._mpc_ = mpc_mul(s._mpc_, t._mpc_, prec, rounding) |
|
return v |
|
|
|
def __div__(s, t): |
|
cls, new, (prec, rounding) = s._ctxdata |
|
if not hasattr(t, '_mpc_'): |
|
t = s.mpc_convert_lhs(t) |
|
if t is NotImplemented: |
|
return t |
|
if hasattr(t, '_mpf_'): |
|
v = new(cls) |
|
v._mpc_ = mpc_div_mpf(s._mpc_, t._mpf_, prec, rounding) |
|
return v |
|
v = new(cls) |
|
v._mpc_ = mpc_div(s._mpc_, t._mpc_, prec, rounding) |
|
return v |
|
|
|
def __pow__(s, t): |
|
cls, new, (prec, rounding) = s._ctxdata |
|
if isinstance(t, int_types): |
|
v = new(cls) |
|
v._mpc_ = mpc_pow_int(s._mpc_, t, prec, rounding) |
|
return v |
|
t = s.mpc_convert_lhs(t) |
|
if t is NotImplemented: |
|
return t |
|
v = new(cls) |
|
if hasattr(t, '_mpf_'): |
|
v._mpc_ = mpc_pow_mpf(s._mpc_, t._mpf_, prec, rounding) |
|
else: |
|
v._mpc_ = mpc_pow(s._mpc_, t._mpc_, prec, rounding) |
|
return v |
|
|
|
__radd__ = __add__ |
|
|
|
def __rsub__(s, t): |
|
t = s.mpc_convert_lhs(t) |
|
if t is NotImplemented: |
|
return t |
|
return t - s |
|
|
|
def __rmul__(s, t): |
|
cls, new, (prec, rounding) = s._ctxdata |
|
if isinstance(t, int_types): |
|
v = new(cls) |
|
v._mpc_ = mpc_mul_int(s._mpc_, t, prec, rounding) |
|
return v |
|
t = s.mpc_convert_lhs(t) |
|
if t is NotImplemented: |
|
return t |
|
return t * s |
|
|
|
def __rdiv__(s, t): |
|
t = s.mpc_convert_lhs(t) |
|
if t is NotImplemented: |
|
return t |
|
return t / s |
|
|
|
def __rpow__(s, t): |
|
t = s.mpc_convert_lhs(t) |
|
if t is NotImplemented: |
|
return t |
|
return t ** s |
|
|
|
__truediv__ = __div__ |
|
__rtruediv__ = __rdiv__ |
|
|
|
def ae(s, t, rel_eps=None, abs_eps=None): |
|
return s.context.almosteq(s, t, rel_eps, abs_eps) |
|
|
|
|
|
complex_types = (complex, _mpc) |
|
|
|
|
|
class PythonMPContext(object): |
|
|
|
def __init__(ctx): |
|
ctx._prec_rounding = [53, round_nearest] |
|
ctx.mpf = type('mpf', (_mpf,), {}) |
|
ctx.mpc = type('mpc', (_mpc,), {}) |
|
ctx.mpf._ctxdata = [ctx.mpf, new, ctx._prec_rounding] |
|
ctx.mpc._ctxdata = [ctx.mpc, new, ctx._prec_rounding] |
|
ctx.mpf.context = ctx |
|
ctx.mpc.context = ctx |
|
ctx.constant = type('constant', (_constant,), {}) |
|
ctx.constant._ctxdata = [ctx.mpf, new, ctx._prec_rounding] |
|
ctx.constant.context = ctx |
|
|
|
def make_mpf(ctx, v): |
|
a = new(ctx.mpf) |
|
a._mpf_ = v |
|
return a |
|
|
|
def make_mpc(ctx, v): |
|
a = new(ctx.mpc) |
|
a._mpc_ = v |
|
return a |
|
|
|
def default(ctx): |
|
ctx._prec = ctx._prec_rounding[0] = 53 |
|
ctx._dps = 15 |
|
ctx.trap_complex = False |
|
|
|
def _set_prec(ctx, n): |
|
ctx._prec = ctx._prec_rounding[0] = max(1, int(n)) |
|
ctx._dps = prec_to_dps(n) |
|
|
|
def _set_dps(ctx, n): |
|
ctx._prec = ctx._prec_rounding[0] = dps_to_prec(n) |
|
ctx._dps = max(1, int(n)) |
|
|
|
prec = property(lambda ctx: ctx._prec, _set_prec) |
|
dps = property(lambda ctx: ctx._dps, _set_dps) |
|
|
|
def convert(ctx, x, strings=True): |
|
""" |
|
Converts *x* to an ``mpf`` or ``mpc``. If *x* is of type ``mpf``, |
|
``mpc``, ``int``, ``float``, ``complex``, the conversion |
|
will be performed losslessly. |
|
|
|
If *x* is a string, the result will be rounded to the present |
|
working precision. Strings representing fractions or complex |
|
numbers are permitted. |
|
|
|
>>> from mpmath import * |
|
>>> mp.dps = 15; mp.pretty = False |
|
>>> mpmathify(3.5) |
|
mpf('3.5') |
|
>>> mpmathify('2.1') |
|
mpf('2.1000000000000001') |
|
>>> mpmathify('3/4') |
|
mpf('0.75') |
|
>>> mpmathify('2+3j') |
|
mpc(real='2.0', imag='3.0') |
|
|
|
""" |
|
if type(x) in ctx.types: return x |
|
if isinstance(x, int_types): return ctx.make_mpf(from_int(x)) |
|
if isinstance(x, float): return ctx.make_mpf(from_float(x)) |
|
if isinstance(x, complex): |
|
return ctx.make_mpc((from_float(x.real), from_float(x.imag))) |
|
if type(x).__module__ == 'numpy': return ctx.npconvert(x) |
|
if isinstance(x, numbers.Rational): |
|
try: x = rational.mpq(int(x.numerator), int(x.denominator)) |
|
except: pass |
|
prec, rounding = ctx._prec_rounding |
|
if isinstance(x, rational.mpq): |
|
p, q = x._mpq_ |
|
return ctx.make_mpf(from_rational(p, q, prec)) |
|
if strings and isinstance(x, basestring): |
|
try: |
|
_mpf_ = from_str(x, prec, rounding) |
|
return ctx.make_mpf(_mpf_) |
|
except ValueError: |
|
pass |
|
if hasattr(x, '_mpf_'): return ctx.make_mpf(x._mpf_) |
|
if hasattr(x, '_mpc_'): return ctx.make_mpc(x._mpc_) |
|
if hasattr(x, '_mpmath_'): |
|
return ctx.convert(x._mpmath_(prec, rounding)) |
|
if type(x).__module__ == 'decimal': |
|
try: return ctx.make_mpf(from_Decimal(x, prec, rounding)) |
|
except: pass |
|
return ctx._convert_fallback(x, strings) |
|
|
|
def npconvert(ctx, x): |
|
""" |
|
Converts *x* to an ``mpf`` or ``mpc``. *x* should be a numpy |
|
scalar. |
|
""" |
|
import numpy as np |
|
if isinstance(x, np.integer): return ctx.make_mpf(from_int(int(x))) |
|
if isinstance(x, np.floating): return ctx.make_mpf(from_npfloat(x)) |
|
if isinstance(x, np.complexfloating): |
|
return ctx.make_mpc((from_npfloat(x.real), from_npfloat(x.imag))) |
|
raise TypeError("cannot create mpf from " + repr(x)) |
|
|
|
def isnan(ctx, x): |
|
""" |
|
Return *True* if *x* is a NaN (not-a-number), or for a complex |
|
number, whether either the real or complex part is NaN; |
|
otherwise return *False*:: |
|
|
|
>>> from mpmath import * |
|
>>> isnan(3.14) |
|
False |
|
>>> isnan(nan) |
|
True |
|
>>> isnan(mpc(3.14,2.72)) |
|
False |
|
>>> isnan(mpc(3.14,nan)) |
|
True |
|
|
|
""" |
|
if hasattr(x, "_mpf_"): |
|
return x._mpf_ == fnan |
|
if hasattr(x, "_mpc_"): |
|
return fnan in x._mpc_ |
|
if isinstance(x, int_types) or isinstance(x, rational.mpq): |
|
return False |
|
x = ctx.convert(x) |
|
if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'): |
|
return ctx.isnan(x) |
|
raise TypeError("isnan() needs a number as input") |
|
|
|
def isinf(ctx, x): |
|
""" |
|
Return *True* if the absolute value of *x* is infinite; |
|
otherwise return *False*:: |
|
|
|
>>> from mpmath import * |
|
>>> isinf(inf) |
|
True |
|
>>> isinf(-inf) |
|
True |
|
>>> isinf(3) |
|
False |
|
>>> isinf(3+4j) |
|
False |
|
>>> isinf(mpc(3,inf)) |
|
True |
|
>>> isinf(mpc(inf,3)) |
|
True |
|
|
|
""" |
|
if hasattr(x, "_mpf_"): |
|
return x._mpf_ in (finf, fninf) |
|
if hasattr(x, "_mpc_"): |
|
re, im = x._mpc_ |
|
return re in (finf, fninf) or im in (finf, fninf) |
|
if isinstance(x, int_types) or isinstance(x, rational.mpq): |
|
return False |
|
x = ctx.convert(x) |
|
if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'): |
|
return ctx.isinf(x) |
|
raise TypeError("isinf() needs a number as input") |
|
|
|
def isnormal(ctx, x): |
|
""" |
|
Determine whether *x* is "normal" in the sense of floating-point |
|
representation; that is, return *False* if *x* is zero, an |
|
infinity or NaN; otherwise return *True*. By extension, a |
|
complex number *x* is considered "normal" if its magnitude is |
|
normal:: |
|
|
|
>>> from mpmath import * |
|
>>> isnormal(3) |
|
True |
|
>>> isnormal(0) |
|
False |
|
>>> isnormal(inf); isnormal(-inf); isnormal(nan) |
|
False |
|
False |
|
False |
|
>>> isnormal(0+0j) |
|
False |
|
>>> isnormal(0+3j) |
|
True |
|
>>> isnormal(mpc(2,nan)) |
|
False |
|
""" |
|
if hasattr(x, "_mpf_"): |
|
return bool(x._mpf_[1]) |
|
if hasattr(x, "_mpc_"): |
|
re, im = x._mpc_ |
|
re_normal = bool(re[1]) |
|
im_normal = bool(im[1]) |
|
if re == fzero: return im_normal |
|
if im == fzero: return re_normal |
|
return re_normal and im_normal |
|
if isinstance(x, int_types) or isinstance(x, rational.mpq): |
|
return bool(x) |
|
x = ctx.convert(x) |
|
if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'): |
|
return ctx.isnormal(x) |
|
raise TypeError("isnormal() needs a number as input") |
|
|
|
def isint(ctx, x, gaussian=False): |
|
""" |
|
Return *True* if *x* is integer-valued; otherwise return |
|
*False*:: |
|
|
|
>>> from mpmath import * |
|
>>> isint(3) |
|
True |
|
>>> isint(mpf(3)) |
|
True |
|
>>> isint(3.2) |
|
False |
|
>>> isint(inf) |
|
False |
|
|
|
Optionally, Gaussian integers can be checked for:: |
|
|
|
>>> isint(3+0j) |
|
True |
|
>>> isint(3+2j) |
|
False |
|
>>> isint(3+2j, gaussian=True) |
|
True |
|
|
|
""" |
|
if isinstance(x, int_types): |
|
return True |
|
if hasattr(x, "_mpf_"): |
|
sign, man, exp, bc = xval = x._mpf_ |
|
return bool((man and exp >= 0) or xval == fzero) |
|
if hasattr(x, "_mpc_"): |
|
re, im = x._mpc_ |
|
rsign, rman, rexp, rbc = re |
|
isign, iman, iexp, ibc = im |
|
re_isint = (rman and rexp >= 0) or re == fzero |
|
if gaussian: |
|
im_isint = (iman and iexp >= 0) or im == fzero |
|
return re_isint and im_isint |
|
return re_isint and im == fzero |
|
if isinstance(x, rational.mpq): |
|
p, q = x._mpq_ |
|
return p % q == 0 |
|
x = ctx.convert(x) |
|
if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'): |
|
return ctx.isint(x, gaussian) |
|
raise TypeError("isint() needs a number as input") |
|
|
|
def fsum(ctx, terms, absolute=False, squared=False): |
|
""" |
|
Calculates a sum containing a finite number of terms (for infinite |
|
series, see :func:`~mpmath.nsum`). The terms will be converted to |
|
mpmath numbers. For len(terms) > 2, this function is generally |
|
faster and produces more accurate results than the builtin |
|
Python function :func:`sum`. |
|
|
|
>>> from mpmath import * |
|
>>> mp.dps = 15; mp.pretty = False |
|
>>> fsum([1, 2, 0.5, 7]) |
|
mpf('10.5') |
|
|
|
With squared=True each term is squared, and with absolute=True |
|
the absolute value of each term is used. |
|
""" |
|
prec, rnd = ctx._prec_rounding |
|
real = [] |
|
imag = [] |
|
for term in terms: |
|
reval = imval = 0 |
|
if hasattr(term, "_mpf_"): |
|
reval = term._mpf_ |
|
elif hasattr(term, "_mpc_"): |
|
reval, imval = term._mpc_ |
|
else: |
|
term = ctx.convert(term) |
|
if hasattr(term, "_mpf_"): |
|
reval = term._mpf_ |
|
elif hasattr(term, "_mpc_"): |
|
reval, imval = term._mpc_ |
|
else: |
|
raise NotImplementedError |
|
if imval: |
|
if squared: |
|
if absolute: |
|
real.append(mpf_mul(reval,reval)) |
|
real.append(mpf_mul(imval,imval)) |
|
else: |
|
reval, imval = mpc_pow_int((reval,imval),2,prec+10) |
|
real.append(reval) |
|
imag.append(imval) |
|
elif absolute: |
|
real.append(mpc_abs((reval,imval), prec)) |
|
else: |
|
real.append(reval) |
|
imag.append(imval) |
|
else: |
|
if squared: |
|
reval = mpf_mul(reval, reval) |
|
elif absolute: |
|
reval = mpf_abs(reval) |
|
real.append(reval) |
|
s = mpf_sum(real, prec, rnd, absolute) |
|
if imag: |
|
s = ctx.make_mpc((s, mpf_sum(imag, prec, rnd))) |
|
else: |
|
s = ctx.make_mpf(s) |
|
return s |
|
|
|
def fdot(ctx, A, B=None, conjugate=False): |
|
r""" |
|
Computes the dot product of the iterables `A` and `B`, |
|
|
|
.. math :: |
|
|
|
\sum_{k=0} A_k B_k. |
|
|
|
Alternatively, :func:`~mpmath.fdot` accepts a single iterable of pairs. |
|
In other words, ``fdot(A,B)`` and ``fdot(zip(A,B))`` are equivalent. |
|
The elements are automatically converted to mpmath numbers. |
|
|
|
With ``conjugate=True``, the elements in the second vector |
|
will be conjugated: |
|
|
|
.. math :: |
|
|
|
\sum_{k=0} A_k \overline{B_k} |
|
|
|
**Examples** |
|
|
|
>>> from mpmath import * |
|
>>> mp.dps = 15; mp.pretty = False |
|
>>> A = [2, 1.5, 3] |
|
>>> B = [1, -1, 2] |
|
>>> fdot(A, B) |
|
mpf('6.5') |
|
>>> list(zip(A, B)) |
|
[(2, 1), (1.5, -1), (3, 2)] |
|
>>> fdot(_) |
|
mpf('6.5') |
|
>>> A = [2, 1.5, 3j] |
|
>>> B = [1+j, 3, -1-j] |
|
>>> fdot(A, B) |
|
mpc(real='9.5', imag='-1.0') |
|
>>> fdot(A, B, conjugate=True) |
|
mpc(real='3.5', imag='-5.0') |
|
|
|
""" |
|
if B is not None: |
|
A = zip(A, B) |
|
prec, rnd = ctx._prec_rounding |
|
real = [] |
|
imag = [] |
|
hasattr_ = hasattr |
|
types = (ctx.mpf, ctx.mpc) |
|
for a, b in A: |
|
if type(a) not in types: a = ctx.convert(a) |
|
if type(b) not in types: b = ctx.convert(b) |
|
a_real = hasattr_(a, "_mpf_") |
|
b_real = hasattr_(b, "_mpf_") |
|
if a_real and b_real: |
|
real.append(mpf_mul(a._mpf_, b._mpf_)) |
|
continue |
|
a_complex = hasattr_(a, "_mpc_") |
|
b_complex = hasattr_(b, "_mpc_") |
|
if a_real and b_complex: |
|
aval = a._mpf_ |
|
bre, bim = b._mpc_ |
|
if conjugate: |
|
bim = mpf_neg(bim) |
|
real.append(mpf_mul(aval, bre)) |
|
imag.append(mpf_mul(aval, bim)) |
|
elif b_real and a_complex: |
|
are, aim = a._mpc_ |
|
bval = b._mpf_ |
|
real.append(mpf_mul(are, bval)) |
|
imag.append(mpf_mul(aim, bval)) |
|
elif a_complex and b_complex: |
|
|
|
are, aim = a._mpc_ |
|
bre, bim = b._mpc_ |
|
if conjugate: |
|
bim = mpf_neg(bim) |
|
real.append(mpf_mul(are, bre)) |
|
real.append(mpf_neg(mpf_mul(aim, bim))) |
|
imag.append(mpf_mul(are, bim)) |
|
imag.append(mpf_mul(aim, bre)) |
|
else: |
|
raise NotImplementedError |
|
s = mpf_sum(real, prec, rnd) |
|
if imag: |
|
s = ctx.make_mpc((s, mpf_sum(imag, prec, rnd))) |
|
else: |
|
s = ctx.make_mpf(s) |
|
return s |
|
|
|
def _wrap_libmp_function(ctx, mpf_f, mpc_f=None, mpi_f=None, doc="<no doc>"): |
|
""" |
|
Given a low-level mpf_ function, and optionally similar functions |
|
for mpc_ and mpi_, defines the function as a context method. |
|
|
|
It is assumed that the return type is the same as that of |
|
the input; the exception is that propagation from mpf to mpc is possible |
|
by raising ComplexResult. |
|
|
|
""" |
|
def f(x, **kwargs): |
|
if type(x) not in ctx.types: |
|
x = ctx.convert(x) |
|
prec, rounding = ctx._prec_rounding |
|
if kwargs: |
|
prec = kwargs.get('prec', prec) |
|
if 'dps' in kwargs: |
|
prec = dps_to_prec(kwargs['dps']) |
|
rounding = kwargs.get('rounding', rounding) |
|
if hasattr(x, '_mpf_'): |
|
try: |
|
return ctx.make_mpf(mpf_f(x._mpf_, prec, rounding)) |
|
except ComplexResult: |
|
|
|
if ctx.trap_complex: |
|
raise |
|
return ctx.make_mpc(mpc_f((x._mpf_, fzero), prec, rounding)) |
|
elif hasattr(x, '_mpc_'): |
|
return ctx.make_mpc(mpc_f(x._mpc_, prec, rounding)) |
|
raise NotImplementedError("%s of a %s" % (name, type(x))) |
|
name = mpf_f.__name__[4:] |
|
f.__doc__ = function_docs.__dict__.get(name, "Computes the %s of x" % doc) |
|
return f |
|
|
|
|
|
@classmethod |
|
def _wrap_specfun(cls, name, f, wrap): |
|
if wrap: |
|
def f_wrapped(ctx, *args, **kwargs): |
|
convert = ctx.convert |
|
args = [convert(a) for a in args] |
|
prec = ctx.prec |
|
try: |
|
ctx.prec += 10 |
|
retval = f(ctx, *args, **kwargs) |
|
finally: |
|
ctx.prec = prec |
|
return +retval |
|
else: |
|
f_wrapped = f |
|
f_wrapped.__doc__ = function_docs.__dict__.get(name, f.__doc__) |
|
setattr(cls, name, f_wrapped) |
|
|
|
def _convert_param(ctx, x): |
|
if hasattr(x, "_mpc_"): |
|
v, im = x._mpc_ |
|
if im != fzero: |
|
return x, 'C' |
|
elif hasattr(x, "_mpf_"): |
|
v = x._mpf_ |
|
else: |
|
if type(x) in int_types: |
|
return int(x), 'Z' |
|
p = None |
|
if isinstance(x, tuple): |
|
p, q = x |
|
elif hasattr(x, '_mpq_'): |
|
p, q = x._mpq_ |
|
elif isinstance(x, basestring) and '/' in x: |
|
p, q = x.split('/') |
|
p = int(p) |
|
q = int(q) |
|
if p is not None: |
|
if not p % q: |
|
return p // q, 'Z' |
|
return ctx.mpq(p,q), 'Q' |
|
x = ctx.convert(x) |
|
if hasattr(x, "_mpc_"): |
|
v, im = x._mpc_ |
|
if im != fzero: |
|
return x, 'C' |
|
elif hasattr(x, "_mpf_"): |
|
v = x._mpf_ |
|
else: |
|
return x, 'U' |
|
sign, man, exp, bc = v |
|
if man: |
|
if exp >= -4: |
|
if sign: |
|
man = -man |
|
if exp >= 0: |
|
return int(man) << exp, 'Z' |
|
if exp >= -4: |
|
p, q = int(man), (1<<(-exp)) |
|
return ctx.mpq(p,q), 'Q' |
|
x = ctx.make_mpf(v) |
|
return x, 'R' |
|
elif not exp: |
|
return 0, 'Z' |
|
else: |
|
return x, 'U' |
|
|
|
def _mpf_mag(ctx, x): |
|
sign, man, exp, bc = x |
|
if man: |
|
return exp+bc |
|
if x == fzero: |
|
return ctx.ninf |
|
if x == finf or x == fninf: |
|
return ctx.inf |
|
return ctx.nan |
|
|
|
def mag(ctx, x): |
|
""" |
|
Quick logarithmic magnitude estimate of a number. Returns an |
|
integer or infinity `m` such that `|x| <= 2^m`. It is not |
|
guaranteed that `m` is an optimal bound, but it will never |
|
be too large by more than 2 (and probably not more than 1). |
|
|
|
**Examples** |
|
|
|
>>> from mpmath import * |
|
>>> mp.pretty = True |
|
>>> mag(10), mag(10.0), mag(mpf(10)), int(ceil(log(10,2))) |
|
(4, 4, 4, 4) |
|
>>> mag(10j), mag(10+10j) |
|
(4, 5) |
|
>>> mag(0.01), int(ceil(log(0.01,2))) |
|
(-6, -6) |
|
>>> mag(0), mag(inf), mag(-inf), mag(nan) |
|
(-inf, +inf, +inf, nan) |
|
|
|
""" |
|
if hasattr(x, "_mpf_"): |
|
return ctx._mpf_mag(x._mpf_) |
|
elif hasattr(x, "_mpc_"): |
|
r, i = x._mpc_ |
|
if r == fzero: |
|
return ctx._mpf_mag(i) |
|
if i == fzero: |
|
return ctx._mpf_mag(r) |
|
return 1+max(ctx._mpf_mag(r), ctx._mpf_mag(i)) |
|
elif isinstance(x, int_types): |
|
if x: |
|
return bitcount(abs(x)) |
|
return ctx.ninf |
|
elif isinstance(x, rational.mpq): |
|
p, q = x._mpq_ |
|
if p: |
|
return 1 + bitcount(abs(p)) - bitcount(q) |
|
return ctx.ninf |
|
else: |
|
x = ctx.convert(x) |
|
if hasattr(x, "_mpf_") or hasattr(x, "_mpc_"): |
|
return ctx.mag(x) |
|
else: |
|
raise TypeError("requires an mpf/mpc") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
import numbers |
|
numbers.Complex.register(_mpc) |
|
numbers.Real.register(_mpf) |
|
except ImportError: |
|
pass |
|
|