prince-canuma commited on
Commit
96a3b3d
·
verified ·
1 Parent(s): b97144d

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/model-00001-of-00015-checkpoint.safetensors ADDED
File without changes
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - fr
4
+ - it
5
+ - de
6
+ - es
7
+ - en
8
+ license: apache-2.0
9
+ tags:
10
+ - moe
11
+ - mlx
12
+ ---
13
+
14
+ # mlx-community/mixtral-8x22b-4bit
15
+ This model was converted to MLX format from [`v2ray/Mixtral-8x22B-v0.1`]() using mlx-lm version **0.4.0**.
16
+ Refer to the [original model card](https://huggingface.co/v2ray/Mixtral-8x22B-v0.1) for more details on the model.
17
+ ## Use with mlx
18
+
19
+ ```bash
20
+ pip install mlx-lm
21
+ ```
22
+
23
+ ```python
24
+ from mlx_lm import load, generate
25
+
26
+ model, tokenizer = load("mlx-community/mixtral-8x22b-4bit")
27
+ response = generate(model, tokenizer, prompt="hello", verbose=True)
28
+ ```
config.json ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_cross_attention": false,
3
+ "architectures": [
4
+ "MixtralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bad_words_ids": null,
8
+ "begin_suppress_tokens": null,
9
+ "bos_token_id": 1,
10
+ "chunk_size_feed_forward": 0,
11
+ "cross_attention_hidden_size": null,
12
+ "decoder_start_token_id": null,
13
+ "diversity_penalty": 0.0,
14
+ "do_sample": false,
15
+ "early_stopping": false,
16
+ "encoder_no_repeat_ngram_size": 0,
17
+ "eos_token_id": 2,
18
+ "exponential_decay_length_penalty": null,
19
+ "finetuning_task": null,
20
+ "forced_bos_token_id": null,
21
+ "forced_eos_token_id": null,
22
+ "hidden_act": "silu",
23
+ "hidden_size": 6144,
24
+ "id2label": {
25
+ "0": "LABEL_0",
26
+ "1": "LABEL_1"
27
+ },
28
+ "initializer_range": 0.02,
29
+ "intermediate_size": 16384,
30
+ "is_decoder": false,
31
+ "is_encoder_decoder": false,
32
+ "label2id": {
33
+ "LABEL_0": 0,
34
+ "LABEL_1": 1
35
+ },
36
+ "length_penalty": 1.0,
37
+ "max_length": 20,
38
+ "max_position_embeddings": 65536,
39
+ "min_length": 0,
40
+ "model_type": "mixtral",
41
+ "no_repeat_ngram_size": 0,
42
+ "num_attention_heads": 48,
43
+ "num_beam_groups": 1,
44
+ "num_beams": 1,
45
+ "num_experts_per_tok": 2,
46
+ "num_hidden_layers": 56,
47
+ "num_key_value_heads": 8,
48
+ "num_local_experts": 8,
49
+ "num_return_sequences": 1,
50
+ "output_attentions": false,
51
+ "output_hidden_states": false,
52
+ "output_router_logits": false,
53
+ "output_scores": false,
54
+ "pad_token_id": null,
55
+ "prefix": null,
56
+ "problem_type": null,
57
+ "pruned_heads": {},
58
+ "quantization": {
59
+ "group_size": 64,
60
+ "bits": 4
61
+ },
62
+ "remove_invalid_values": false,
63
+ "repetition_penalty": 1.0,
64
+ "return_dict": true,
65
+ "return_dict_in_generate": false,
66
+ "rms_norm_eps": 1e-05,
67
+ "rope_theta": 1000000,
68
+ "router_aux_loss_coef": 0.001,
69
+ "router_jitter_noise": 0.0,
70
+ "sep_token_id": null,
71
+ "sliding_window": null,
72
+ "suppress_tokens": null,
73
+ "task_specific_params": null,
74
+ "temperature": 1.0,
75
+ "tf_legacy_loss": false,
76
+ "tie_encoder_decoder": false,
77
+ "tie_word_embeddings": false,
78
+ "tokenizer_class": null,
79
+ "top_k": 50,
80
+ "top_p": 1.0,
81
+ "torch_dtype": "bfloat16",
82
+ "torchscript": false,
83
+ "transformers_version": "4.39.3",
84
+ "typical_p": 1.0,
85
+ "use_bfloat16": false,
86
+ "use_cache": true,
87
+ "vocab_size": 32000
88
+ }
convert.py ADDED
@@ -0,0 +1,278 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Mistral AI and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import argparse
15
+ import json
16
+ import os
17
+
18
+ import torch
19
+ from safetensors.torch import load_file
20
+
21
+ from transformers import (
22
+ MixtralConfig,
23
+ MixtralForCausalLM,
24
+ )
25
+
26
+ """
27
+ Sample usage:
28
+
29
+ ```
30
+ python src/transformers/models/mixtral/convert_mixtral_weights_to_hf.py \
31
+ --input_dir /path/to/downloaded/mixtral/weights --model_size 7B --output_dir /output/path
32
+ ```
33
+
34
+ Thereafter, models can be loaded via:
35
+
36
+ ```py
37
+ from transformers import MixtralForCausalLM
38
+
39
+ model = MixtralForCausalLM.from_pretrained("/output/path")
40
+ ```
41
+
42
+ Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
43
+ come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
44
+ """
45
+
46
+ def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256):
47
+ return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of)
48
+
49
+ def read_json(path):
50
+ with open(path, "r") as f:
51
+ return json.load(f)
52
+
53
+ def write_json(text, path):
54
+ with open(path, "w") as f:
55
+ json.dump(text, f)
56
+
57
+ def write_model(model_path, input_base_path, model_size, safe_serialization=True):
58
+ os.makedirs(model_path, exist_ok=True)
59
+
60
+ params = read_json(os.path.join(input_base_path, "params.json"))
61
+ num_shards = 1
62
+
63
+ # For some reason this is a string in the params.json
64
+ sliding_window = int(params["sliding_window"]) if "sliding_window" in params else None
65
+ base = params.get("rope_theta", 10000.0)
66
+ vocab_size = params["vocab_size"]
67
+
68
+ if model_size == "7B":
69
+ dim = params["hidden_size"]
70
+ max_position_embeddings = 4096 * 8
71
+ num_local_experts = params["num_local_experts"]
72
+ ffn_dim = params["intermediate_size"]
73
+ n_layers = params["num_hidden_layers"]
74
+ n_heads = params["num_attention_heads"]
75
+ n_heads_per_shard = n_heads // num_shards
76
+ dims_per_head = dim // n_heads
77
+ if "num_key_value_heads" in params:
78
+ num_key_value_heads = params["num_key_value_heads"] # for GQA / MQA
79
+ num_local_key_value_heads = num_key_value_heads // num_shards
80
+ key_value_dim = dims_per_head * num_local_key_value_heads
81
+ else: # compatibility with other checkpoints
82
+ num_key_value_heads = n_heads
83
+ num_local_key_value_heads = n_heads_per_shard
84
+ key_value_dim = dim
85
+ rms_norm_eps = params["rms_norm_eps"]
86
+ elif model_size == "22B":
87
+ dim = params["dim"]
88
+ max_position_embeddings = params["max_seq_len"]
89
+ num_local_experts = params["moe"]["num_experts"]
90
+ ffn_dim = params["hidden_dim"]
91
+ n_layers = params["n_layers"]
92
+ n_heads = params["n_heads"]
93
+ n_heads_per_shard = n_heads // num_shards
94
+ dims_per_head = dim // n_heads
95
+ if "n_kv_heads" in params:
96
+ num_key_value_heads = params["n_kv_heads"] # for GQA / MQA
97
+ num_local_key_value_heads = num_key_value_heads // num_shards
98
+ key_value_dim = dims_per_head * num_local_key_value_heads
99
+ else: # compatibility with other checkpoints
100
+ num_key_value_heads = n_heads
101
+ num_local_key_value_heads = n_heads_per_shard
102
+ key_value_dim = dim
103
+ rms_norm_eps = params["norm_eps"]
104
+ else:
105
+ raise Exception("Illegal model size:", model_size)
106
+
107
+ # permute for sliced rotary
108
+ def permute(w, n_heads=n_heads, dim1=dim, dim2=dim):
109
+ return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2)
110
+
111
+ print(f"Fetching all parameters from the checkpoint at \"{input_base_path}\"...")
112
+ # Load weights
113
+ if model_size == "7B":
114
+ loaded = [
115
+ torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pt"), map_location="cpu") for i in range(8)
116
+ ]
117
+ merged_state_dict = {}
118
+ for state_dict in loaded:
119
+ merged_state_dict.update(state_dict)
120
+ elif model_size == "22B":
121
+ merged_state_dict = load_file(os.path.join(input_base_path, "consolidated.safetensors"))
122
+ print("Parameters load finished.")
123
+
124
+ state_dict = {}
125
+ for layer_i in range(n_layers):
126
+ print(f"At layer {layer_i}...")
127
+ # Sharded
128
+ # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
129
+ # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
130
+ # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
131
+
132
+ state_dict.update(
133
+ {
134
+ f"model.layers.{layer_i}.input_layernorm.weight": merged_state_dict[
135
+ f"layers.{layer_i}.attention_norm.weight"
136
+ ].clone(),
137
+ f"model.layers.{layer_i}.post_attention_layernorm.weight": merged_state_dict[
138
+ f"layers.{layer_i}.ffn_norm.weight"
139
+ ].clone(),
140
+ }
141
+ )
142
+
143
+ state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
144
+ merged_state_dict[f"layers.{layer_i}.attention.wq.weight"]
145
+ .view(n_heads_per_shard, dims_per_head, dim)
146
+ .reshape(dim, dim)
147
+ )
148
+ state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
149
+ merged_state_dict[f"layers.{layer_i}.attention.wk.weight"]
150
+ .view(num_local_key_value_heads, dims_per_head, dim)
151
+ .reshape(key_value_dim, dim),
152
+ num_key_value_heads,
153
+ key_value_dim,
154
+ dim,
155
+ )
156
+ state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = (
157
+ merged_state_dict[f"layers.{layer_i}.attention.wv.weight"]
158
+ .view(num_local_key_value_heads, dims_per_head, dim)
159
+ .reshape(key_value_dim, dim)
160
+ )
161
+
162
+ state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = merged_state_dict[
163
+ f"layers.{layer_i}.attention.wo.weight"
164
+ ]
165
+
166
+ if model_size == "7B":
167
+ w1 = merged_state_dict[f"layers.{layer_i}.block_sparse_moe.w1"]
168
+ w2 = merged_state_dict[f"layers.{layer_i}.block_sparse_moe.w2"]
169
+ w3 = merged_state_dict[f"layers.{layer_i}.block_sparse_moe.w3"]
170
+
171
+ experts_w1 = [
172
+ w1[ffn_dim * expert_idx : ffn_dim * (expert_idx + 1), :].contiguous().clone()
173
+ for expert_idx in range(num_local_experts)
174
+ ]
175
+
176
+ for idx, expert_block in enumerate(experts_w1):
177
+ expert_key = f"model.layers.{layer_i}.block_sparse_moe.experts.{idx}.w1"
178
+ state_dict[expert_key + ".weight"] = expert_block.clone()
179
+
180
+ experts_w2 = [
181
+ w2[ffn_dim * expert_idx : ffn_dim * (expert_idx + 1), :].contiguous().clone()
182
+ for expert_idx in range(num_local_experts)
183
+ ]
184
+
185
+ for idx, expert_block in enumerate(experts_w2):
186
+ expert_key = f"model.layers.{layer_i}.block_sparse_moe.experts.{idx}.w2"
187
+ state_dict[expert_key + ".weight"] = expert_block.T.clone().contiguous()
188
+
189
+ experts_w3 = [
190
+ w3[ffn_dim * expert_idx : ffn_dim * (expert_idx + 1), :].contiguous().clone()
191
+ for expert_idx in range(num_local_experts)
192
+ ]
193
+
194
+ for idx, expert_block in enumerate(experts_w3):
195
+ expert_key = f"model.layers.{layer_i}.block_sparse_moe.experts.{idx}.w3"
196
+ state_dict[expert_key + ".weight"] = expert_block.clone()
197
+
198
+ state_dict[f"model.layers.{layer_i}.block_sparse_moe.gate.weight"] = merged_state_dict[
199
+ f"layers.{layer_i}.block_sparse_moe.gate.weight"
200
+ ]
201
+ elif model_size == "22B":
202
+ for expert_i in range(num_local_experts):
203
+ w1 = merged_state_dict[f"layers.{layer_i}.feed_forward.experts.{expert_i}.w1.weight"]
204
+ w2 = merged_state_dict[f"layers.{layer_i}.feed_forward.experts.{expert_i}.w2.weight"]
205
+ w3 = merged_state_dict[f"layers.{layer_i}.feed_forward.experts.{expert_i}.w3.weight"]
206
+ state_dict[f"model.layers.{layer_i}.block_sparse_moe.experts.{expert_i}.w1.weight"] = w1.contiguous().clone()
207
+ state_dict[f"model.layers.{layer_i}.block_sparse_moe.experts.{expert_i}.w2.weight"] = w2.contiguous().clone()
208
+ state_dict[f"model.layers.{layer_i}.block_sparse_moe.experts.{expert_i}.w3.weight"] = w3.contiguous().clone()
209
+ state_dict[f"model.layers.{layer_i}.block_sparse_moe.gate.weight"] = merged_state_dict[
210
+ f"layers.{layer_i}.feed_forward.gate.weight"
211
+ ]
212
+
213
+ state_dict.update(
214
+ {
215
+ "model.norm.weight": merged_state_dict["norm.weight"],
216
+ "model.embed_tokens.weight": merged_state_dict["tok_embeddings.weight"],
217
+ "lm_head.weight": merged_state_dict["output.weight"],
218
+ }
219
+ )
220
+
221
+ config_additional_kwargs = {}
222
+ if model_size == "22B":
223
+ config_additional_kwargs["num_experts_per_tok"] = params["moe"]["num_experts_per_tok"]
224
+ config = MixtralConfig(
225
+ hidden_size=dim,
226
+ intermediate_size=ffn_dim,
227
+ num_attention_heads=n_heads,
228
+ num_hidden_layers=n_layers,
229
+ rms_norm_eps=rms_norm_eps,
230
+ num_key_value_heads=num_key_value_heads,
231
+ vocab_size=vocab_size,
232
+ rope_theta=base,
233
+ max_position_embeddings=max_position_embeddings,
234
+ sliding_window=sliding_window,
235
+ num_local_experts=num_local_experts,
236
+ **config_additional_kwargs
237
+ )
238
+
239
+ print("Loading the checkpoint in a Mixtral model.")
240
+ with torch.device("meta"):
241
+ model = MixtralForCausalLM(config)
242
+ # Avoid saving this as part of the config.
243
+ del model.config._name_or_path
244
+ model.config.torch_dtype = torch.bfloat16
245
+ print("Saving in the Transformers format.")
246
+
247
+ model.load_state_dict(state_dict, strict=True, assign=True)
248
+
249
+ for n, p in model.named_parameters():
250
+ assert p.device.type != "meta", f"{n} has not been loaded!"
251
+
252
+ model.save_pretrained(model_path, safe_serialization=safe_serialization)
253
+
254
+ def main():
255
+ parser = argparse.ArgumentParser()
256
+ parser.add_argument(
257
+ "--input-dir",
258
+ help="Location of Mixtral weights, which contains tokenizer.model and model folders",
259
+ required=True,
260
+ )
261
+ parser.add_argument(
262
+ "--model-size",
263
+ choices=["7B", "22B"],
264
+ help="'f' models correspond to the finetuned versions, and are specific to the Mixtral official release. For more details on Mixtral, checkout the original repo: https://huggingface.co/mistral-ai",
265
+ default="7B",
266
+ )
267
+ parser.add_argument("--output-dir", help="Location to write HF model", required=True)
268
+ parser.add_argument("--safe-serialization", type=bool, default=True, help="Whether or not to save using `safetensors`.")
269
+ args = parser.parse_args()
270
+ write_model(
271
+ model_path=args.output_dir,
272
+ input_base_path=args.input_dir,
273
+ model_size=args.model_size,
274
+ safe_serialization=args.safe_serialization,
275
+ )
276
+
277
+ if __name__ == "__main__":
278
+ main()
model-00001-of-00015.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:314b7c3ef0ac39ffa20bfc29fcc3ffb355fcb9a0dbc456b8d86f075bb03251ae
3
+ size 5348243527
model-00002-of-00015.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:387e2cd7fe5855521343788e960a2a0ec45b1f0a48fe0d0cf40f2920b2e184a1
3
+ size 5351416675
model-00003-of-00015.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93256e72ed9577dd863619d12ab12b44d7f802964f993b742b4f83ea8c7edfd8
3
+ size 5351416739
model-00004-of-00015.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2925dc99a4bb8a098f12190968d8dbfa6b2992f6c3b5d2ee92039925cf39c4c
3
+ size 5358370680
model-00005-of-00015.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bdc080ecf96f9ecd22f3d723278a4d33a46c176f6a5b1dbe276929651701beb2
3
+ size 5351416988
model-00006-of-00015.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51c96a3b9cea6c47e37736bc12809e1d36870ca137c907100b2c95244fe9c872
3
+ size 5351417004
model-00007-of-00015.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11f578df7d003f4a32187d6ab3e3c50a2edf82eb9542ec37a233a0af8d614256
3
+ size 5351416986
model-00008-of-00015.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecc9bc38ac8b2cdde50491c0982861a5ddcff5679816c43aa1e8fdb25c88c34d
3
+ size 5351416946
model-00009-of-00015.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9619c42f210da268126cb9aef2d529d7546005a18864f3b549650167061930c2
3
+ size 5358370676
model-00010-of-00015.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f809b7cac05afcd9050f26ab38e77eed2a6c9e56af0ef4dea9db8977f03e994c
3
+ size 5351417016
model-00011-of-00015.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e89876f56dc63477ddba26c708b0c100ab42c17c27de9abc6b9f8061283d25ff
3
+ size 5351417002
model-00012-of-00015.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:087f926e66d6ec285f4570c00d61507efd9db949e6738ce4eb755f90099a9415
3
+ size 5351416958
model-00013-of-00015.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f06e87f350b4da91fa163ac1429096a76b4808b0a7c46748fa5d14e957e090f0
3
+ size 5351416996
model-00014-of-00015.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:588f928d1787312f0f532e6825392d96fb5f2735aca3e3eb2cd8dafc7d3eaf08
3
+ size 5358370654
model-00015-of-00015.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0032391c95d00dd74b464e9b66ab3deb489cac718d1db09e0481674d9f127a5
3
+ size 4449777275
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": null,
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }