|
import importlib |
|
import logging |
|
import unicodedata |
|
from codecs import IncrementalDecoder |
|
from encodings.aliases import aliases |
|
from functools import lru_cache |
|
from re import findall |
|
from typing import Generator, List, Optional, Set, Tuple, Union |
|
|
|
from _multibytecodec import MultibyteIncrementalDecoder |
|
|
|
from .constant import ( |
|
ENCODING_MARKS, |
|
IANA_SUPPORTED_SIMILAR, |
|
RE_POSSIBLE_ENCODING_INDICATION, |
|
UNICODE_RANGES_COMBINED, |
|
UNICODE_SECONDARY_RANGE_KEYWORD, |
|
UTF8_MAXIMAL_ALLOCATION, |
|
) |
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION) |
|
def is_accentuated(character: str) -> bool: |
|
try: |
|
description: str = unicodedata.name(character) |
|
except ValueError: |
|
return False |
|
return ( |
|
"WITH GRAVE" in description |
|
or "WITH ACUTE" in description |
|
or "WITH CEDILLA" in description |
|
or "WITH DIAERESIS" in description |
|
or "WITH CIRCUMFLEX" in description |
|
or "WITH TILDE" in description |
|
or "WITH MACRON" in description |
|
or "WITH RING ABOVE" in description |
|
) |
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION) |
|
def remove_accent(character: str) -> str: |
|
decomposed: str = unicodedata.decomposition(character) |
|
if not decomposed: |
|
return character |
|
|
|
codes: List[str] = decomposed.split(" ") |
|
|
|
return chr(int(codes[0], 16)) |
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION) |
|
def unicode_range(character: str) -> Optional[str]: |
|
""" |
|
Retrieve the Unicode range official name from a single character. |
|
""" |
|
character_ord: int = ord(character) |
|
|
|
for range_name, ord_range in UNICODE_RANGES_COMBINED.items(): |
|
if character_ord in ord_range: |
|
return range_name |
|
|
|
return None |
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION) |
|
def is_latin(character: str) -> bool: |
|
try: |
|
description: str = unicodedata.name(character) |
|
except ValueError: |
|
return False |
|
return "LATIN" in description |
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION) |
|
def is_punctuation(character: str) -> bool: |
|
character_category: str = unicodedata.category(character) |
|
|
|
if "P" in character_category: |
|
return True |
|
|
|
character_range: Optional[str] = unicode_range(character) |
|
|
|
if character_range is None: |
|
return False |
|
|
|
return "Punctuation" in character_range |
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION) |
|
def is_symbol(character: str) -> bool: |
|
character_category: str = unicodedata.category(character) |
|
|
|
if "S" in character_category or "N" in character_category: |
|
return True |
|
|
|
character_range: Optional[str] = unicode_range(character) |
|
|
|
if character_range is None: |
|
return False |
|
|
|
return "Forms" in character_range and character_category != "Lo" |
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION) |
|
def is_emoticon(character: str) -> bool: |
|
character_range: Optional[str] = unicode_range(character) |
|
|
|
if character_range is None: |
|
return False |
|
|
|
return "Emoticons" in character_range or "Pictographs" in character_range |
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION) |
|
def is_separator(character: str) -> bool: |
|
if character.isspace() or character in {"|", "+", "<", ">"}: |
|
return True |
|
|
|
character_category: str = unicodedata.category(character) |
|
|
|
return "Z" in character_category or character_category in {"Po", "Pd", "Pc"} |
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION) |
|
def is_case_variable(character: str) -> bool: |
|
return character.islower() != character.isupper() |
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION) |
|
def is_cjk(character: str) -> bool: |
|
try: |
|
character_name = unicodedata.name(character) |
|
except ValueError: |
|
return False |
|
|
|
return "CJK" in character_name |
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION) |
|
def is_hiragana(character: str) -> bool: |
|
try: |
|
character_name = unicodedata.name(character) |
|
except ValueError: |
|
return False |
|
|
|
return "HIRAGANA" in character_name |
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION) |
|
def is_katakana(character: str) -> bool: |
|
try: |
|
character_name = unicodedata.name(character) |
|
except ValueError: |
|
return False |
|
|
|
return "KATAKANA" in character_name |
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION) |
|
def is_hangul(character: str) -> bool: |
|
try: |
|
character_name = unicodedata.name(character) |
|
except ValueError: |
|
return False |
|
|
|
return "HANGUL" in character_name |
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION) |
|
def is_thai(character: str) -> bool: |
|
try: |
|
character_name = unicodedata.name(character) |
|
except ValueError: |
|
return False |
|
|
|
return "THAI" in character_name |
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION) |
|
def is_arabic(character: str) -> bool: |
|
try: |
|
character_name = unicodedata.name(character) |
|
except ValueError: |
|
return False |
|
|
|
return "ARABIC" in character_name |
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION) |
|
def is_arabic_isolated_form(character: str) -> bool: |
|
try: |
|
character_name = unicodedata.name(character) |
|
except ValueError: |
|
return False |
|
|
|
return "ARABIC" in character_name and "ISOLATED FORM" in character_name |
|
|
|
|
|
@lru_cache(maxsize=len(UNICODE_RANGES_COMBINED)) |
|
def is_unicode_range_secondary(range_name: str) -> bool: |
|
return any(keyword in range_name for keyword in UNICODE_SECONDARY_RANGE_KEYWORD) |
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION) |
|
def is_unprintable(character: str) -> bool: |
|
return ( |
|
character.isspace() is False |
|
and character.isprintable() is False |
|
and character != "\x1A" |
|
and character != "\ufeff" |
|
|
|
) |
|
|
|
|
|
def any_specified_encoding(sequence: bytes, search_zone: int = 8192) -> Optional[str]: |
|
""" |
|
Extract using ASCII-only decoder any specified encoding in the first n-bytes. |
|
""" |
|
if not isinstance(sequence, bytes): |
|
raise TypeError |
|
|
|
seq_len: int = len(sequence) |
|
|
|
results: List[str] = findall( |
|
RE_POSSIBLE_ENCODING_INDICATION, |
|
sequence[: min(seq_len, search_zone)].decode("ascii", errors="ignore"), |
|
) |
|
|
|
if len(results) == 0: |
|
return None |
|
|
|
for specified_encoding in results: |
|
specified_encoding = specified_encoding.lower().replace("-", "_") |
|
|
|
encoding_alias: str |
|
encoding_iana: str |
|
|
|
for encoding_alias, encoding_iana in aliases.items(): |
|
if encoding_alias == specified_encoding: |
|
return encoding_iana |
|
if encoding_iana == specified_encoding: |
|
return encoding_iana |
|
|
|
return None |
|
|
|
|
|
@lru_cache(maxsize=128) |
|
def is_multi_byte_encoding(name: str) -> bool: |
|
""" |
|
Verify is a specific encoding is a multi byte one based on it IANA name |
|
""" |
|
return name in { |
|
"utf_8", |
|
"utf_8_sig", |
|
"utf_16", |
|
"utf_16_be", |
|
"utf_16_le", |
|
"utf_32", |
|
"utf_32_le", |
|
"utf_32_be", |
|
"utf_7", |
|
} or issubclass( |
|
importlib.import_module("encodings.{}".format(name)).IncrementalDecoder, |
|
MultibyteIncrementalDecoder, |
|
) |
|
|
|
|
|
def identify_sig_or_bom(sequence: bytes) -> Tuple[Optional[str], bytes]: |
|
""" |
|
Identify and extract SIG/BOM in given sequence. |
|
""" |
|
|
|
for iana_encoding in ENCODING_MARKS: |
|
marks: Union[bytes, List[bytes]] = ENCODING_MARKS[iana_encoding] |
|
|
|
if isinstance(marks, bytes): |
|
marks = [marks] |
|
|
|
for mark in marks: |
|
if sequence.startswith(mark): |
|
return iana_encoding, mark |
|
|
|
return None, b"" |
|
|
|
|
|
def should_strip_sig_or_bom(iana_encoding: str) -> bool: |
|
return iana_encoding not in {"utf_16", "utf_32"} |
|
|
|
|
|
def iana_name(cp_name: str, strict: bool = True) -> str: |
|
cp_name = cp_name.lower().replace("-", "_") |
|
|
|
encoding_alias: str |
|
encoding_iana: str |
|
|
|
for encoding_alias, encoding_iana in aliases.items(): |
|
if cp_name in [encoding_alias, encoding_iana]: |
|
return encoding_iana |
|
|
|
if strict: |
|
raise ValueError("Unable to retrieve IANA for '{}'".format(cp_name)) |
|
|
|
return cp_name |
|
|
|
|
|
def range_scan(decoded_sequence: str) -> List[str]: |
|
ranges: Set[str] = set() |
|
|
|
for character in decoded_sequence: |
|
character_range: Optional[str] = unicode_range(character) |
|
|
|
if character_range is None: |
|
continue |
|
|
|
ranges.add(character_range) |
|
|
|
return list(ranges) |
|
|
|
|
|
def cp_similarity(iana_name_a: str, iana_name_b: str) -> float: |
|
if is_multi_byte_encoding(iana_name_a) or is_multi_byte_encoding(iana_name_b): |
|
return 0.0 |
|
|
|
decoder_a = importlib.import_module( |
|
"encodings.{}".format(iana_name_a) |
|
).IncrementalDecoder |
|
decoder_b = importlib.import_module( |
|
"encodings.{}".format(iana_name_b) |
|
).IncrementalDecoder |
|
|
|
id_a: IncrementalDecoder = decoder_a(errors="ignore") |
|
id_b: IncrementalDecoder = decoder_b(errors="ignore") |
|
|
|
character_match_count: int = 0 |
|
|
|
for i in range(255): |
|
to_be_decoded: bytes = bytes([i]) |
|
if id_a.decode(to_be_decoded) == id_b.decode(to_be_decoded): |
|
character_match_count += 1 |
|
|
|
return character_match_count / 254 |
|
|
|
|
|
def is_cp_similar(iana_name_a: str, iana_name_b: str) -> bool: |
|
""" |
|
Determine if two code page are at least 80% similar. IANA_SUPPORTED_SIMILAR dict was generated using |
|
the function cp_similarity. |
|
""" |
|
return ( |
|
iana_name_a in IANA_SUPPORTED_SIMILAR |
|
and iana_name_b in IANA_SUPPORTED_SIMILAR[iana_name_a] |
|
) |
|
|
|
|
|
def set_logging_handler( |
|
name: str = "charset_normalizer", |
|
level: int = logging.INFO, |
|
format_string: str = "%(asctime)s | %(levelname)s | %(message)s", |
|
) -> None: |
|
logger = logging.getLogger(name) |
|
logger.setLevel(level) |
|
|
|
handler = logging.StreamHandler() |
|
handler.setFormatter(logging.Formatter(format_string)) |
|
logger.addHandler(handler) |
|
|
|
|
|
def cut_sequence_chunks( |
|
sequences: bytes, |
|
encoding_iana: str, |
|
offsets: range, |
|
chunk_size: int, |
|
bom_or_sig_available: bool, |
|
strip_sig_or_bom: bool, |
|
sig_payload: bytes, |
|
is_multi_byte_decoder: bool, |
|
decoded_payload: Optional[str] = None, |
|
) -> Generator[str, None, None]: |
|
if decoded_payload and is_multi_byte_decoder is False: |
|
for i in offsets: |
|
chunk = decoded_payload[i : i + chunk_size] |
|
if not chunk: |
|
break |
|
yield chunk |
|
else: |
|
for i in offsets: |
|
chunk_end = i + chunk_size |
|
if chunk_end > len(sequences) + 8: |
|
continue |
|
|
|
cut_sequence = sequences[i : i + chunk_size] |
|
|
|
if bom_or_sig_available and strip_sig_or_bom is False: |
|
cut_sequence = sig_payload + cut_sequence |
|
|
|
chunk = cut_sequence.decode( |
|
encoding_iana, |
|
errors="ignore" if is_multi_byte_decoder else "strict", |
|
) |
|
|
|
|
|
|
|
if is_multi_byte_decoder and i > 0: |
|
chunk_partial_size_chk: int = min(chunk_size, 16) |
|
|
|
if ( |
|
decoded_payload |
|
and chunk[:chunk_partial_size_chk] not in decoded_payload |
|
): |
|
for j in range(i, i - 4, -1): |
|
cut_sequence = sequences[j:chunk_end] |
|
|
|
if bom_or_sig_available and strip_sig_or_bom is False: |
|
cut_sequence = sig_payload + cut_sequence |
|
|
|
chunk = cut_sequence.decode(encoding_iana, errors="ignore") |
|
|
|
if chunk[:chunk_partial_size_chk] in decoded_payload: |
|
break |
|
|
|
yield chunk |
|
|