N8Programs commited on
Commit
58b88ed
·
verified ·
1 Parent(s): d02a23d

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_function": "silu",
3
+ "architectures": [
4
+ "ExaoneForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_exaone.ExaoneConfig",
9
+ "AutoModelForCausalLM": "modeling_exaone.ExaoneForCausalLM",
10
+ "AutoModelForSequenceClassification": "modeling_exaone.ExaoneForSequenceClassification"
11
+ },
12
+ "bos_token_id": 1,
13
+ "embed_dropout": 0.0,
14
+ "eos_token_id": 361,
15
+ "head_dim": 80,
16
+ "hidden_size": 2560,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 7168,
19
+ "layer_norm_epsilon": 1e-05,
20
+ "max_position_embeddings": 32768,
21
+ "model_type": "exaone",
22
+ "num_attention_heads": 32,
23
+ "num_key_value_heads": 8,
24
+ "num_layers": 30,
25
+ "pad_token_id": 0,
26
+ "quantization": {
27
+ "group_size": 64,
28
+ "bits": 8
29
+ },
30
+ "quantization_config": {
31
+ "group_size": 64,
32
+ "bits": 8
33
+ },
34
+ "rope_scaling": {
35
+ "factor": 8.0,
36
+ "high_freq_factor": 4.0,
37
+ "low_freq_factor": 1.0,
38
+ "original_max_position_embeddings": 8192,
39
+ "rope_type": "llama3"
40
+ },
41
+ "rope_theta": 1000000,
42
+ "tie_word_embeddings": true,
43
+ "torch_dtype": "float32",
44
+ "transformers_version": "4.43.0",
45
+ "use_cache": true,
46
+ "vocab_size": 102400
47
+ }
configuration_exaone.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The LG AI Research EXAONE Lab. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """EXAONE model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ EXAONE_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
24
+
25
+
26
+ class ExaoneConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a [`ExaoneModel`]. It is used to
29
+ instantiate a EXAONE model according to the specified arguments, defining the model architecture. Instantiating a
30
+ configuration with the defaults will yield a similar configuration to that of the EXAONE-3.0-7.8B-Instruct [LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model
33
+ outputs. Read the documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 102400):
38
+ Vocabulary size of the EXAONE model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`ExaoneModel`]. Vocabulary size of the model.
40
+ Defines the different tokens that can be represented by the `inputs_ids` passed to the forward method of
41
+ [`ExaoneModel`].
42
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
43
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
44
+ just in case (e.g., 512 or 1024 or 2048).
45
+ hidden_size (`int`, *optional*, defaults to 2048):
46
+ Dimensionality of the encoder layers and the pooler layer.
47
+ num_layers (`int`, *optional*, defaults to 32):
48
+ Number of hidden layers in the Transformer encoder.
49
+ num_attention_heads (`int`, *optional*, defaults to 32):
50
+ Number of attention heads for each attention layer in the Transformer decoder.
51
+ num_key_value_heads (`int`, *optional*):
52
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
+ by meanpooling all the original heads within that group. For more details checkout [this
57
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
58
+ `num_attention_heads`.
59
+ intermediate_size (`int`, *optional*, defaults to `hidden_size * 4`):
60
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
61
+ activation_function (`str` or `function`, *optional*, defaults to `"silu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ rope_theta (`float`, *optional*, defaults to 10000.0):
64
+ The base period of the RoPE embeddings.
65
+ rope_scaling (`Dict`, *optional*):
66
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
67
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
68
+ accordingly.
69
+ Expected contents:
70
+ `rope_type` (`str`):
71
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
72
+ 'llama3'], with 'default' being the original RoPE implementation.
73
+ `factor` (`float`, *optional*):
74
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
75
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
76
+ original maximum pre-trained length.
77
+ `original_max_position_embeddings` (`int`, *optional*):
78
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
79
+ pretraining.
80
+ `attention_factor` (`float`, *optional*):
81
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
82
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
83
+ `factor` field to infer the suggested value.
84
+ `beta_fast` (`float`, *optional*):
85
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
86
+ ramp function. If unspecified, it defaults to 32.
87
+ `beta_slow` (`float`, *optional*):
88
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
89
+ ramp function. If unspecified, it defaults to 1.
90
+ `short_factor` (`List[float]`, *optional*):
91
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
92
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
93
+ size divided by the number of attention heads divided by 2
94
+ `long_factor` (`List[float]`, *optional*):
95
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
96
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
97
+ size divided by the number of attention heads divided by 2
98
+ `low_freq_factor` (`float`, *optional*):
99
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
100
+ `high_freq_factor` (`float`, *optional*):
101
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
102
+ embed_dropout (`float`, *optional*, defaults to 0.0):
103
+ The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
104
+ attention_dropout (`float`, *optional*, defaults to 0.0):
105
+ The dropout ratio for the attention probabilities.
106
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
107
+ The epsilon used by the layer normalization layers.
108
+ initializer_range (`float`, *optional*, defaults to 0.02):
109
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
110
+ use_cache (`bool`, *optional*, defaults to `True`):
111
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
112
+ relevant if ``config.is_decoder=True``.
113
+ bos_token_id (`int`, *optional*, defaults to 0):
114
+ Beginning of stream token id.
115
+ eos_token_id (`int`, *optional*, defaults to 2):
116
+ End of stream token id.
117
+
118
+ Example:
119
+
120
+ ```python
121
+ >>> from transformers import EXAONEModel, ExaoneConfig
122
+
123
+ >>> # Initializing a EXAONE configuration
124
+ >>> configuration = ExaoneConfig()
125
+
126
+ >>> # Initializing a model from configuration
127
+ >>> model = EXAONEModel(configuration)
128
+
129
+ >>> # Accessing the model configuration
130
+ >>> configuration = model.config
131
+ ```"""
132
+
133
+ model_type = "exaone"
134
+ keys_to_ignore_at_inference = ["past_key_values"]
135
+ attribute_map = {"num_hidden_layers": "num_layers"}
136
+
137
+ def __init__(
138
+ self,
139
+ vocab_size=102400,
140
+ max_position_embeddings=2048,
141
+ hidden_size=2048,
142
+ num_layers=32,
143
+ num_attention_heads=32,
144
+ num_key_value_heads=None,
145
+ intermediate_size=None,
146
+ activation_function="silu",
147
+ rope_theta=10000.0,
148
+ rope_scaling=None,
149
+ embed_dropout=0.0,
150
+ attention_dropout=0.0,
151
+ layer_norm_epsilon=1e-5,
152
+ initializer_range=0.02,
153
+ use_cache=True,
154
+ bos_token_id=0,
155
+ eos_token_id=2,
156
+ **kwargs,
157
+ ):
158
+ self.vocab_size = vocab_size
159
+ self.max_position_embeddings = max_position_embeddings
160
+ self.hidden_size = hidden_size
161
+ self.num_layers = num_layers
162
+ self.num_attention_heads = num_attention_heads
163
+ self.num_layers = num_layers
164
+ if num_key_value_heads is None:
165
+ num_key_value_heads = num_attention_heads
166
+ self.num_key_value_heads = num_key_value_heads
167
+ if intermediate_size:
168
+ self.intermediate_size = intermediate_size
169
+ else:
170
+ self.intermediate_size = hidden_size * 4
171
+ self.activation_function = activation_function
172
+ self.embed_dropout = embed_dropout
173
+ self.attention_dropout = attention_dropout
174
+ self.layer_norm_epsilon = layer_norm_epsilon
175
+ self.initializer_range = initializer_range
176
+ self.use_cache = use_cache
177
+ self.rope_theta = rope_theta
178
+ self.rope_scaling = rope_scaling
179
+
180
+ self.bos_token_id = bos_token_id
181
+ self.eos_token_id = eos_token_id
182
+
183
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76a2cf2dc93b9e93f6c36939e0ca0e24db28e178a835ed6e8bc3d540011c527c
3
+ size 2555885931
model.safetensors.index.json ADDED
@@ -0,0 +1,701 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 2555806720
4
+ },
5
+ "weight_map": {
6
+ "transformer.h.0.attn.attention.k_proj.biases": "model.safetensors",
7
+ "transformer.h.0.attn.attention.k_proj.scales": "model.safetensors",
8
+ "transformer.h.0.attn.attention.k_proj.weight": "model.safetensors",
9
+ "transformer.h.0.attn.attention.out_proj.biases": "model.safetensors",
10
+ "transformer.h.0.attn.attention.out_proj.scales": "model.safetensors",
11
+ "transformer.h.0.attn.attention.out_proj.weight": "model.safetensors",
12
+ "transformer.h.0.attn.attention.q_proj.biases": "model.safetensors",
13
+ "transformer.h.0.attn.attention.q_proj.scales": "model.safetensors",
14
+ "transformer.h.0.attn.attention.q_proj.weight": "model.safetensors",
15
+ "transformer.h.0.attn.attention.v_proj.biases": "model.safetensors",
16
+ "transformer.h.0.attn.attention.v_proj.scales": "model.safetensors",
17
+ "transformer.h.0.attn.attention.v_proj.weight": "model.safetensors",
18
+ "transformer.h.0.ln_1.weight": "model.safetensors",
19
+ "transformer.h.0.ln_2.weight": "model.safetensors",
20
+ "transformer.h.0.mlp.c_fc_0.biases": "model.safetensors",
21
+ "transformer.h.0.mlp.c_fc_0.scales": "model.safetensors",
22
+ "transformer.h.0.mlp.c_fc_0.weight": "model.safetensors",
23
+ "transformer.h.0.mlp.c_fc_1.biases": "model.safetensors",
24
+ "transformer.h.0.mlp.c_fc_1.scales": "model.safetensors",
25
+ "transformer.h.0.mlp.c_fc_1.weight": "model.safetensors",
26
+ "transformer.h.0.mlp.c_proj.biases": "model.safetensors",
27
+ "transformer.h.0.mlp.c_proj.scales": "model.safetensors",
28
+ "transformer.h.0.mlp.c_proj.weight": "model.safetensors",
29
+ "transformer.h.1.attn.attention.k_proj.biases": "model.safetensors",
30
+ "transformer.h.1.attn.attention.k_proj.scales": "model.safetensors",
31
+ "transformer.h.1.attn.attention.k_proj.weight": "model.safetensors",
32
+ "transformer.h.1.attn.attention.out_proj.biases": "model.safetensors",
33
+ "transformer.h.1.attn.attention.out_proj.scales": "model.safetensors",
34
+ "transformer.h.1.attn.attention.out_proj.weight": "model.safetensors",
35
+ "transformer.h.1.attn.attention.q_proj.biases": "model.safetensors",
36
+ "transformer.h.1.attn.attention.q_proj.scales": "model.safetensors",
37
+ "transformer.h.1.attn.attention.q_proj.weight": "model.safetensors",
38
+ "transformer.h.1.attn.attention.v_proj.biases": "model.safetensors",
39
+ "transformer.h.1.attn.attention.v_proj.scales": "model.safetensors",
40
+ "transformer.h.1.attn.attention.v_proj.weight": "model.safetensors",
41
+ "transformer.h.1.ln_1.weight": "model.safetensors",
42
+ "transformer.h.1.ln_2.weight": "model.safetensors",
43
+ "transformer.h.1.mlp.c_fc_0.biases": "model.safetensors",
44
+ "transformer.h.1.mlp.c_fc_0.scales": "model.safetensors",
45
+ "transformer.h.1.mlp.c_fc_0.weight": "model.safetensors",
46
+ "transformer.h.1.mlp.c_fc_1.biases": "model.safetensors",
47
+ "transformer.h.1.mlp.c_fc_1.scales": "model.safetensors",
48
+ "transformer.h.1.mlp.c_fc_1.weight": "model.safetensors",
49
+ "transformer.h.1.mlp.c_proj.biases": "model.safetensors",
50
+ "transformer.h.1.mlp.c_proj.scales": "model.safetensors",
51
+ "transformer.h.1.mlp.c_proj.weight": "model.safetensors",
52
+ "transformer.h.10.attn.attention.k_proj.biases": "model.safetensors",
53
+ "transformer.h.10.attn.attention.k_proj.scales": "model.safetensors",
54
+ "transformer.h.10.attn.attention.k_proj.weight": "model.safetensors",
55
+ "transformer.h.10.attn.attention.out_proj.biases": "model.safetensors",
56
+ "transformer.h.10.attn.attention.out_proj.scales": "model.safetensors",
57
+ "transformer.h.10.attn.attention.out_proj.weight": "model.safetensors",
58
+ "transformer.h.10.attn.attention.q_proj.biases": "model.safetensors",
59
+ "transformer.h.10.attn.attention.q_proj.scales": "model.safetensors",
60
+ "transformer.h.10.attn.attention.q_proj.weight": "model.safetensors",
61
+ "transformer.h.10.attn.attention.v_proj.biases": "model.safetensors",
62
+ "transformer.h.10.attn.attention.v_proj.scales": "model.safetensors",
63
+ "transformer.h.10.attn.attention.v_proj.weight": "model.safetensors",
64
+ "transformer.h.10.ln_1.weight": "model.safetensors",
65
+ "transformer.h.10.ln_2.weight": "model.safetensors",
66
+ "transformer.h.10.mlp.c_fc_0.biases": "model.safetensors",
67
+ "transformer.h.10.mlp.c_fc_0.scales": "model.safetensors",
68
+ "transformer.h.10.mlp.c_fc_0.weight": "model.safetensors",
69
+ "transformer.h.10.mlp.c_fc_1.biases": "model.safetensors",
70
+ "transformer.h.10.mlp.c_fc_1.scales": "model.safetensors",
71
+ "transformer.h.10.mlp.c_fc_1.weight": "model.safetensors",
72
+ "transformer.h.10.mlp.c_proj.biases": "model.safetensors",
73
+ "transformer.h.10.mlp.c_proj.scales": "model.safetensors",
74
+ "transformer.h.10.mlp.c_proj.weight": "model.safetensors",
75
+ "transformer.h.11.attn.attention.k_proj.biases": "model.safetensors",
76
+ "transformer.h.11.attn.attention.k_proj.scales": "model.safetensors",
77
+ "transformer.h.11.attn.attention.k_proj.weight": "model.safetensors",
78
+ "transformer.h.11.attn.attention.out_proj.biases": "model.safetensors",
79
+ "transformer.h.11.attn.attention.out_proj.scales": "model.safetensors",
80
+ "transformer.h.11.attn.attention.out_proj.weight": "model.safetensors",
81
+ "transformer.h.11.attn.attention.q_proj.biases": "model.safetensors",
82
+ "transformer.h.11.attn.attention.q_proj.scales": "model.safetensors",
83
+ "transformer.h.11.attn.attention.q_proj.weight": "model.safetensors",
84
+ "transformer.h.11.attn.attention.v_proj.biases": "model.safetensors",
85
+ "transformer.h.11.attn.attention.v_proj.scales": "model.safetensors",
86
+ "transformer.h.11.attn.attention.v_proj.weight": "model.safetensors",
87
+ "transformer.h.11.ln_1.weight": "model.safetensors",
88
+ "transformer.h.11.ln_2.weight": "model.safetensors",
89
+ "transformer.h.11.mlp.c_fc_0.biases": "model.safetensors",
90
+ "transformer.h.11.mlp.c_fc_0.scales": "model.safetensors",
91
+ "transformer.h.11.mlp.c_fc_0.weight": "model.safetensors",
92
+ "transformer.h.11.mlp.c_fc_1.biases": "model.safetensors",
93
+ "transformer.h.11.mlp.c_fc_1.scales": "model.safetensors",
94
+ "transformer.h.11.mlp.c_fc_1.weight": "model.safetensors",
95
+ "transformer.h.11.mlp.c_proj.biases": "model.safetensors",
96
+ "transformer.h.11.mlp.c_proj.scales": "model.safetensors",
97
+ "transformer.h.11.mlp.c_proj.weight": "model.safetensors",
98
+ "transformer.h.12.attn.attention.k_proj.biases": "model.safetensors",
99
+ "transformer.h.12.attn.attention.k_proj.scales": "model.safetensors",
100
+ "transformer.h.12.attn.attention.k_proj.weight": "model.safetensors",
101
+ "transformer.h.12.attn.attention.out_proj.biases": "model.safetensors",
102
+ "transformer.h.12.attn.attention.out_proj.scales": "model.safetensors",
103
+ "transformer.h.12.attn.attention.out_proj.weight": "model.safetensors",
104
+ "transformer.h.12.attn.attention.q_proj.biases": "model.safetensors",
105
+ "transformer.h.12.attn.attention.q_proj.scales": "model.safetensors",
106
+ "transformer.h.12.attn.attention.q_proj.weight": "model.safetensors",
107
+ "transformer.h.12.attn.attention.v_proj.biases": "model.safetensors",
108
+ "transformer.h.12.attn.attention.v_proj.scales": "model.safetensors",
109
+ "transformer.h.12.attn.attention.v_proj.weight": "model.safetensors",
110
+ "transformer.h.12.ln_1.weight": "model.safetensors",
111
+ "transformer.h.12.ln_2.weight": "model.safetensors",
112
+ "transformer.h.12.mlp.c_fc_0.biases": "model.safetensors",
113
+ "transformer.h.12.mlp.c_fc_0.scales": "model.safetensors",
114
+ "transformer.h.12.mlp.c_fc_0.weight": "model.safetensors",
115
+ "transformer.h.12.mlp.c_fc_1.biases": "model.safetensors",
116
+ "transformer.h.12.mlp.c_fc_1.scales": "model.safetensors",
117
+ "transformer.h.12.mlp.c_fc_1.weight": "model.safetensors",
118
+ "transformer.h.12.mlp.c_proj.biases": "model.safetensors",
119
+ "transformer.h.12.mlp.c_proj.scales": "model.safetensors",
120
+ "transformer.h.12.mlp.c_proj.weight": "model.safetensors",
121
+ "transformer.h.13.attn.attention.k_proj.biases": "model.safetensors",
122
+ "transformer.h.13.attn.attention.k_proj.scales": "model.safetensors",
123
+ "transformer.h.13.attn.attention.k_proj.weight": "model.safetensors",
124
+ "transformer.h.13.attn.attention.out_proj.biases": "model.safetensors",
125
+ "transformer.h.13.attn.attention.out_proj.scales": "model.safetensors",
126
+ "transformer.h.13.attn.attention.out_proj.weight": "model.safetensors",
127
+ "transformer.h.13.attn.attention.q_proj.biases": "model.safetensors",
128
+ "transformer.h.13.attn.attention.q_proj.scales": "model.safetensors",
129
+ "transformer.h.13.attn.attention.q_proj.weight": "model.safetensors",
130
+ "transformer.h.13.attn.attention.v_proj.biases": "model.safetensors",
131
+ "transformer.h.13.attn.attention.v_proj.scales": "model.safetensors",
132
+ "transformer.h.13.attn.attention.v_proj.weight": "model.safetensors",
133
+ "transformer.h.13.ln_1.weight": "model.safetensors",
134
+ "transformer.h.13.ln_2.weight": "model.safetensors",
135
+ "transformer.h.13.mlp.c_fc_0.biases": "model.safetensors",
136
+ "transformer.h.13.mlp.c_fc_0.scales": "model.safetensors",
137
+ "transformer.h.13.mlp.c_fc_0.weight": "model.safetensors",
138
+ "transformer.h.13.mlp.c_fc_1.biases": "model.safetensors",
139
+ "transformer.h.13.mlp.c_fc_1.scales": "model.safetensors",
140
+ "transformer.h.13.mlp.c_fc_1.weight": "model.safetensors",
141
+ "transformer.h.13.mlp.c_proj.biases": "model.safetensors",
142
+ "transformer.h.13.mlp.c_proj.scales": "model.safetensors",
143
+ "transformer.h.13.mlp.c_proj.weight": "model.safetensors",
144
+ "transformer.h.14.attn.attention.k_proj.biases": "model.safetensors",
145
+ "transformer.h.14.attn.attention.k_proj.scales": "model.safetensors",
146
+ "transformer.h.14.attn.attention.k_proj.weight": "model.safetensors",
147
+ "transformer.h.14.attn.attention.out_proj.biases": "model.safetensors",
148
+ "transformer.h.14.attn.attention.out_proj.scales": "model.safetensors",
149
+ "transformer.h.14.attn.attention.out_proj.weight": "model.safetensors",
150
+ "transformer.h.14.attn.attention.q_proj.biases": "model.safetensors",
151
+ "transformer.h.14.attn.attention.q_proj.scales": "model.safetensors",
152
+ "transformer.h.14.attn.attention.q_proj.weight": "model.safetensors",
153
+ "transformer.h.14.attn.attention.v_proj.biases": "model.safetensors",
154
+ "transformer.h.14.attn.attention.v_proj.scales": "model.safetensors",
155
+ "transformer.h.14.attn.attention.v_proj.weight": "model.safetensors",
156
+ "transformer.h.14.ln_1.weight": "model.safetensors",
157
+ "transformer.h.14.ln_2.weight": "model.safetensors",
158
+ "transformer.h.14.mlp.c_fc_0.biases": "model.safetensors",
159
+ "transformer.h.14.mlp.c_fc_0.scales": "model.safetensors",
160
+ "transformer.h.14.mlp.c_fc_0.weight": "model.safetensors",
161
+ "transformer.h.14.mlp.c_fc_1.biases": "model.safetensors",
162
+ "transformer.h.14.mlp.c_fc_1.scales": "model.safetensors",
163
+ "transformer.h.14.mlp.c_fc_1.weight": "model.safetensors",
164
+ "transformer.h.14.mlp.c_proj.biases": "model.safetensors",
165
+ "transformer.h.14.mlp.c_proj.scales": "model.safetensors",
166
+ "transformer.h.14.mlp.c_proj.weight": "model.safetensors",
167
+ "transformer.h.15.attn.attention.k_proj.biases": "model.safetensors",
168
+ "transformer.h.15.attn.attention.k_proj.scales": "model.safetensors",
169
+ "transformer.h.15.attn.attention.k_proj.weight": "model.safetensors",
170
+ "transformer.h.15.attn.attention.out_proj.biases": "model.safetensors",
171
+ "transformer.h.15.attn.attention.out_proj.scales": "model.safetensors",
172
+ "transformer.h.15.attn.attention.out_proj.weight": "model.safetensors",
173
+ "transformer.h.15.attn.attention.q_proj.biases": "model.safetensors",
174
+ "transformer.h.15.attn.attention.q_proj.scales": "model.safetensors",
175
+ "transformer.h.15.attn.attention.q_proj.weight": "model.safetensors",
176
+ "transformer.h.15.attn.attention.v_proj.biases": "model.safetensors",
177
+ "transformer.h.15.attn.attention.v_proj.scales": "model.safetensors",
178
+ "transformer.h.15.attn.attention.v_proj.weight": "model.safetensors",
179
+ "transformer.h.15.ln_1.weight": "model.safetensors",
180
+ "transformer.h.15.ln_2.weight": "model.safetensors",
181
+ "transformer.h.15.mlp.c_fc_0.biases": "model.safetensors",
182
+ "transformer.h.15.mlp.c_fc_0.scales": "model.safetensors",
183
+ "transformer.h.15.mlp.c_fc_0.weight": "model.safetensors",
184
+ "transformer.h.15.mlp.c_fc_1.biases": "model.safetensors",
185
+ "transformer.h.15.mlp.c_fc_1.scales": "model.safetensors",
186
+ "transformer.h.15.mlp.c_fc_1.weight": "model.safetensors",
187
+ "transformer.h.15.mlp.c_proj.biases": "model.safetensors",
188
+ "transformer.h.15.mlp.c_proj.scales": "model.safetensors",
189
+ "transformer.h.15.mlp.c_proj.weight": "model.safetensors",
190
+ "transformer.h.16.attn.attention.k_proj.biases": "model.safetensors",
191
+ "transformer.h.16.attn.attention.k_proj.scales": "model.safetensors",
192
+ "transformer.h.16.attn.attention.k_proj.weight": "model.safetensors",
193
+ "transformer.h.16.attn.attention.out_proj.biases": "model.safetensors",
194
+ "transformer.h.16.attn.attention.out_proj.scales": "model.safetensors",
195
+ "transformer.h.16.attn.attention.out_proj.weight": "model.safetensors",
196
+ "transformer.h.16.attn.attention.q_proj.biases": "model.safetensors",
197
+ "transformer.h.16.attn.attention.q_proj.scales": "model.safetensors",
198
+ "transformer.h.16.attn.attention.q_proj.weight": "model.safetensors",
199
+ "transformer.h.16.attn.attention.v_proj.biases": "model.safetensors",
200
+ "transformer.h.16.attn.attention.v_proj.scales": "model.safetensors",
201
+ "transformer.h.16.attn.attention.v_proj.weight": "model.safetensors",
202
+ "transformer.h.16.ln_1.weight": "model.safetensors",
203
+ "transformer.h.16.ln_2.weight": "model.safetensors",
204
+ "transformer.h.16.mlp.c_fc_0.biases": "model.safetensors",
205
+ "transformer.h.16.mlp.c_fc_0.scales": "model.safetensors",
206
+ "transformer.h.16.mlp.c_fc_0.weight": "model.safetensors",
207
+ "transformer.h.16.mlp.c_fc_1.biases": "model.safetensors",
208
+ "transformer.h.16.mlp.c_fc_1.scales": "model.safetensors",
209
+ "transformer.h.16.mlp.c_fc_1.weight": "model.safetensors",
210
+ "transformer.h.16.mlp.c_proj.biases": "model.safetensors",
211
+ "transformer.h.16.mlp.c_proj.scales": "model.safetensors",
212
+ "transformer.h.16.mlp.c_proj.weight": "model.safetensors",
213
+ "transformer.h.17.attn.attention.k_proj.biases": "model.safetensors",
214
+ "transformer.h.17.attn.attention.k_proj.scales": "model.safetensors",
215
+ "transformer.h.17.attn.attention.k_proj.weight": "model.safetensors",
216
+ "transformer.h.17.attn.attention.out_proj.biases": "model.safetensors",
217
+ "transformer.h.17.attn.attention.out_proj.scales": "model.safetensors",
218
+ "transformer.h.17.attn.attention.out_proj.weight": "model.safetensors",
219
+ "transformer.h.17.attn.attention.q_proj.biases": "model.safetensors",
220
+ "transformer.h.17.attn.attention.q_proj.scales": "model.safetensors",
221
+ "transformer.h.17.attn.attention.q_proj.weight": "model.safetensors",
222
+ "transformer.h.17.attn.attention.v_proj.biases": "model.safetensors",
223
+ "transformer.h.17.attn.attention.v_proj.scales": "model.safetensors",
224
+ "transformer.h.17.attn.attention.v_proj.weight": "model.safetensors",
225
+ "transformer.h.17.ln_1.weight": "model.safetensors",
226
+ "transformer.h.17.ln_2.weight": "model.safetensors",
227
+ "transformer.h.17.mlp.c_fc_0.biases": "model.safetensors",
228
+ "transformer.h.17.mlp.c_fc_0.scales": "model.safetensors",
229
+ "transformer.h.17.mlp.c_fc_0.weight": "model.safetensors",
230
+ "transformer.h.17.mlp.c_fc_1.biases": "model.safetensors",
231
+ "transformer.h.17.mlp.c_fc_1.scales": "model.safetensors",
232
+ "transformer.h.17.mlp.c_fc_1.weight": "model.safetensors",
233
+ "transformer.h.17.mlp.c_proj.biases": "model.safetensors",
234
+ "transformer.h.17.mlp.c_proj.scales": "model.safetensors",
235
+ "transformer.h.17.mlp.c_proj.weight": "model.safetensors",
236
+ "transformer.h.18.attn.attention.k_proj.biases": "model.safetensors",
237
+ "transformer.h.18.attn.attention.k_proj.scales": "model.safetensors",
238
+ "transformer.h.18.attn.attention.k_proj.weight": "model.safetensors",
239
+ "transformer.h.18.attn.attention.out_proj.biases": "model.safetensors",
240
+ "transformer.h.18.attn.attention.out_proj.scales": "model.safetensors",
241
+ "transformer.h.18.attn.attention.out_proj.weight": "model.safetensors",
242
+ "transformer.h.18.attn.attention.q_proj.biases": "model.safetensors",
243
+ "transformer.h.18.attn.attention.q_proj.scales": "model.safetensors",
244
+ "transformer.h.18.attn.attention.q_proj.weight": "model.safetensors",
245
+ "transformer.h.18.attn.attention.v_proj.biases": "model.safetensors",
246
+ "transformer.h.18.attn.attention.v_proj.scales": "model.safetensors",
247
+ "transformer.h.18.attn.attention.v_proj.weight": "model.safetensors",
248
+ "transformer.h.18.ln_1.weight": "model.safetensors",
249
+ "transformer.h.18.ln_2.weight": "model.safetensors",
250
+ "transformer.h.18.mlp.c_fc_0.biases": "model.safetensors",
251
+ "transformer.h.18.mlp.c_fc_0.scales": "model.safetensors",
252
+ "transformer.h.18.mlp.c_fc_0.weight": "model.safetensors",
253
+ "transformer.h.18.mlp.c_fc_1.biases": "model.safetensors",
254
+ "transformer.h.18.mlp.c_fc_1.scales": "model.safetensors",
255
+ "transformer.h.18.mlp.c_fc_1.weight": "model.safetensors",
256
+ "transformer.h.18.mlp.c_proj.biases": "model.safetensors",
257
+ "transformer.h.18.mlp.c_proj.scales": "model.safetensors",
258
+ "transformer.h.18.mlp.c_proj.weight": "model.safetensors",
259
+ "transformer.h.19.attn.attention.k_proj.biases": "model.safetensors",
260
+ "transformer.h.19.attn.attention.k_proj.scales": "model.safetensors",
261
+ "transformer.h.19.attn.attention.k_proj.weight": "model.safetensors",
262
+ "transformer.h.19.attn.attention.out_proj.biases": "model.safetensors",
263
+ "transformer.h.19.attn.attention.out_proj.scales": "model.safetensors",
264
+ "transformer.h.19.attn.attention.out_proj.weight": "model.safetensors",
265
+ "transformer.h.19.attn.attention.q_proj.biases": "model.safetensors",
266
+ "transformer.h.19.attn.attention.q_proj.scales": "model.safetensors",
267
+ "transformer.h.19.attn.attention.q_proj.weight": "model.safetensors",
268
+ "transformer.h.19.attn.attention.v_proj.biases": "model.safetensors",
269
+ "transformer.h.19.attn.attention.v_proj.scales": "model.safetensors",
270
+ "transformer.h.19.attn.attention.v_proj.weight": "model.safetensors",
271
+ "transformer.h.19.ln_1.weight": "model.safetensors",
272
+ "transformer.h.19.ln_2.weight": "model.safetensors",
273
+ "transformer.h.19.mlp.c_fc_0.biases": "model.safetensors",
274
+ "transformer.h.19.mlp.c_fc_0.scales": "model.safetensors",
275
+ "transformer.h.19.mlp.c_fc_0.weight": "model.safetensors",
276
+ "transformer.h.19.mlp.c_fc_1.biases": "model.safetensors",
277
+ "transformer.h.19.mlp.c_fc_1.scales": "model.safetensors",
278
+ "transformer.h.19.mlp.c_fc_1.weight": "model.safetensors",
279
+ "transformer.h.19.mlp.c_proj.biases": "model.safetensors",
280
+ "transformer.h.19.mlp.c_proj.scales": "model.safetensors",
281
+ "transformer.h.19.mlp.c_proj.weight": "model.safetensors",
282
+ "transformer.h.2.attn.attention.k_proj.biases": "model.safetensors",
283
+ "transformer.h.2.attn.attention.k_proj.scales": "model.safetensors",
284
+ "transformer.h.2.attn.attention.k_proj.weight": "model.safetensors",
285
+ "transformer.h.2.attn.attention.out_proj.biases": "model.safetensors",
286
+ "transformer.h.2.attn.attention.out_proj.scales": "model.safetensors",
287
+ "transformer.h.2.attn.attention.out_proj.weight": "model.safetensors",
288
+ "transformer.h.2.attn.attention.q_proj.biases": "model.safetensors",
289
+ "transformer.h.2.attn.attention.q_proj.scales": "model.safetensors",
290
+ "transformer.h.2.attn.attention.q_proj.weight": "model.safetensors",
291
+ "transformer.h.2.attn.attention.v_proj.biases": "model.safetensors",
292
+ "transformer.h.2.attn.attention.v_proj.scales": "model.safetensors",
293
+ "transformer.h.2.attn.attention.v_proj.weight": "model.safetensors",
294
+ "transformer.h.2.ln_1.weight": "model.safetensors",
295
+ "transformer.h.2.ln_2.weight": "model.safetensors",
296
+ "transformer.h.2.mlp.c_fc_0.biases": "model.safetensors",
297
+ "transformer.h.2.mlp.c_fc_0.scales": "model.safetensors",
298
+ "transformer.h.2.mlp.c_fc_0.weight": "model.safetensors",
299
+ "transformer.h.2.mlp.c_fc_1.biases": "model.safetensors",
300
+ "transformer.h.2.mlp.c_fc_1.scales": "model.safetensors",
301
+ "transformer.h.2.mlp.c_fc_1.weight": "model.safetensors",
302
+ "transformer.h.2.mlp.c_proj.biases": "model.safetensors",
303
+ "transformer.h.2.mlp.c_proj.scales": "model.safetensors",
304
+ "transformer.h.2.mlp.c_proj.weight": "model.safetensors",
305
+ "transformer.h.20.attn.attention.k_proj.biases": "model.safetensors",
306
+ "transformer.h.20.attn.attention.k_proj.scales": "model.safetensors",
307
+ "transformer.h.20.attn.attention.k_proj.weight": "model.safetensors",
308
+ "transformer.h.20.attn.attention.out_proj.biases": "model.safetensors",
309
+ "transformer.h.20.attn.attention.out_proj.scales": "model.safetensors",
310
+ "transformer.h.20.attn.attention.out_proj.weight": "model.safetensors",
311
+ "transformer.h.20.attn.attention.q_proj.biases": "model.safetensors",
312
+ "transformer.h.20.attn.attention.q_proj.scales": "model.safetensors",
313
+ "transformer.h.20.attn.attention.q_proj.weight": "model.safetensors",
314
+ "transformer.h.20.attn.attention.v_proj.biases": "model.safetensors",
315
+ "transformer.h.20.attn.attention.v_proj.scales": "model.safetensors",
316
+ "transformer.h.20.attn.attention.v_proj.weight": "model.safetensors",
317
+ "transformer.h.20.ln_1.weight": "model.safetensors",
318
+ "transformer.h.20.ln_2.weight": "model.safetensors",
319
+ "transformer.h.20.mlp.c_fc_0.biases": "model.safetensors",
320
+ "transformer.h.20.mlp.c_fc_0.scales": "model.safetensors",
321
+ "transformer.h.20.mlp.c_fc_0.weight": "model.safetensors",
322
+ "transformer.h.20.mlp.c_fc_1.biases": "model.safetensors",
323
+ "transformer.h.20.mlp.c_fc_1.scales": "model.safetensors",
324
+ "transformer.h.20.mlp.c_fc_1.weight": "model.safetensors",
325
+ "transformer.h.20.mlp.c_proj.biases": "model.safetensors",
326
+ "transformer.h.20.mlp.c_proj.scales": "model.safetensors",
327
+ "transformer.h.20.mlp.c_proj.weight": "model.safetensors",
328
+ "transformer.h.21.attn.attention.k_proj.biases": "model.safetensors",
329
+ "transformer.h.21.attn.attention.k_proj.scales": "model.safetensors",
330
+ "transformer.h.21.attn.attention.k_proj.weight": "model.safetensors",
331
+ "transformer.h.21.attn.attention.out_proj.biases": "model.safetensors",
332
+ "transformer.h.21.attn.attention.out_proj.scales": "model.safetensors",
333
+ "transformer.h.21.attn.attention.out_proj.weight": "model.safetensors",
334
+ "transformer.h.21.attn.attention.q_proj.biases": "model.safetensors",
335
+ "transformer.h.21.attn.attention.q_proj.scales": "model.safetensors",
336
+ "transformer.h.21.attn.attention.q_proj.weight": "model.safetensors",
337
+ "transformer.h.21.attn.attention.v_proj.biases": "model.safetensors",
338
+ "transformer.h.21.attn.attention.v_proj.scales": "model.safetensors",
339
+ "transformer.h.21.attn.attention.v_proj.weight": "model.safetensors",
340
+ "transformer.h.21.ln_1.weight": "model.safetensors",
341
+ "transformer.h.21.ln_2.weight": "model.safetensors",
342
+ "transformer.h.21.mlp.c_fc_0.biases": "model.safetensors",
343
+ "transformer.h.21.mlp.c_fc_0.scales": "model.safetensors",
344
+ "transformer.h.21.mlp.c_fc_0.weight": "model.safetensors",
345
+ "transformer.h.21.mlp.c_fc_1.biases": "model.safetensors",
346
+ "transformer.h.21.mlp.c_fc_1.scales": "model.safetensors",
347
+ "transformer.h.21.mlp.c_fc_1.weight": "model.safetensors",
348
+ "transformer.h.21.mlp.c_proj.biases": "model.safetensors",
349
+ "transformer.h.21.mlp.c_proj.scales": "model.safetensors",
350
+ "transformer.h.21.mlp.c_proj.weight": "model.safetensors",
351
+ "transformer.h.22.attn.attention.k_proj.biases": "model.safetensors",
352
+ "transformer.h.22.attn.attention.k_proj.scales": "model.safetensors",
353
+ "transformer.h.22.attn.attention.k_proj.weight": "model.safetensors",
354
+ "transformer.h.22.attn.attention.out_proj.biases": "model.safetensors",
355
+ "transformer.h.22.attn.attention.out_proj.scales": "model.safetensors",
356
+ "transformer.h.22.attn.attention.out_proj.weight": "model.safetensors",
357
+ "transformer.h.22.attn.attention.q_proj.biases": "model.safetensors",
358
+ "transformer.h.22.attn.attention.q_proj.scales": "model.safetensors",
359
+ "transformer.h.22.attn.attention.q_proj.weight": "model.safetensors",
360
+ "transformer.h.22.attn.attention.v_proj.biases": "model.safetensors",
361
+ "transformer.h.22.attn.attention.v_proj.scales": "model.safetensors",
362
+ "transformer.h.22.attn.attention.v_proj.weight": "model.safetensors",
363
+ "transformer.h.22.ln_1.weight": "model.safetensors",
364
+ "transformer.h.22.ln_2.weight": "model.safetensors",
365
+ "transformer.h.22.mlp.c_fc_0.biases": "model.safetensors",
366
+ "transformer.h.22.mlp.c_fc_0.scales": "model.safetensors",
367
+ "transformer.h.22.mlp.c_fc_0.weight": "model.safetensors",
368
+ "transformer.h.22.mlp.c_fc_1.biases": "model.safetensors",
369
+ "transformer.h.22.mlp.c_fc_1.scales": "model.safetensors",
370
+ "transformer.h.22.mlp.c_fc_1.weight": "model.safetensors",
371
+ "transformer.h.22.mlp.c_proj.biases": "model.safetensors",
372
+ "transformer.h.22.mlp.c_proj.scales": "model.safetensors",
373
+ "transformer.h.22.mlp.c_proj.weight": "model.safetensors",
374
+ "transformer.h.23.attn.attention.k_proj.biases": "model.safetensors",
375
+ "transformer.h.23.attn.attention.k_proj.scales": "model.safetensors",
376
+ "transformer.h.23.attn.attention.k_proj.weight": "model.safetensors",
377
+ "transformer.h.23.attn.attention.out_proj.biases": "model.safetensors",
378
+ "transformer.h.23.attn.attention.out_proj.scales": "model.safetensors",
379
+ "transformer.h.23.attn.attention.out_proj.weight": "model.safetensors",
380
+ "transformer.h.23.attn.attention.q_proj.biases": "model.safetensors",
381
+ "transformer.h.23.attn.attention.q_proj.scales": "model.safetensors",
382
+ "transformer.h.23.attn.attention.q_proj.weight": "model.safetensors",
383
+ "transformer.h.23.attn.attention.v_proj.biases": "model.safetensors",
384
+ "transformer.h.23.attn.attention.v_proj.scales": "model.safetensors",
385
+ "transformer.h.23.attn.attention.v_proj.weight": "model.safetensors",
386
+ "transformer.h.23.ln_1.weight": "model.safetensors",
387
+ "transformer.h.23.ln_2.weight": "model.safetensors",
388
+ "transformer.h.23.mlp.c_fc_0.biases": "model.safetensors",
389
+ "transformer.h.23.mlp.c_fc_0.scales": "model.safetensors",
390
+ "transformer.h.23.mlp.c_fc_0.weight": "model.safetensors",
391
+ "transformer.h.23.mlp.c_fc_1.biases": "model.safetensors",
392
+ "transformer.h.23.mlp.c_fc_1.scales": "model.safetensors",
393
+ "transformer.h.23.mlp.c_fc_1.weight": "model.safetensors",
394
+ "transformer.h.23.mlp.c_proj.biases": "model.safetensors",
395
+ "transformer.h.23.mlp.c_proj.scales": "model.safetensors",
396
+ "transformer.h.23.mlp.c_proj.weight": "model.safetensors",
397
+ "transformer.h.24.attn.attention.k_proj.biases": "model.safetensors",
398
+ "transformer.h.24.attn.attention.k_proj.scales": "model.safetensors",
399
+ "transformer.h.24.attn.attention.k_proj.weight": "model.safetensors",
400
+ "transformer.h.24.attn.attention.out_proj.biases": "model.safetensors",
401
+ "transformer.h.24.attn.attention.out_proj.scales": "model.safetensors",
402
+ "transformer.h.24.attn.attention.out_proj.weight": "model.safetensors",
403
+ "transformer.h.24.attn.attention.q_proj.biases": "model.safetensors",
404
+ "transformer.h.24.attn.attention.q_proj.scales": "model.safetensors",
405
+ "transformer.h.24.attn.attention.q_proj.weight": "model.safetensors",
406
+ "transformer.h.24.attn.attention.v_proj.biases": "model.safetensors",
407
+ "transformer.h.24.attn.attention.v_proj.scales": "model.safetensors",
408
+ "transformer.h.24.attn.attention.v_proj.weight": "model.safetensors",
409
+ "transformer.h.24.ln_1.weight": "model.safetensors",
410
+ "transformer.h.24.ln_2.weight": "model.safetensors",
411
+ "transformer.h.24.mlp.c_fc_0.biases": "model.safetensors",
412
+ "transformer.h.24.mlp.c_fc_0.scales": "model.safetensors",
413
+ "transformer.h.24.mlp.c_fc_0.weight": "model.safetensors",
414
+ "transformer.h.24.mlp.c_fc_1.biases": "model.safetensors",
415
+ "transformer.h.24.mlp.c_fc_1.scales": "model.safetensors",
416
+ "transformer.h.24.mlp.c_fc_1.weight": "model.safetensors",
417
+ "transformer.h.24.mlp.c_proj.biases": "model.safetensors",
418
+ "transformer.h.24.mlp.c_proj.scales": "model.safetensors",
419
+ "transformer.h.24.mlp.c_proj.weight": "model.safetensors",
420
+ "transformer.h.25.attn.attention.k_proj.biases": "model.safetensors",
421
+ "transformer.h.25.attn.attention.k_proj.scales": "model.safetensors",
422
+ "transformer.h.25.attn.attention.k_proj.weight": "model.safetensors",
423
+ "transformer.h.25.attn.attention.out_proj.biases": "model.safetensors",
424
+ "transformer.h.25.attn.attention.out_proj.scales": "model.safetensors",
425
+ "transformer.h.25.attn.attention.out_proj.weight": "model.safetensors",
426
+ "transformer.h.25.attn.attention.q_proj.biases": "model.safetensors",
427
+ "transformer.h.25.attn.attention.q_proj.scales": "model.safetensors",
428
+ "transformer.h.25.attn.attention.q_proj.weight": "model.safetensors",
429
+ "transformer.h.25.attn.attention.v_proj.biases": "model.safetensors",
430
+ "transformer.h.25.attn.attention.v_proj.scales": "model.safetensors",
431
+ "transformer.h.25.attn.attention.v_proj.weight": "model.safetensors",
432
+ "transformer.h.25.ln_1.weight": "model.safetensors",
433
+ "transformer.h.25.ln_2.weight": "model.safetensors",
434
+ "transformer.h.25.mlp.c_fc_0.biases": "model.safetensors",
435
+ "transformer.h.25.mlp.c_fc_0.scales": "model.safetensors",
436
+ "transformer.h.25.mlp.c_fc_0.weight": "model.safetensors",
437
+ "transformer.h.25.mlp.c_fc_1.biases": "model.safetensors",
438
+ "transformer.h.25.mlp.c_fc_1.scales": "model.safetensors",
439
+ "transformer.h.25.mlp.c_fc_1.weight": "model.safetensors",
440
+ "transformer.h.25.mlp.c_proj.biases": "model.safetensors",
441
+ "transformer.h.25.mlp.c_proj.scales": "model.safetensors",
442
+ "transformer.h.25.mlp.c_proj.weight": "model.safetensors",
443
+ "transformer.h.26.attn.attention.k_proj.biases": "model.safetensors",
444
+ "transformer.h.26.attn.attention.k_proj.scales": "model.safetensors",
445
+ "transformer.h.26.attn.attention.k_proj.weight": "model.safetensors",
446
+ "transformer.h.26.attn.attention.out_proj.biases": "model.safetensors",
447
+ "transformer.h.26.attn.attention.out_proj.scales": "model.safetensors",
448
+ "transformer.h.26.attn.attention.out_proj.weight": "model.safetensors",
449
+ "transformer.h.26.attn.attention.q_proj.biases": "model.safetensors",
450
+ "transformer.h.26.attn.attention.q_proj.scales": "model.safetensors",
451
+ "transformer.h.26.attn.attention.q_proj.weight": "model.safetensors",
452
+ "transformer.h.26.attn.attention.v_proj.biases": "model.safetensors",
453
+ "transformer.h.26.attn.attention.v_proj.scales": "model.safetensors",
454
+ "transformer.h.26.attn.attention.v_proj.weight": "model.safetensors",
455
+ "transformer.h.26.ln_1.weight": "model.safetensors",
456
+ "transformer.h.26.ln_2.weight": "model.safetensors",
457
+ "transformer.h.26.mlp.c_fc_0.biases": "model.safetensors",
458
+ "transformer.h.26.mlp.c_fc_0.scales": "model.safetensors",
459
+ "transformer.h.26.mlp.c_fc_0.weight": "model.safetensors",
460
+ "transformer.h.26.mlp.c_fc_1.biases": "model.safetensors",
461
+ "transformer.h.26.mlp.c_fc_1.scales": "model.safetensors",
462
+ "transformer.h.26.mlp.c_fc_1.weight": "model.safetensors",
463
+ "transformer.h.26.mlp.c_proj.biases": "model.safetensors",
464
+ "transformer.h.26.mlp.c_proj.scales": "model.safetensors",
465
+ "transformer.h.26.mlp.c_proj.weight": "model.safetensors",
466
+ "transformer.h.27.attn.attention.k_proj.biases": "model.safetensors",
467
+ "transformer.h.27.attn.attention.k_proj.scales": "model.safetensors",
468
+ "transformer.h.27.attn.attention.k_proj.weight": "model.safetensors",
469
+ "transformer.h.27.attn.attention.out_proj.biases": "model.safetensors",
470
+ "transformer.h.27.attn.attention.out_proj.scales": "model.safetensors",
471
+ "transformer.h.27.attn.attention.out_proj.weight": "model.safetensors",
472
+ "transformer.h.27.attn.attention.q_proj.biases": "model.safetensors",
473
+ "transformer.h.27.attn.attention.q_proj.scales": "model.safetensors",
474
+ "transformer.h.27.attn.attention.q_proj.weight": "model.safetensors",
475
+ "transformer.h.27.attn.attention.v_proj.biases": "model.safetensors",
476
+ "transformer.h.27.attn.attention.v_proj.scales": "model.safetensors",
477
+ "transformer.h.27.attn.attention.v_proj.weight": "model.safetensors",
478
+ "transformer.h.27.ln_1.weight": "model.safetensors",
479
+ "transformer.h.27.ln_2.weight": "model.safetensors",
480
+ "transformer.h.27.mlp.c_fc_0.biases": "model.safetensors",
481
+ "transformer.h.27.mlp.c_fc_0.scales": "model.safetensors",
482
+ "transformer.h.27.mlp.c_fc_0.weight": "model.safetensors",
483
+ "transformer.h.27.mlp.c_fc_1.biases": "model.safetensors",
484
+ "transformer.h.27.mlp.c_fc_1.scales": "model.safetensors",
485
+ "transformer.h.27.mlp.c_fc_1.weight": "model.safetensors",
486
+ "transformer.h.27.mlp.c_proj.biases": "model.safetensors",
487
+ "transformer.h.27.mlp.c_proj.scales": "model.safetensors",
488
+ "transformer.h.27.mlp.c_proj.weight": "model.safetensors",
489
+ "transformer.h.28.attn.attention.k_proj.biases": "model.safetensors",
490
+ "transformer.h.28.attn.attention.k_proj.scales": "model.safetensors",
491
+ "transformer.h.28.attn.attention.k_proj.weight": "model.safetensors",
492
+ "transformer.h.28.attn.attention.out_proj.biases": "model.safetensors",
493
+ "transformer.h.28.attn.attention.out_proj.scales": "model.safetensors",
494
+ "transformer.h.28.attn.attention.out_proj.weight": "model.safetensors",
495
+ "transformer.h.28.attn.attention.q_proj.biases": "model.safetensors",
496
+ "transformer.h.28.attn.attention.q_proj.scales": "model.safetensors",
497
+ "transformer.h.28.attn.attention.q_proj.weight": "model.safetensors",
498
+ "transformer.h.28.attn.attention.v_proj.biases": "model.safetensors",
499
+ "transformer.h.28.attn.attention.v_proj.scales": "model.safetensors",
500
+ "transformer.h.28.attn.attention.v_proj.weight": "model.safetensors",
501
+ "transformer.h.28.ln_1.weight": "model.safetensors",
502
+ "transformer.h.28.ln_2.weight": "model.safetensors",
503
+ "transformer.h.28.mlp.c_fc_0.biases": "model.safetensors",
504
+ "transformer.h.28.mlp.c_fc_0.scales": "model.safetensors",
505
+ "transformer.h.28.mlp.c_fc_0.weight": "model.safetensors",
506
+ "transformer.h.28.mlp.c_fc_1.biases": "model.safetensors",
507
+ "transformer.h.28.mlp.c_fc_1.scales": "model.safetensors",
508
+ "transformer.h.28.mlp.c_fc_1.weight": "model.safetensors",
509
+ "transformer.h.28.mlp.c_proj.biases": "model.safetensors",
510
+ "transformer.h.28.mlp.c_proj.scales": "model.safetensors",
511
+ "transformer.h.28.mlp.c_proj.weight": "model.safetensors",
512
+ "transformer.h.29.attn.attention.k_proj.biases": "model.safetensors",
513
+ "transformer.h.29.attn.attention.k_proj.scales": "model.safetensors",
514
+ "transformer.h.29.attn.attention.k_proj.weight": "model.safetensors",
515
+ "transformer.h.29.attn.attention.out_proj.biases": "model.safetensors",
516
+ "transformer.h.29.attn.attention.out_proj.scales": "model.safetensors",
517
+ "transformer.h.29.attn.attention.out_proj.weight": "model.safetensors",
518
+ "transformer.h.29.attn.attention.q_proj.biases": "model.safetensors",
519
+ "transformer.h.29.attn.attention.q_proj.scales": "model.safetensors",
520
+ "transformer.h.29.attn.attention.q_proj.weight": "model.safetensors",
521
+ "transformer.h.29.attn.attention.v_proj.biases": "model.safetensors",
522
+ "transformer.h.29.attn.attention.v_proj.scales": "model.safetensors",
523
+ "transformer.h.29.attn.attention.v_proj.weight": "model.safetensors",
524
+ "transformer.h.29.ln_1.weight": "model.safetensors",
525
+ "transformer.h.29.ln_2.weight": "model.safetensors",
526
+ "transformer.h.29.mlp.c_fc_0.biases": "model.safetensors",
527
+ "transformer.h.29.mlp.c_fc_0.scales": "model.safetensors",
528
+ "transformer.h.29.mlp.c_fc_0.weight": "model.safetensors",
529
+ "transformer.h.29.mlp.c_fc_1.biases": "model.safetensors",
530
+ "transformer.h.29.mlp.c_fc_1.scales": "model.safetensors",
531
+ "transformer.h.29.mlp.c_fc_1.weight": "model.safetensors",
532
+ "transformer.h.29.mlp.c_proj.biases": "model.safetensors",
533
+ "transformer.h.29.mlp.c_proj.scales": "model.safetensors",
534
+ "transformer.h.29.mlp.c_proj.weight": "model.safetensors",
535
+ "transformer.h.3.attn.attention.k_proj.biases": "model.safetensors",
536
+ "transformer.h.3.attn.attention.k_proj.scales": "model.safetensors",
537
+ "transformer.h.3.attn.attention.k_proj.weight": "model.safetensors",
538
+ "transformer.h.3.attn.attention.out_proj.biases": "model.safetensors",
539
+ "transformer.h.3.attn.attention.out_proj.scales": "model.safetensors",
540
+ "transformer.h.3.attn.attention.out_proj.weight": "model.safetensors",
541
+ "transformer.h.3.attn.attention.q_proj.biases": "model.safetensors",
542
+ "transformer.h.3.attn.attention.q_proj.scales": "model.safetensors",
543
+ "transformer.h.3.attn.attention.q_proj.weight": "model.safetensors",
544
+ "transformer.h.3.attn.attention.v_proj.biases": "model.safetensors",
545
+ "transformer.h.3.attn.attention.v_proj.scales": "model.safetensors",
546
+ "transformer.h.3.attn.attention.v_proj.weight": "model.safetensors",
547
+ "transformer.h.3.ln_1.weight": "model.safetensors",
548
+ "transformer.h.3.ln_2.weight": "model.safetensors",
549
+ "transformer.h.3.mlp.c_fc_0.biases": "model.safetensors",
550
+ "transformer.h.3.mlp.c_fc_0.scales": "model.safetensors",
551
+ "transformer.h.3.mlp.c_fc_0.weight": "model.safetensors",
552
+ "transformer.h.3.mlp.c_fc_1.biases": "model.safetensors",
553
+ "transformer.h.3.mlp.c_fc_1.scales": "model.safetensors",
554
+ "transformer.h.3.mlp.c_fc_1.weight": "model.safetensors",
555
+ "transformer.h.3.mlp.c_proj.biases": "model.safetensors",
556
+ "transformer.h.3.mlp.c_proj.scales": "model.safetensors",
557
+ "transformer.h.3.mlp.c_proj.weight": "model.safetensors",
558
+ "transformer.h.4.attn.attention.k_proj.biases": "model.safetensors",
559
+ "transformer.h.4.attn.attention.k_proj.scales": "model.safetensors",
560
+ "transformer.h.4.attn.attention.k_proj.weight": "model.safetensors",
561
+ "transformer.h.4.attn.attention.out_proj.biases": "model.safetensors",
562
+ "transformer.h.4.attn.attention.out_proj.scales": "model.safetensors",
563
+ "transformer.h.4.attn.attention.out_proj.weight": "model.safetensors",
564
+ "transformer.h.4.attn.attention.q_proj.biases": "model.safetensors",
565
+ "transformer.h.4.attn.attention.q_proj.scales": "model.safetensors",
566
+ "transformer.h.4.attn.attention.q_proj.weight": "model.safetensors",
567
+ "transformer.h.4.attn.attention.v_proj.biases": "model.safetensors",
568
+ "transformer.h.4.attn.attention.v_proj.scales": "model.safetensors",
569
+ "transformer.h.4.attn.attention.v_proj.weight": "model.safetensors",
570
+ "transformer.h.4.ln_1.weight": "model.safetensors",
571
+ "transformer.h.4.ln_2.weight": "model.safetensors",
572
+ "transformer.h.4.mlp.c_fc_0.biases": "model.safetensors",
573
+ "transformer.h.4.mlp.c_fc_0.scales": "model.safetensors",
574
+ "transformer.h.4.mlp.c_fc_0.weight": "model.safetensors",
575
+ "transformer.h.4.mlp.c_fc_1.biases": "model.safetensors",
576
+ "transformer.h.4.mlp.c_fc_1.scales": "model.safetensors",
577
+ "transformer.h.4.mlp.c_fc_1.weight": "model.safetensors",
578
+ "transformer.h.4.mlp.c_proj.biases": "model.safetensors",
579
+ "transformer.h.4.mlp.c_proj.scales": "model.safetensors",
580
+ "transformer.h.4.mlp.c_proj.weight": "model.safetensors",
581
+ "transformer.h.5.attn.attention.k_proj.biases": "model.safetensors",
582
+ "transformer.h.5.attn.attention.k_proj.scales": "model.safetensors",
583
+ "transformer.h.5.attn.attention.k_proj.weight": "model.safetensors",
584
+ "transformer.h.5.attn.attention.out_proj.biases": "model.safetensors",
585
+ "transformer.h.5.attn.attention.out_proj.scales": "model.safetensors",
586
+ "transformer.h.5.attn.attention.out_proj.weight": "model.safetensors",
587
+ "transformer.h.5.attn.attention.q_proj.biases": "model.safetensors",
588
+ "transformer.h.5.attn.attention.q_proj.scales": "model.safetensors",
589
+ "transformer.h.5.attn.attention.q_proj.weight": "model.safetensors",
590
+ "transformer.h.5.attn.attention.v_proj.biases": "model.safetensors",
591
+ "transformer.h.5.attn.attention.v_proj.scales": "model.safetensors",
592
+ "transformer.h.5.attn.attention.v_proj.weight": "model.safetensors",
593
+ "transformer.h.5.ln_1.weight": "model.safetensors",
594
+ "transformer.h.5.ln_2.weight": "model.safetensors",
595
+ "transformer.h.5.mlp.c_fc_0.biases": "model.safetensors",
596
+ "transformer.h.5.mlp.c_fc_0.scales": "model.safetensors",
597
+ "transformer.h.5.mlp.c_fc_0.weight": "model.safetensors",
598
+ "transformer.h.5.mlp.c_fc_1.biases": "model.safetensors",
599
+ "transformer.h.5.mlp.c_fc_1.scales": "model.safetensors",
600
+ "transformer.h.5.mlp.c_fc_1.weight": "model.safetensors",
601
+ "transformer.h.5.mlp.c_proj.biases": "model.safetensors",
602
+ "transformer.h.5.mlp.c_proj.scales": "model.safetensors",
603
+ "transformer.h.5.mlp.c_proj.weight": "model.safetensors",
604
+ "transformer.h.6.attn.attention.k_proj.biases": "model.safetensors",
605
+ "transformer.h.6.attn.attention.k_proj.scales": "model.safetensors",
606
+ "transformer.h.6.attn.attention.k_proj.weight": "model.safetensors",
607
+ "transformer.h.6.attn.attention.out_proj.biases": "model.safetensors",
608
+ "transformer.h.6.attn.attention.out_proj.scales": "model.safetensors",
609
+ "transformer.h.6.attn.attention.out_proj.weight": "model.safetensors",
610
+ "transformer.h.6.attn.attention.q_proj.biases": "model.safetensors",
611
+ "transformer.h.6.attn.attention.q_proj.scales": "model.safetensors",
612
+ "transformer.h.6.attn.attention.q_proj.weight": "model.safetensors",
613
+ "transformer.h.6.attn.attention.v_proj.biases": "model.safetensors",
614
+ "transformer.h.6.attn.attention.v_proj.scales": "model.safetensors",
615
+ "transformer.h.6.attn.attention.v_proj.weight": "model.safetensors",
616
+ "transformer.h.6.ln_1.weight": "model.safetensors",
617
+ "transformer.h.6.ln_2.weight": "model.safetensors",
618
+ "transformer.h.6.mlp.c_fc_0.biases": "model.safetensors",
619
+ "transformer.h.6.mlp.c_fc_0.scales": "model.safetensors",
620
+ "transformer.h.6.mlp.c_fc_0.weight": "model.safetensors",
621
+ "transformer.h.6.mlp.c_fc_1.biases": "model.safetensors",
622
+ "transformer.h.6.mlp.c_fc_1.scales": "model.safetensors",
623
+ "transformer.h.6.mlp.c_fc_1.weight": "model.safetensors",
624
+ "transformer.h.6.mlp.c_proj.biases": "model.safetensors",
625
+ "transformer.h.6.mlp.c_proj.scales": "model.safetensors",
626
+ "transformer.h.6.mlp.c_proj.weight": "model.safetensors",
627
+ "transformer.h.7.attn.attention.k_proj.biases": "model.safetensors",
628
+ "transformer.h.7.attn.attention.k_proj.scales": "model.safetensors",
629
+ "transformer.h.7.attn.attention.k_proj.weight": "model.safetensors",
630
+ "transformer.h.7.attn.attention.out_proj.biases": "model.safetensors",
631
+ "transformer.h.7.attn.attention.out_proj.scales": "model.safetensors",
632
+ "transformer.h.7.attn.attention.out_proj.weight": "model.safetensors",
633
+ "transformer.h.7.attn.attention.q_proj.biases": "model.safetensors",
634
+ "transformer.h.7.attn.attention.q_proj.scales": "model.safetensors",
635
+ "transformer.h.7.attn.attention.q_proj.weight": "model.safetensors",
636
+ "transformer.h.7.attn.attention.v_proj.biases": "model.safetensors",
637
+ "transformer.h.7.attn.attention.v_proj.scales": "model.safetensors",
638
+ "transformer.h.7.attn.attention.v_proj.weight": "model.safetensors",
639
+ "transformer.h.7.ln_1.weight": "model.safetensors",
640
+ "transformer.h.7.ln_2.weight": "model.safetensors",
641
+ "transformer.h.7.mlp.c_fc_0.biases": "model.safetensors",
642
+ "transformer.h.7.mlp.c_fc_0.scales": "model.safetensors",
643
+ "transformer.h.7.mlp.c_fc_0.weight": "model.safetensors",
644
+ "transformer.h.7.mlp.c_fc_1.biases": "model.safetensors",
645
+ "transformer.h.7.mlp.c_fc_1.scales": "model.safetensors",
646
+ "transformer.h.7.mlp.c_fc_1.weight": "model.safetensors",
647
+ "transformer.h.7.mlp.c_proj.biases": "model.safetensors",
648
+ "transformer.h.7.mlp.c_proj.scales": "model.safetensors",
649
+ "transformer.h.7.mlp.c_proj.weight": "model.safetensors",
650
+ "transformer.h.8.attn.attention.k_proj.biases": "model.safetensors",
651
+ "transformer.h.8.attn.attention.k_proj.scales": "model.safetensors",
652
+ "transformer.h.8.attn.attention.k_proj.weight": "model.safetensors",
653
+ "transformer.h.8.attn.attention.out_proj.biases": "model.safetensors",
654
+ "transformer.h.8.attn.attention.out_proj.scales": "model.safetensors",
655
+ "transformer.h.8.attn.attention.out_proj.weight": "model.safetensors",
656
+ "transformer.h.8.attn.attention.q_proj.biases": "model.safetensors",
657
+ "transformer.h.8.attn.attention.q_proj.scales": "model.safetensors",
658
+ "transformer.h.8.attn.attention.q_proj.weight": "model.safetensors",
659
+ "transformer.h.8.attn.attention.v_proj.biases": "model.safetensors",
660
+ "transformer.h.8.attn.attention.v_proj.scales": "model.safetensors",
661
+ "transformer.h.8.attn.attention.v_proj.weight": "model.safetensors",
662
+ "transformer.h.8.ln_1.weight": "model.safetensors",
663
+ "transformer.h.8.ln_2.weight": "model.safetensors",
664
+ "transformer.h.8.mlp.c_fc_0.biases": "model.safetensors",
665
+ "transformer.h.8.mlp.c_fc_0.scales": "model.safetensors",
666
+ "transformer.h.8.mlp.c_fc_0.weight": "model.safetensors",
667
+ "transformer.h.8.mlp.c_fc_1.biases": "model.safetensors",
668
+ "transformer.h.8.mlp.c_fc_1.scales": "model.safetensors",
669
+ "transformer.h.8.mlp.c_fc_1.weight": "model.safetensors",
670
+ "transformer.h.8.mlp.c_proj.biases": "model.safetensors",
671
+ "transformer.h.8.mlp.c_proj.scales": "model.safetensors",
672
+ "transformer.h.8.mlp.c_proj.weight": "model.safetensors",
673
+ "transformer.h.9.attn.attention.k_proj.biases": "model.safetensors",
674
+ "transformer.h.9.attn.attention.k_proj.scales": "model.safetensors",
675
+ "transformer.h.9.attn.attention.k_proj.weight": "model.safetensors",
676
+ "transformer.h.9.attn.attention.out_proj.biases": "model.safetensors",
677
+ "transformer.h.9.attn.attention.out_proj.scales": "model.safetensors",
678
+ "transformer.h.9.attn.attention.out_proj.weight": "model.safetensors",
679
+ "transformer.h.9.attn.attention.q_proj.biases": "model.safetensors",
680
+ "transformer.h.9.attn.attention.q_proj.scales": "model.safetensors",
681
+ "transformer.h.9.attn.attention.q_proj.weight": "model.safetensors",
682
+ "transformer.h.9.attn.attention.v_proj.biases": "model.safetensors",
683
+ "transformer.h.9.attn.attention.v_proj.scales": "model.safetensors",
684
+ "transformer.h.9.attn.attention.v_proj.weight": "model.safetensors",
685
+ "transformer.h.9.ln_1.weight": "model.safetensors",
686
+ "transformer.h.9.ln_2.weight": "model.safetensors",
687
+ "transformer.h.9.mlp.c_fc_0.biases": "model.safetensors",
688
+ "transformer.h.9.mlp.c_fc_0.scales": "model.safetensors",
689
+ "transformer.h.9.mlp.c_fc_0.weight": "model.safetensors",
690
+ "transformer.h.9.mlp.c_fc_1.biases": "model.safetensors",
691
+ "transformer.h.9.mlp.c_fc_1.scales": "model.safetensors",
692
+ "transformer.h.9.mlp.c_fc_1.weight": "model.safetensors",
693
+ "transformer.h.9.mlp.c_proj.biases": "model.safetensors",
694
+ "transformer.h.9.mlp.c_proj.scales": "model.safetensors",
695
+ "transformer.h.9.mlp.c_proj.weight": "model.safetensors",
696
+ "transformer.ln_f.weight": "model.safetensors",
697
+ "transformer.wte.biases": "model.safetensors",
698
+ "transformer.wte.scales": "model.safetensors",
699
+ "transformer.wte.weight": "model.safetensors"
700
+ }
701
+ }
modeling_exaone.py ADDED
@@ -0,0 +1,1394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The LG AI Research EXAONE Lab.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
6
+ # and OPT implementations in this library. It has been modified from its
7
+ # original forms to accommodate minor architectural differences compared
8
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+ """LG AI Research EXAONE Lab"""
22
+
23
+ import math
24
+ from typing import Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.utils.checkpoint
28
+ from packaging import version
29
+ from torch import nn
30
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
31
+
32
+ from transformers.activations import ACT2FN
33
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
34
+ from transformers.generation import GenerationMixin
35
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
36
+ from transformers.modeling_flash_attention_utils import _flash_attention_forward
37
+ from transformers.modeling_outputs import (
38
+ BaseModelOutputWithPast,
39
+ BaseModelOutputWithPastAndCrossAttentions,
40
+ CausalLMOutputWithPast,
41
+ QuestionAnsweringModelOutput,
42
+ SequenceClassifierOutputWithPast,
43
+ )
44
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
45
+ from transformers.modeling_utils import PreTrainedModel
46
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
47
+ from transformers.utils import (
48
+ add_code_sample_docstrings,
49
+ add_start_docstrings,
50
+ add_start_docstrings_to_model_forward,
51
+ is_flash_attn_2_available,
52
+ logging,
53
+ )
54
+ from .configuration_exaone import ExaoneConfig
55
+
56
+
57
+ if is_flash_attn_2_available():
58
+ try:
59
+ import flash_attn
60
+
61
+ if version.parse(flash_attn.__version__) > version.parse("2.4.2"):
62
+ from flash_attn.ops.triton.layer_norm import rms_norm_fn
63
+ else:
64
+ from flash_attn.ops.triton.layernorm import rms_norm_fn
65
+ except ImportError:
66
+ pass
67
+
68
+
69
+ logger = logging.get_logger(__name__)
70
+
71
+ _CHECKPOINT_FOR_DOC = "exaone"
72
+ _CONFIG_FOR_DOC = "ExaoneConfig"
73
+
74
+ EXAONE_PRETRAINED_MODEL_ARCHIVE_LIST = [
75
+ "exaone",
76
+ ]
77
+
78
+
79
+ @torch.jit.script
80
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
81
+ """
82
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
83
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
84
+ """
85
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
86
+ if n_rep == 1:
87
+ return hidden_states
88
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
89
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
90
+
91
+
92
+ def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
93
+ """Applies Rotary Position Embedding to the query and key tensors.
94
+
95
+ Args:
96
+ q (`torch.Tensor`): The query tensor.
97
+ k (`torch.Tensor`): The key tensor.
98
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
99
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
100
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
101
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
102
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
103
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
104
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
105
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
106
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
107
+ Returns:
108
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
109
+ """
110
+ cos = cos.unsqueeze(unsqueeze_dim)
111
+ sin = sin.unsqueeze(unsqueeze_dim)
112
+ q_embed = (q * cos) + (rotate_half(q) * sin)
113
+ k_embed = (k * cos) + (rotate_half(k) * sin)
114
+ return q_embed, k_embed
115
+
116
+
117
+ def rotate_half(x):
118
+ """Rotates half the hidden dims of the input."""
119
+ x1 = x[..., : x.shape[-1] // 2]
120
+ x2 = x[..., x.shape[-1] // 2 :]
121
+ return torch.cat((-x2, x1), dim=-1)
122
+
123
+
124
+ def _prepare_4d_causal_attention_mask_with_cache_position(
125
+ attention_mask: torch.Tensor,
126
+ sequence_length: int,
127
+ target_length: int,
128
+ dtype: torch.dtype,
129
+ device: torch.device,
130
+ min_dtype: float,
131
+ cache_position: torch.Tensor,
132
+ batch_size: int,
133
+ ):
134
+ """
135
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
136
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
137
+
138
+ Args:
139
+ attention_mask (`torch.Tensor`):
140
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
141
+ sequence_length (`int`):
142
+ The sequence length being processed.
143
+ target_length (`int`):
144
+ The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
145
+ dtype (`torch.dtype`):
146
+ The dtype to use for the 4D attention mask.
147
+ device (`torch.device`):
148
+ The device to plcae the 4D attention mask on.
149
+ min_dtype (`float`):
150
+ The minimum value representable with the dtype `dtype`.
151
+ cache_position (`torch.Tensor`):
152
+ Indices depicting the position of the input sequence tokens in the sequence.
153
+ batch_size (`torch.Tensor`):
154
+ Batch size.
155
+ """
156
+ if attention_mask is not None and attention_mask.dim() == 4:
157
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
158
+ causal_mask = attention_mask
159
+ else:
160
+ causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
161
+ if sequence_length != 1:
162
+ causal_mask = torch.triu(causal_mask, diagonal=1)
163
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
164
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
165
+ if attention_mask is not None:
166
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
167
+ mask_length = attention_mask.shape[-1]
168
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
169
+ padding_mask = padding_mask == 0
170
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
171
+ padding_mask, min_dtype
172
+ )
173
+
174
+ return causal_mask
175
+
176
+
177
+ class ExaoneRMSNorm(torch.nn.Module):
178
+ def __init__(self, hidden_size, eps=1e-6):
179
+ super().__init__()
180
+ self.eps = eps
181
+ self.weight = torch.nn.Parameter(torch.ones(hidden_size))
182
+
183
+ def forward(self, hidden_states):
184
+ input_dtype = hidden_states.dtype
185
+ hidden_states = hidden_states.to(torch.float32)
186
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
187
+ hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
188
+ return self.weight * hidden_states.to(input_dtype)
189
+
190
+
191
+ class ExaoneTritonRMSNorm(torch.nn.Module):
192
+ def __init__(
193
+ self,
194
+ hidden_size: int = 0,
195
+ eps: float = 1e-5,
196
+ ):
197
+ super().__init__()
198
+ self.eps = eps
199
+ self.drop = None
200
+ self.weight = torch.nn.Parameter(torch.empty(hidden_size))
201
+ self.register_parameter("bias", None)
202
+ self.reset_parameters()
203
+
204
+ def reset_parameters(self):
205
+ torch.nn.init.ones_(self.weight)
206
+
207
+ def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False):
208
+ return rms_norm_fn(
209
+ x,
210
+ self.weight,
211
+ self.bias,
212
+ residual=residual,
213
+ eps=self.eps,
214
+ dropout_p=self.drop.p if self.drop is not None and self.training else 0.0,
215
+ prenorm=prenorm,
216
+ residual_in_fp32=residual_in_fp32,
217
+ )
218
+
219
+
220
+ ALL_LAYERNORM_LAYERS.append(ExaoneRMSNorm)
221
+ ALL_LAYERNORM_LAYERS.append(ExaoneTritonRMSNorm)
222
+
223
+
224
+ class ExaoneRotaryEmbedding(nn.Module):
225
+ def __init__(self, config: ExaoneConfig, device=None):
226
+ super().__init__()
227
+ if config.rope_scaling is not None:
228
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
229
+ else:
230
+ self.rope_type = "default"
231
+ self.rope_theta = config.rope_theta
232
+ self.max_seq_len = config.max_position_embeddings
233
+ self.original_max_seq_len = config.max_position_embeddings
234
+
235
+ self.config = config
236
+ if self.rope_type not in ROPE_INIT_FUNCTIONS:
237
+ raise KeyError(f"The EXAONE model does not support RoPE type: {self.rope_type}")
238
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
239
+
240
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
241
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
242
+ self.original_inv_freq = self.inv_freq
243
+
244
+ def _update_freq(self, position_ids, device):
245
+ """
246
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
247
+ 1 - growing beyond the cached sequence length (allow scaling)
248
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
249
+ """
250
+ seq_len = torch.max(position_ids) + 1
251
+ if seq_len > self.max_seq_len: # expand to seq_len
252
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
253
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
254
+ self.max_seq_len = seq_len
255
+
256
+ if seq_len < self.original_max_seq_len and self.max_seq_len > self.original_max_seq_len: # reset to original
257
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
258
+ self.max_seq_len = self.original_max_seq_len
259
+
260
+ @torch.no_grad()
261
+ def forward(self, x, position_ids):
262
+ if "dynamic" in self.rope_type:
263
+ self._update_freq(position_ids, device=x.device)
264
+
265
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
266
+ position_ids_expanded = position_ids[:, None, :].float()
267
+
268
+ device_type = x.device.type
269
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
270
+ with torch.autocast(device_type=device_type, enabled=False):
271
+ freqs = (inv_freq_expanded @ position_ids_expanded).transpose(1, 2)
272
+ emb = torch.cat((freqs, freqs), dim=-1)
273
+ cos, sin = emb.cos(), emb.sin()
274
+
275
+ cos, sin = cos * self.attention_scaling, sin * self.attention_scaling
276
+ return cos.to(x.dtype), sin.to(x.dtype)
277
+
278
+
279
+ class ExaoneSelfAttention(nn.Module):
280
+ def __init__(self, config: ExaoneConfig, layer_idx: Optional[int] = None):
281
+ super().__init__()
282
+ self.config = config
283
+ self.layer_idx = layer_idx
284
+ self.embed_dim = config.hidden_size
285
+ self.num_heads = config.num_attention_heads
286
+ self.head_dim = self.embed_dim // self.num_heads
287
+ self.num_key_value_heads = config.num_key_value_heads
288
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
289
+ self.attention_dropout_rate = config.attention_dropout
290
+
291
+ if self.head_dim * self.num_heads != self.embed_dim:
292
+ raise ValueError(
293
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
294
+ )
295
+
296
+ self.rotary = ExaoneRotaryEmbedding(config)
297
+
298
+ self.k_proj = nn.Linear(self.embed_dim, self.num_key_value_heads * self.head_dim, bias=False)
299
+ self.v_proj = nn.Linear(self.embed_dim, self.num_key_value_heads * self.head_dim, bias=False)
300
+ self.q_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=False)
301
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
302
+
303
+ def forward(
304
+ self,
305
+ hidden_states: torch.Tensor,
306
+ attention_mask: Optional[torch.Tensor] = None,
307
+ position_ids: Optional[torch.LongTensor] = None,
308
+ past_key_value: Optional[Cache] = None,
309
+ output_attentions: Optional[bool] = False,
310
+ use_cache: Optional[bool] = False,
311
+ cache_position: Optional[torch.LongTensor] = None,
312
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
313
+ **kwargs,
314
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
315
+ bsz, q_len, _ = hidden_states.size()
316
+ query_states = self.q_proj(hidden_states)
317
+ key_states = self.k_proj(hidden_states)
318
+ value_states = self.v_proj(hidden_states)
319
+
320
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
321
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
322
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
323
+
324
+ if position_embeddings is None:
325
+ cos, sin = self.rotary(value_states, position_ids=position_ids)
326
+ else:
327
+ cos, sin = position_embeddings
328
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
329
+
330
+ if past_key_value is not None:
331
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
332
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
333
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
334
+
335
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
336
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
337
+
338
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
339
+
340
+ if attention_mask is not None:
341
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
342
+ attn_weights = attn_weights + causal_mask
343
+
344
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
345
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout_rate, training=self.training)
346
+ attn_output = torch.matmul(attn_weights, value_states)
347
+
348
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
349
+ raise ValueError(
350
+ f"Attention outputs should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
351
+ f" {attn_output.size()}"
352
+ )
353
+
354
+ attn_output = attn_output.transpose(1, 2).contiguous()
355
+ attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
356
+
357
+ attn_output = self.out_proj(attn_output)
358
+
359
+ if not output_attentions:
360
+ attn_weights = None
361
+
362
+ return attn_output, attn_weights, past_key_value
363
+
364
+
365
+ class ExaoneFlashAttention(ExaoneSelfAttention):
366
+ def __init__(self, *args, **kwargs):
367
+ super().__init__(*args, **kwargs)
368
+
369
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
370
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
371
+
372
+ def forward(
373
+ self,
374
+ hidden_states: torch.Tensor,
375
+ attention_mask: Optional[torch.Tensor] = None,
376
+ position_ids: Optional[torch.LongTensor] = None,
377
+ past_key_value: Optional[Cache] = None,
378
+ output_attentions: Optional[bool] = False,
379
+ use_cache: Optional[bool] = False,
380
+ cache_position: Optional[torch.LongTensor] = None,
381
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
382
+ **kwargs,
383
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
384
+ if isinstance(past_key_value, StaticCache):
385
+ raise ValueError(
386
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
387
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
388
+ )
389
+
390
+ output_attentions = False
391
+
392
+ bsz, q_len, h_size = hidden_states.size()
393
+
394
+ query_states = self.q_proj(hidden_states)
395
+ key_states = self.k_proj(hidden_states)
396
+ value_states = self.v_proj(hidden_states)
397
+
398
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
399
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
400
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
401
+
402
+ if position_embeddings is None:
403
+ cos, sin = self.rotary(value_states, position_ids=position_ids)
404
+ else:
405
+ cos, sin = position_embeddings
406
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
407
+
408
+ if past_key_value is not None:
409
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
410
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
411
+ # Only update cache as shape of [bsz, n_head, q_len, head_dim]
412
+ # TODO: need to be fixed when transformers' KV cache layout is changed
413
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
414
+
415
+ query_states = query_states.transpose(1, 2)
416
+ key_states = key_states.transpose(1, 2)
417
+ value_states = value_states.transpose(1, 2)
418
+
419
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
420
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
421
+ # cast them back in the correct dtype just to be sure everything works as expected.
422
+ input_dtype = query_states.dtype
423
+ if input_dtype == torch.float32:
424
+ if torch.is_autocast_enabled():
425
+ target_dtype = torch.get_autocast_gpu_dtype()
426
+ # Handle the case where the model is quantized
427
+ elif hasattr(self.config, "_pre_quantization_dtype"):
428
+ target_dtype = self.config._pre_quantization_dtype
429
+ else:
430
+ target_dtype = self.q_proj.weight.dtype
431
+
432
+ logger.warning_once(
433
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
434
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
435
+ f" {target_dtype}."
436
+ )
437
+
438
+ query_states = query_states.to(target_dtype)
439
+ key_states = key_states.to(target_dtype)
440
+ value_states = value_states.to(target_dtype)
441
+
442
+ dropout_rate = self.attention_dropout_rate if self.training else 0.0
443
+
444
+ attn_output = _flash_attention_forward(
445
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate, is_causal=True
446
+ )
447
+
448
+ attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
449
+ attn_output = self.out_proj(attn_output)
450
+
451
+ if not output_attentions:
452
+ attn_weights = None
453
+
454
+ return attn_output, attn_weights, past_key_value
455
+
456
+
457
+ class ExaoneSdpaAttention(ExaoneSelfAttention):
458
+ def __init__(self, *args, **kwargs):
459
+ super().__init__(*args, **kwargs)
460
+
461
+ def forward(
462
+ self,
463
+ hidden_states: torch.Tensor,
464
+ attention_mask: Optional[torch.Tensor] = None,
465
+ position_ids: Optional[torch.LongTensor] = None,
466
+ past_key_value: Optional[Cache] = None,
467
+ output_attentions: Optional[bool] = False,
468
+ use_cache: Optional[bool] = False,
469
+ cache_position: Optional[torch.LongTensor] = None,
470
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
471
+ **kwargs,
472
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
473
+ if output_attentions:
474
+ logger.warning_once(
475
+ "ExaoneModel is using ExaoneSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
476
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
477
+ )
478
+ return super().forward(
479
+ hidden_states=hidden_states,
480
+ attention_mask=attention_mask,
481
+ position_ids=position_ids,
482
+ past_key_value=past_key_value,
483
+ output_attentions=output_attentions,
484
+ use_cache=use_cache,
485
+ cache_position=cache_position,
486
+ position_embeddings=position_embeddings,
487
+ **kwargs,
488
+ )
489
+
490
+ bsz, q_len, _ = hidden_states.size()
491
+
492
+ query_states = self.q_proj(hidden_states)
493
+ key_states = self.k_proj(hidden_states)
494
+ value_states = self.v_proj(hidden_states)
495
+
496
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
497
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
498
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
499
+
500
+ if position_embeddings is None:
501
+ cos, sin = self.rotary(value_states, position_ids=position_ids)
502
+ else:
503
+ cos, sin = position_embeddings
504
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
505
+
506
+ if past_key_value is not None:
507
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
508
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
509
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
510
+
511
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
512
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
513
+
514
+ causal_mask = attention_mask
515
+ if attention_mask is not None:
516
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
517
+
518
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
519
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
520
+ if query_states.device.type == "cuda" and causal_mask is not None:
521
+ query_states = query_states.contiguous()
522
+ key_states = key_states.contiguous()
523
+ value_states = value_states.contiguous()
524
+
525
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
526
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
527
+ is_causal = True if causal_mask is None and q_len > 1 else False
528
+
529
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
530
+ query_states,
531
+ key_states,
532
+ value_states,
533
+ attn_mask=causal_mask,
534
+ dropout_p=self.attention_dropout_rate if self.training else 0.0,
535
+ is_causal=is_causal,
536
+ )
537
+
538
+ attn_output = attn_output.transpose(1, 2).contiguous()
539
+ attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
540
+
541
+ attn_output = self.out_proj(attn_output)
542
+
543
+ return attn_output, None, past_key_value
544
+
545
+
546
+ class ExaoneAttention(nn.Module):
547
+ def __init__(self, config, layer_id=0):
548
+ super().__init__()
549
+ self.layer_id = layer_id
550
+ if "flash" in config._attn_implementation:
551
+ self.attention = ExaoneFlashAttention(config, self.layer_id)
552
+ elif "sdpa" in config._attn_implementation:
553
+ self.attention = ExaoneSdpaAttention(config, self.layer_id)
554
+ else:
555
+ self.attention = ExaoneSelfAttention(config, self.layer_id)
556
+
557
+ def forward(
558
+ self,
559
+ hidden_states: torch.Tensor,
560
+ attention_mask: Optional[torch.Tensor] = None,
561
+ position_ids: Optional[torch.LongTensor] = None,
562
+ past_key_value: Optional[Cache] = None,
563
+ output_attentions: Optional[bool] = False,
564
+ use_cache: Optional[bool] = False,
565
+ cache_position: Optional[torch.LongTensor] = None,
566
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
567
+ **kwargs,
568
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
569
+ return self.attention(
570
+ hidden_states=hidden_states,
571
+ attention_mask=attention_mask,
572
+ position_ids=position_ids,
573
+ past_key_value=past_key_value,
574
+ output_attentions=output_attentions,
575
+ use_cache=use_cache,
576
+ cache_position=cache_position,
577
+ position_embeddings=position_embeddings,
578
+ **kwargs,
579
+ )
580
+
581
+
582
+ class ExaoneGatedMLP(nn.Module):
583
+ def __init__(self, intermediate_size, config):
584
+ super().__init__()
585
+ self.config = config
586
+ embed_dim = config.hidden_size
587
+ self.c_fc_0 = nn.Linear(embed_dim, intermediate_size, bias=False)
588
+ self.c_fc_1 = nn.Linear(embed_dim, intermediate_size, bias=False)
589
+ self.c_proj = nn.Linear(intermediate_size, embed_dim, bias=False)
590
+ self.act = ACT2FN[config.activation_function]
591
+
592
+ def forward(self, hidden_states):
593
+ output_proj = self.c_proj(self.act(self.c_fc_0(hidden_states)) * self.c_fc_1(hidden_states))
594
+ return output_proj
595
+
596
+
597
+ class ExaoneBlock(nn.Module):
598
+ def __init__(self, config, layer_id):
599
+ super().__init__()
600
+ self.config = config
601
+ hidden_size = config.hidden_size
602
+ inner_dim = config.intermediate_size if config.intermediate_size is not None else 4 * hidden_size
603
+ self.ln_1 = ExaoneRMSNorm(hidden_size=hidden_size, eps=config.layer_norm_epsilon)
604
+ self.attn = ExaoneAttention(config, layer_id)
605
+ self.ln_2 = ExaoneRMSNorm(hidden_size=hidden_size, eps=config.layer_norm_epsilon)
606
+ self.mlp = ExaoneGatedMLP(inner_dim, config)
607
+
608
+ def forward(
609
+ self,
610
+ hidden_states: torch.Tensor,
611
+ attention_mask: Optional[torch.Tensor] = None,
612
+ position_ids: Optional[torch.LongTensor] = None,
613
+ past_key_value: Optional[Cache] = None,
614
+ output_attentions: Optional[bool] = False,
615
+ use_cache: Optional[bool] = False,
616
+ cache_position: Optional[torch.LongTensor] = None,
617
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
618
+ **kwargs,
619
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
620
+ residual = hidden_states
621
+ hidden_states = self.ln_1(hidden_states)
622
+
623
+ hidden_states, self_attn_weights, present_key_value = self.attn(
624
+ hidden_states=hidden_states,
625
+ attention_mask=attention_mask,
626
+ position_ids=position_ids,
627
+ past_key_value=past_key_value,
628
+ output_attentions=output_attentions,
629
+ use_cache=use_cache,
630
+ cache_position=cache_position,
631
+ position_embeddings=position_embeddings,
632
+ **kwargs,
633
+ )
634
+ # residual connection
635
+ hidden_states = residual + hidden_states
636
+
637
+ residual = hidden_states
638
+ hidden_states = self.ln_2(hidden_states)
639
+ hidden_states = self.mlp(hidden_states)
640
+
641
+ hidden_states = residual + hidden_states
642
+
643
+ outputs = (hidden_states,)
644
+
645
+ if output_attentions:
646
+ outputs += (self_attn_weights,)
647
+
648
+ if use_cache:
649
+ outputs += (present_key_value,)
650
+
651
+ return outputs
652
+
653
+
654
+ class ExaonePreTrainedModel(PreTrainedModel):
655
+ """
656
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
657
+ models.
658
+ """
659
+
660
+ config_class = ExaoneConfig
661
+ base_model_prefix = "transformer"
662
+ supports_gradient_checkpointing = True
663
+ _no_split_modules = ["ExaoneBlock"]
664
+ _skip_keys_device_placement = "past_key_values"
665
+ _supports_flash_attn_2 = True
666
+ _supports_sdpa = True
667
+ _supports_cache_class = True
668
+
669
+ def __init__(self, *inputs, **kwargs):
670
+ super().__init__(*inputs, **kwargs)
671
+
672
+ def _init_weights(self, module):
673
+ """Initialize the weights."""
674
+ if isinstance(module, (nn.Linear,)):
675
+ # Slightly different from the TF version which uses truncated_normal for initialization
676
+ # cf https://github.com/pytorch/pytorch/pull/5617
677
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
678
+ if module.bias is not None:
679
+ module.bias.data.zero_()
680
+ elif isinstance(module, nn.Embedding):
681
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
682
+ if module.padding_idx is not None:
683
+ module.weight.data[module.padding_idx].zero_()
684
+ elif isinstance(module, ExaoneRMSNorm):
685
+ module.weight.data.fill_(1.0)
686
+
687
+
688
+ EXAONE_START_DOCSTRING = r"""
689
+
690
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
691
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
692
+ etc.)
693
+
694
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
695
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
696
+ and behavior.
697
+
698
+ Parameters:
699
+ config ([`ExaoneConfig`]): Model configuration class with all the parameters of the model.
700
+ Initializing with a config file does not load the weights associated with the model, only the
701
+ configuration. Check out the `PreTrainedModel.from_pretrained` method to load the model weights.
702
+ """
703
+
704
+ EXAONE_INPUTS_DOCSTRING = r"""
705
+ Args:
706
+ input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
707
+ `input_ids_length` = `sequence_length` if `past_key_values` is `None` else
708
+ `past_key_values.get_seq_length()` (`sequence_length` of input past key value states). Indices of input
709
+ sequence tokens in the vocabulary.
710
+
711
+ If `past_key_values` is used, only `input_ids` that do not have their past calculated should be
712
+ passed as `input_ids`.
713
+
714
+ `What are input IDs? <../glossary.html#input-ids>`__
715
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
716
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
717
+
718
+ - 1 for tokens that are **not masked**,
719
+ - 0 for tokens that are **masked**.
720
+
721
+ `What are attention masks? <../glossary.html#attention-mask>`__
722
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
723
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
724
+ config.max_position_embeddings - 1]`.
725
+
726
+ `What are position IDs? <../glossary.html#position-ids>`_
727
+ past_key_values (`Cache`, *optional*):
728
+ Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
729
+ `past_key_values` output below). Can be used to speed up sequential decoding. This typically consists
730
+ in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or
731
+ `config.use_cache=True`.
732
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
733
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
734
+ This is useful if you want more control over how to convert `input_ids` indices into associated
735
+ vectors than the model's internal embedding lookup matrix.
736
+
737
+ If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
738
+ `past_key_values`).
739
+ use_cache (`bool`, *optional*):
740
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up
741
+ decoding (see `past_key_values`).
742
+ output_attentions (`bool`, *optional*):
743
+ Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
744
+ tensors for more detail.
745
+ output_hidden_states (`bool`, *optional*):
746
+ Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
747
+ more detail.
748
+ return_dict (`bool`, *optional*):
749
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
750
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
751
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
752
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
753
+ the complete sequence length.
754
+ """
755
+
756
+
757
+ @add_start_docstrings(
758
+ "The bare EXAONE Model transformer outputting raw hidden-states without any specific head on top.",
759
+ EXAONE_START_DOCSTRING,
760
+ )
761
+ class ExaoneModel(ExaonePreTrainedModel):
762
+ def __init__(self, config):
763
+ super().__init__(config)
764
+ self.config = config
765
+ self.embed_dim = config.hidden_size
766
+ self.wte = nn.Embedding(config.vocab_size, self.embed_dim, self.config.pad_token_id)
767
+ self.drop = nn.Dropout(float(config.embed_dropout))
768
+ self.h = nn.ModuleList([ExaoneBlock(config, layer_id=i) for i in range(config.num_layers)])
769
+ self.ln_f = ExaoneRMSNorm(hidden_size=self.embed_dim, eps=config.layer_norm_epsilon)
770
+ self.rotary = ExaoneRotaryEmbedding(config)
771
+ self.gradient_checkpointing = False
772
+ # Initialize weights and apply final processing
773
+ self.post_init()
774
+
775
+ def get_input_embeddings(self):
776
+ return self.wte
777
+
778
+ def set_input_embeddings(self, new_embeddings):
779
+ self.wte = new_embeddings
780
+
781
+ @add_start_docstrings_to_model_forward(EXAONE_INPUTS_DOCSTRING)
782
+ @add_code_sample_docstrings(
783
+ checkpoint=_CHECKPOINT_FOR_DOC,
784
+ output_type=BaseModelOutputWithPastAndCrossAttentions,
785
+ config_class=_CONFIG_FOR_DOC,
786
+ )
787
+ def forward(
788
+ self,
789
+ input_ids: Optional[torch.Tensor] = None,
790
+ attention_mask: Optional[torch.Tensor] = None,
791
+ position_ids: Optional[torch.Tensor] = None,
792
+ past_key_values: Optional[Cache] = None,
793
+ inputs_embeds: Optional[torch.Tensor] = None,
794
+ use_cache: Optional[bool] = None,
795
+ output_attentions: Optional[bool] = None,
796
+ output_hidden_states: Optional[bool] = None,
797
+ return_dict: Optional[bool] = None,
798
+ cache_position: Optional[torch.LongTensor] = None,
799
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
800
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
801
+ output_hidden_states = (
802
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
803
+ )
804
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
805
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
806
+
807
+ if self.gradient_checkpointing and self.training:
808
+ if use_cache:
809
+ logger.warning_once(
810
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
811
+ )
812
+ use_cache = False
813
+
814
+ if input_ids is not None and inputs_embeds is not None:
815
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
816
+ elif input_ids is not None:
817
+ batch_size, seq_length = input_ids.shape[:2]
818
+ elif inputs_embeds is not None:
819
+ batch_size, seq_length = inputs_embeds.shape[:2]
820
+ else:
821
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
822
+
823
+ return_legacy_cache = False
824
+ if (
825
+ use_cache and not isinstance(past_key_values, Cache) and not self.training
826
+ ): # kept for BC (non `Cache` `past_key_values` inputs)
827
+ return_legacy_cache = True
828
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
829
+ logger.warning_once(
830
+ "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
831
+ "Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
832
+ )
833
+
834
+ if inputs_embeds is None:
835
+ inputs_embeds = self.wte(input_ids)
836
+
837
+ if cache_position is None:
838
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
839
+ cache_position = torch.arange(
840
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
841
+ )
842
+ if position_ids is None:
843
+ position_ids = cache_position.unsqueeze(0)
844
+
845
+ causal_mask = self._update_causal_mask(
846
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
847
+ )
848
+
849
+ hidden_states = inputs_embeds
850
+ hidden_states = self.drop(hidden_states)
851
+
852
+ position_embeddings = self.rotary(hidden_states, position_ids)
853
+
854
+ all_hidden_states = () if output_hidden_states else None
855
+ all_self_attns = () if output_attentions else None
856
+ next_decoder_cache = None
857
+
858
+ for block in self.h:
859
+ if output_hidden_states:
860
+ all_hidden_states = all_hidden_states + (hidden_states,)
861
+
862
+ if self.gradient_checkpointing and self.training:
863
+ outputs = self._gradient_checkpointing_func(
864
+ block.__call__,
865
+ hidden_states,
866
+ causal_mask,
867
+ position_ids,
868
+ past_key_values,
869
+ output_attentions,
870
+ use_cache,
871
+ cache_position,
872
+ position_embeddings,
873
+ )
874
+ else:
875
+ outputs = block(
876
+ hidden_states,
877
+ attention_mask=causal_mask,
878
+ position_ids=position_ids,
879
+ past_key_value=past_key_values,
880
+ output_attentions=output_attentions,
881
+ use_cache=use_cache,
882
+ cache_position=cache_position,
883
+ position_embeddings=position_embeddings,
884
+ )
885
+
886
+ hidden_states = outputs[0]
887
+ if use_cache:
888
+ next_decoder_cache = outputs[2 if output_attentions else 1]
889
+
890
+ if output_attentions:
891
+ all_self_attns += (outputs[1],)
892
+
893
+ hidden_states = self.ln_f(hidden_states)
894
+ # Add last hidden state
895
+ if output_hidden_states:
896
+ all_hidden_states += (hidden_states,)
897
+
898
+ next_cache = None
899
+ if use_cache:
900
+ next_cache = next_decoder_cache.to_legacy_cache() if return_legacy_cache else next_decoder_cache
901
+ if not return_dict:
902
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
903
+
904
+ return BaseModelOutputWithPast(
905
+ last_hidden_state=hidden_states,
906
+ past_key_values=next_cache,
907
+ hidden_states=all_hidden_states,
908
+ attentions=all_self_attns,
909
+ )
910
+
911
+ def _update_causal_mask(
912
+ self,
913
+ attention_mask: torch.Tensor,
914
+ input_tensor: torch.Tensor,
915
+ cache_position: torch.Tensor,
916
+ past_key_values: Cache,
917
+ output_attentions: bool,
918
+ ):
919
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
920
+ # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
921
+ # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
922
+ # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
923
+
924
+ if self.config._attn_implementation == "flash_attention_2":
925
+ if attention_mask is not None and 0.0 in attention_mask:
926
+ return attention_mask
927
+ return None
928
+
929
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
930
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
931
+ # to infer the attention mask.
932
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
933
+ using_static_cache = isinstance(past_key_values, StaticCache)
934
+
935
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
936
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
937
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
938
+ attention_mask,
939
+ inputs_embeds=input_tensor,
940
+ past_key_values_length=past_seen_tokens,
941
+ is_training=self.training,
942
+ ):
943
+ return None
944
+
945
+ dtype, device = input_tensor.dtype, input_tensor.device
946
+ min_dtype = torch.finfo(dtype).min
947
+ sequence_length = input_tensor.shape[1]
948
+ if using_static_cache:
949
+ target_length = past_key_values.get_max_length()
950
+ else:
951
+ target_length = (
952
+ attention_mask.shape[-1]
953
+ if isinstance(attention_mask, torch.Tensor)
954
+ else past_seen_tokens + sequence_length + 1
955
+ )
956
+
957
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
958
+ causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
959
+ attention_mask,
960
+ sequence_length=sequence_length,
961
+ target_length=target_length,
962
+ dtype=dtype,
963
+ device=device,
964
+ min_dtype=min_dtype,
965
+ cache_position=cache_position,
966
+ batch_size=input_tensor.shape[0],
967
+ )
968
+
969
+ if (
970
+ self.config._attn_implementation == "sdpa"
971
+ and attention_mask is not None
972
+ and attention_mask.device.type == "cuda"
973
+ and not output_attentions
974
+ ):
975
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
976
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
977
+ # Details: https://github.com/pytorch/pytorch/issues/110213
978
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
979
+
980
+ return causal_mask
981
+
982
+
983
+ @add_start_docstrings(
984
+ """
985
+ The EXAONE Model transformer with a language modeling head on top (linear layer with weights tied to the input
986
+ embeddings).
987
+ """,
988
+ EXAONE_START_DOCSTRING,
989
+ )
990
+ class ExaoneForCausalLM(ExaonePreTrainedModel, GenerationMixin):
991
+ _tied_weights_keys = ["lm_head.weight"]
992
+
993
+ def __init__(self, config):
994
+ super().__init__(config)
995
+ self.transformer = ExaoneModel(config)
996
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
997
+ self.config = config
998
+ # Initialize weights and apply final processing
999
+ self.post_init()
1000
+
1001
+ def get_output_embeddings(self):
1002
+ return self.lm_head
1003
+
1004
+ def set_output_embeddings(self, new_embeddings):
1005
+ self.lm_head = new_embeddings
1006
+
1007
+ @add_start_docstrings_to_model_forward(EXAONE_INPUTS_DOCSTRING)
1008
+ @add_code_sample_docstrings(
1009
+ checkpoint=_CHECKPOINT_FOR_DOC,
1010
+ output_type=BaseModelOutputWithPast,
1011
+ config_class=_CONFIG_FOR_DOC,
1012
+ )
1013
+ def forward(
1014
+ self,
1015
+ input_ids: Optional[torch.Tensor] = None,
1016
+ attention_mask: Optional[torch.Tensor] = None,
1017
+ position_ids: Optional[torch.Tensor] = None,
1018
+ past_key_values: Optional[Cache] = None,
1019
+ inputs_embeds: Optional[torch.Tensor] = None,
1020
+ labels: Optional[torch.Tensor] = None,
1021
+ use_cache: Optional[bool] = None,
1022
+ output_attentions: Optional[bool] = None,
1023
+ output_hidden_states: Optional[bool] = None,
1024
+ return_dict: Optional[bool] = None,
1025
+ cache_position: Optional[torch.LongTensor] = None,
1026
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
1027
+ r"""
1028
+ Args:
1029
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1030
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
1031
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
1032
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
1033
+
1034
+ Example:
1035
+
1036
+ ```python
1037
+ >>> from transformers import AutoModelForCausalLM, AutoTokenizer
1038
+
1039
+ >>> model = AutoModelForCausalLM.from_pretrained("LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct",
1040
+ trust_remote_code=True)
1041
+ >>> tokenizer = AutoTokenizer.from_pretrained("LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct")
1042
+
1043
+ >>> prompt = "Explain how wonderful you are"
1044
+ >>> messages = [
1045
+ {"role": "system", "content": "You are a helpful assistant."},
1046
+ {"role": "user", "content": prompt}
1047
+ ]
1048
+ >>> input_ids = tokenizer.apply_chat_template(
1049
+ messages,
1050
+ tokenize=True,
1051
+ add_generation_prompt=True,
1052
+ return_tensors="pt"
1053
+ )
1054
+
1055
+ >>> output = model.generate(input_ids, max_new_tokens=128)
1056
+ >>> tokenizer.decode(output[0], skip_special_tokens=True)
1057
+ "[|system|]You are a helpful assistant.\n[|user|]Explain how wonderful you are\n[|assistant|]Thank you for your kind words! I'm here to assist you with information, answer questions, and help you in any way I can. My goal is to provide accurate, helpful, and timely responses. Whether you need help with a specific task, want to learn something new, or just need someone to talk to, I'm here for you. How can I assist you today?"
1058
+ ```
1059
+ """
1060
+
1061
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1062
+ output_hidden_states = (
1063
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1064
+ )
1065
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1066
+ transformer_outputs = self.transformer(
1067
+ input_ids,
1068
+ attention_mask=attention_mask,
1069
+ past_key_values=past_key_values,
1070
+ position_ids=position_ids,
1071
+ inputs_embeds=inputs_embeds,
1072
+ use_cache=use_cache,
1073
+ output_attentions=output_attentions,
1074
+ output_hidden_states=output_hidden_states,
1075
+ return_dict=return_dict,
1076
+ cache_position=cache_position,
1077
+ )
1078
+ hidden_states = transformer_outputs[0]
1079
+ lm_logits = self.lm_head(hidden_states)
1080
+ lm_logits = lm_logits.float()
1081
+ loss = None
1082
+ if labels is not None:
1083
+ lm_logits = lm_logits.to(torch.float32)
1084
+
1085
+ # Shift so that tokens < n predict n
1086
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1087
+ shift_labels = labels[..., 1:].contiguous()
1088
+ # Flatten the tokens
1089
+ loss_fct = CrossEntropyLoss()
1090
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1091
+
1092
+ lm_logits = lm_logits.to(hidden_states.dtype)
1093
+ loss = loss.to(hidden_states.dtype)
1094
+
1095
+ if not return_dict:
1096
+ output = (lm_logits,) + transformer_outputs[1:]
1097
+ return ((loss,) + output) if loss is not None else output
1098
+
1099
+ return CausalLMOutputWithPast(
1100
+ loss=loss,
1101
+ logits=lm_logits,
1102
+ past_key_values=transformer_outputs.past_key_values,
1103
+ hidden_states=transformer_outputs.hidden_states,
1104
+ attentions=transformer_outputs.attentions,
1105
+ )
1106
+
1107
+ def prepare_inputs_for_generation(
1108
+ self,
1109
+ input_ids,
1110
+ past_key_values=None,
1111
+ attention_mask=None,
1112
+ inputs_embeds=None,
1113
+ cache_position=None,
1114
+ position_ids=None,
1115
+ use_cache=True,
1116
+ **kwargs,
1117
+ ):
1118
+ # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
1119
+ # Exception 1: when passing input_embeds, input_ids may be missing entries
1120
+ # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
1121
+ if past_key_values is not None:
1122
+ if inputs_embeds is not None: # Exception 1
1123
+ input_ids = input_ids[:, -cache_position.shape[0] :]
1124
+ elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
1125
+ input_ids = input_ids[:, cache_position]
1126
+
1127
+ if attention_mask is not None and position_ids is None:
1128
+ # create position_ids on the fly for batch generation
1129
+ position_ids = attention_mask.long().cumsum(-1) - 1
1130
+ position_ids.masked_fill_(attention_mask == 0, 1)
1131
+ if past_key_values:
1132
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1133
+
1134
+ # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
1135
+ position_ids = position_ids.clone(memory_format=torch.contiguous_format)
1136
+
1137
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1138
+ if inputs_embeds is not None and cache_position[0] == 0:
1139
+ model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
1140
+ else:
1141
+ model_inputs = {"input_ids": input_ids, "inputs_embeds": None}
1142
+
1143
+ if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
1144
+ if inputs_embeds is not None:
1145
+ batch_size, sequence_length, _ = inputs_embeds.shape
1146
+ device = inputs_embeds.device
1147
+ else:
1148
+ batch_size, sequence_length = input_ids.shape
1149
+ device = input_ids.device
1150
+
1151
+ dtype = self.lm_head.weight.dtype
1152
+ min_dtype = torch.finfo(dtype).min
1153
+
1154
+ attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
1155
+ attention_mask,
1156
+ sequence_length=sequence_length,
1157
+ target_length=past_key_values.get_max_length(),
1158
+ dtype=dtype,
1159
+ device=device,
1160
+ min_dtype=min_dtype,
1161
+ cache_position=cache_position,
1162
+ batch_size=batch_size,
1163
+ )
1164
+
1165
+ model_inputs.update(
1166
+ {
1167
+ "position_ids": position_ids,
1168
+ "cache_position": cache_position,
1169
+ "past_key_values": past_key_values,
1170
+ "use_cache": use_cache,
1171
+ "attention_mask": attention_mask,
1172
+ }
1173
+ )
1174
+ return model_inputs
1175
+
1176
+
1177
+ @add_start_docstrings(
1178
+ """
1179
+ The EXAONE Model transformer with a sequence classification head on top (linear layer).
1180
+
1181
+ [`ExaoneForSequenceClassification`] uses the last token in order to do the classification, as
1182
+ other causal models (e.g. GPT-1) do.
1183
+
1184
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1185
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each
1186
+ row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot
1187
+ guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take
1188
+ the last value in each row of the batch).
1189
+ """,
1190
+ EXAONE_START_DOCSTRING,
1191
+ )
1192
+ class ExaoneForSequenceClassification(ExaonePreTrainedModel):
1193
+ def __init__(self, config):
1194
+ super().__init__(config)
1195
+ self.num_labels = config.num_labels
1196
+ self.transformer = ExaoneModel(config)
1197
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1198
+
1199
+ # Initialize weights and apply final processing
1200
+ self.post_init()
1201
+
1202
+ @add_start_docstrings_to_model_forward(EXAONE_INPUTS_DOCSTRING)
1203
+ @add_code_sample_docstrings(
1204
+ checkpoint=_CHECKPOINT_FOR_DOC,
1205
+ output_type=SequenceClassifierOutputWithPast,
1206
+ config_class=_CONFIG_FOR_DOC,
1207
+ )
1208
+ def forward(
1209
+ self,
1210
+ input_ids: Optional[torch.Tensor] = None,
1211
+ attention_mask: Optional[torch.Tensor] = None,
1212
+ position_ids: Optional[torch.Tensor] = None,
1213
+ past_key_values: Optional[Cache] = None,
1214
+ inputs_embeds: Optional[torch.Tensor] = None,
1215
+ labels: Optional[torch.Tensor] = None,
1216
+ use_cache: Optional[bool] = None,
1217
+ output_attentions: Optional[bool] = None,
1218
+ output_hidden_states: Optional[bool] = None,
1219
+ return_dict: Optional[bool] = None,
1220
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
1221
+ r"""
1222
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1223
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1224
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1225
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1226
+ """
1227
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1228
+
1229
+ transformer_outputs = self.transformer(
1230
+ input_ids,
1231
+ attention_mask=attention_mask,
1232
+ position_ids=position_ids,
1233
+ past_key_values=past_key_values,
1234
+ inputs_embeds=inputs_embeds,
1235
+ use_cache=use_cache,
1236
+ output_attentions=output_attentions,
1237
+ output_hidden_states=output_hidden_states,
1238
+ return_dict=return_dict,
1239
+ )
1240
+ hidden_states = transformer_outputs[0]
1241
+ logits = self.score(hidden_states)
1242
+
1243
+ if input_ids is not None:
1244
+ batch_size, sequence_length = input_ids.shape[:2]
1245
+ else:
1246
+ batch_size, sequence_length = inputs_embeds.shape[:2]
1247
+
1248
+ if self.config.pad_token_id is None and batch_size != 1:
1249
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1250
+ if self.config.pad_token_id is None:
1251
+ sequence_lengths = -1
1252
+ else:
1253
+ if input_ids is not None:
1254
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1255
+ sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
1256
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1257
+ sequence_lengths = sequence_lengths.to(logits.device)
1258
+ else:
1259
+ sequence_lengths = -1
1260
+ logger.warning(
1261
+ f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
1262
+ "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
1263
+ )
1264
+
1265
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1266
+
1267
+ loss = None
1268
+ if labels is not None:
1269
+ labels = labels.to(logits.device)
1270
+ if self.config.problem_type is None:
1271
+ if self.num_labels == 1:
1272
+ self.config.problem_type = "regression"
1273
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1274
+ self.config.problem_type = "single_label_classification"
1275
+ else:
1276
+ self.config.problem_type = "multi_label_classification"
1277
+
1278
+ if self.config.problem_type == "regression":
1279
+ loss_fct = MSELoss()
1280
+ if self.num_labels == 1:
1281
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1282
+ else:
1283
+ loss = loss_fct(pooled_logits, labels)
1284
+ elif self.config.problem_type == "single_label_classification":
1285
+ loss_fct = CrossEntropyLoss()
1286
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1287
+ elif self.config.problem_type == "multi_label_classification":
1288
+ loss_fct = BCEWithLogitsLoss()
1289
+ loss = loss_fct(pooled_logits, labels)
1290
+ if not return_dict:
1291
+ output = (pooled_logits,) + transformer_outputs[1:]
1292
+ return ((loss,) + output) if loss is not None else output
1293
+
1294
+ return SequenceClassifierOutputWithPast(
1295
+ loss=loss,
1296
+ logits=pooled_logits,
1297
+ past_key_values=transformer_outputs.past_key_values,
1298
+ hidden_states=transformer_outputs.hidden_states,
1299
+ attentions=transformer_outputs.attentions,
1300
+ )
1301
+
1302
+
1303
+ @add_start_docstrings(
1304
+ """
1305
+ The EXAONE Model transformer with a span classification head on top for extractive question-answering tasks like
1306
+ SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
1307
+ """,
1308
+ EXAONE_START_DOCSTRING,
1309
+ )
1310
+ class ExaoneForQuestionAnswering(ExaonePreTrainedModel):
1311
+ def __init__(self, config):
1312
+ super().__init__(config)
1313
+ self.num_labels = config.num_labels
1314
+ self.transformer = ExaoneModel(config)
1315
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
1316
+
1317
+ # Model parallel
1318
+ self.model_parallel = False
1319
+ self.device_map = None
1320
+
1321
+ # Initialize weights and apply final processing
1322
+ self.post_init()
1323
+
1324
+ def forward(
1325
+ self,
1326
+ input_ids: Optional[torch.LongTensor] = None,
1327
+ attention_mask: Optional[torch.FloatTensor] = None,
1328
+ position_ids: Optional[torch.LongTensor] = None,
1329
+ past_key_values: Optional[Cache] = None,
1330
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1331
+ start_positions: Optional[torch.LongTensor] = None,
1332
+ end_positions: Optional[torch.LongTensor] = None,
1333
+ output_attentions: Optional[bool] = None,
1334
+ output_hidden_states: Optional[bool] = None,
1335
+ return_dict: Optional[bool] = None,
1336
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
1337
+ r"""
1338
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1339
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1340
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the
1341
+ sequence are not taken into account for computing the loss.
1342
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1343
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1344
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the
1345
+ sequence are not taken into account for computing the loss.
1346
+ """
1347
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1348
+
1349
+ outputs = self.transformer(
1350
+ input_ids,
1351
+ attention_mask=attention_mask,
1352
+ position_ids=position_ids,
1353
+ past_key_values=past_key_values,
1354
+ inputs_embeds=inputs_embeds,
1355
+ output_attentions=output_attentions,
1356
+ output_hidden_states=output_hidden_states,
1357
+ return_dict=return_dict,
1358
+ )
1359
+
1360
+ sequence_output = outputs[0]
1361
+
1362
+ logits = self.qa_outputs(sequence_output)
1363
+ start_logits, end_logits = logits.split(1, dim=-1)
1364
+ start_logits = start_logits.squeeze(-1).contiguous()
1365
+ end_logits = end_logits.squeeze(-1).contiguous()
1366
+
1367
+ total_loss = None
1368
+ if start_positions is not None and end_positions is not None:
1369
+ # If we are on multi-GPU, split add a dimension
1370
+ if len(start_positions.size()) > 1:
1371
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
1372
+ if len(end_positions.size()) > 1:
1373
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1374
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1375
+ ignored_index = start_logits.size(1)
1376
+ start_positions = start_positions.clamp(0, ignored_index)
1377
+ end_positions = end_positions.clamp(0, ignored_index)
1378
+
1379
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1380
+ start_loss = loss_fct(start_logits, start_positions)
1381
+ end_loss = loss_fct(end_logits, end_positions)
1382
+ total_loss = (start_loss + end_loss) / 2
1383
+
1384
+ if not return_dict:
1385
+ output = (start_logits, end_logits) + outputs[2:]
1386
+ return ((total_loss,) + output) if total_loss is not None else output
1387
+
1388
+ return QuestionAnsweringModelOutput(
1389
+ loss=total_loss,
1390
+ start_logits=start_logits,
1391
+ end_logits=end_logits,
1392
+ hidden_states=outputs.hidden_states,
1393
+ attentions=outputs.attentions,
1394
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[BOS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "[|endofturn|]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "[UNK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,3221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "[PAD]",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "[BOS]",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "[EOS]",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "[UNK]",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "4": {
37
+ "content": " ",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": false
43
+ },
44
+ "5": {
45
+ "content": " ",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": false
51
+ },
52
+ "6": {
53
+ "content": " ",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": false
59
+ },
60
+ "7": {
61
+ "content": " ",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": false
67
+ },
68
+ "8": {
69
+ "content": " ",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": false
75
+ },
76
+ "9": {
77
+ "content": " ",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": false
83
+ },
84
+ "10": {
85
+ "content": " ",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": false
91
+ },
92
+ "11": {
93
+ "content": " ",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": false
99
+ },
100
+ "12": {
101
+ "content": " ",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": false
107
+ },
108
+ "13": {
109
+ "content": " ",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": false
115
+ },
116
+ "14": {
117
+ "content": " ",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": false
123
+ },
124
+ "15": {
125
+ "content": " ",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": false
131
+ },
132
+ "16": {
133
+ "content": " ",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": false
139
+ },
140
+ "17": {
141
+ "content": " ",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": false
147
+ },
148
+ "18": {
149
+ "content": " ",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": false
155
+ },
156
+ "19": {
157
+ "content": " ",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": false
163
+ },
164
+ "20": {
165
+ "content": " ",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": false
171
+ },
172
+ "21": {
173
+ "content": " ",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": false
179
+ },
180
+ "22": {
181
+ "content": " ",
182
+ "lstrip": false,
183
+ "normalized": false,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": false
187
+ },
188
+ "23": {
189
+ "content": " ",
190
+ "lstrip": false,
191
+ "normalized": false,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": false
195
+ },
196
+ "24": {
197
+ "content": " ",
198
+ "lstrip": false,
199
+ "normalized": false,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": false
203
+ },
204
+ "25": {
205
+ "content": " ",
206
+ "lstrip": false,
207
+ "normalized": false,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": false
211
+ },
212
+ "26": {
213
+ "content": " ",
214
+ "lstrip": false,
215
+ "normalized": false,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": false
219
+ },
220
+ "27": {
221
+ "content": " ",
222
+ "lstrip": false,
223
+ "normalized": false,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": false
227
+ },
228
+ "28": {
229
+ "content": " ",
230
+ "lstrip": false,
231
+ "normalized": false,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": false
235
+ },
236
+ "29": {
237
+ "content": " ",
238
+ "lstrip": false,
239
+ "normalized": false,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": false
243
+ },
244
+ "30": {
245
+ "content": " ",
246
+ "lstrip": false,
247
+ "normalized": false,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": false
251
+ },
252
+ "31": {
253
+ "content": " ",
254
+ "lstrip": false,
255
+ "normalized": false,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": false
259
+ },
260
+ "32": {
261
+ "content": " ",
262
+ "lstrip": false,
263
+ "normalized": false,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": false
267
+ },
268
+ "33": {
269
+ "content": " ",
270
+ "lstrip": false,
271
+ "normalized": false,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": false
275
+ },
276
+ "34": {
277
+ "content": "\t\t\t\t\t\t\t\t\t",
278
+ "lstrip": false,
279
+ "normalized": false,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": false
283
+ },
284
+ "35": {
285
+ "content": "\t\t\t\t\t\t\t\t",
286
+ "lstrip": false,
287
+ "normalized": false,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": false
291
+ },
292
+ "36": {
293
+ "content": "\t\t\t\t\t\t\t",
294
+ "lstrip": false,
295
+ "normalized": false,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": false
299
+ },
300
+ "37": {
301
+ "content": "\t\t\t\t\t\t",
302
+ "lstrip": false,
303
+ "normalized": false,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": false
307
+ },
308
+ "38": {
309
+ "content": "\t\t\t\t\t",
310
+ "lstrip": false,
311
+ "normalized": false,
312
+ "rstrip": false,
313
+ "single_word": false,
314
+ "special": false
315
+ },
316
+ "39": {
317
+ "content": "\t\t\t\t",
318
+ "lstrip": false,
319
+ "normalized": false,
320
+ "rstrip": false,
321
+ "single_word": false,
322
+ "special": false
323
+ },
324
+ "40": {
325
+ "content": "\t\t\t",
326
+ "lstrip": false,
327
+ "normalized": false,
328
+ "rstrip": false,
329
+ "single_word": false,
330
+ "special": false
331
+ },
332
+ "41": {
333
+ "content": "\t\t",
334
+ "lstrip": false,
335
+ "normalized": false,
336
+ "rstrip": false,
337
+ "single_word": false,
338
+ "special": false
339
+ },
340
+ "42": {
341
+ "content": "<|endoftext|>",
342
+ "lstrip": false,
343
+ "normalized": false,
344
+ "rstrip": false,
345
+ "single_word": false,
346
+ "special": true
347
+ },
348
+ "43": {
349
+ "content": "<|c|>",
350
+ "lstrip": false,
351
+ "normalized": false,
352
+ "rstrip": false,
353
+ "single_word": false,
354
+ "special": true
355
+ },
356
+ "44": {
357
+ "content": "<|c++|>",
358
+ "lstrip": false,
359
+ "normalized": false,
360
+ "rstrip": false,
361
+ "single_word": false,
362
+ "special": true
363
+ },
364
+ "45": {
365
+ "content": "<|python|>",
366
+ "lstrip": false,
367
+ "normalized": false,
368
+ "rstrip": false,
369
+ "single_word": false,
370
+ "special": true
371
+ },
372
+ "46": {
373
+ "content": "<|javascript|>",
374
+ "lstrip": false,
375
+ "normalized": false,
376
+ "rstrip": false,
377
+ "single_word": false,
378
+ "special": true
379
+ },
380
+ "47": {
381
+ "content": "<|markdown|>",
382
+ "lstrip": false,
383
+ "normalized": false,
384
+ "rstrip": false,
385
+ "single_word": false,
386
+ "special": true
387
+ },
388
+ "48": {
389
+ "content": "<|html|>",
390
+ "lstrip": false,
391
+ "normalized": false,
392
+ "rstrip": false,
393
+ "single_word": false,
394
+ "special": true
395
+ },
396
+ "49": {
397
+ "content": "<|css|>",
398
+ "lstrip": false,
399
+ "normalized": false,
400
+ "rstrip": false,
401
+ "single_word": false,
402
+ "special": true
403
+ },
404
+ "50": {
405
+ "content": "<|vue|>",
406
+ "lstrip": false,
407
+ "normalized": false,
408
+ "rstrip": false,
409
+ "single_word": false,
410
+ "special": true
411
+ },
412
+ "51": {
413
+ "content": "<|java|>",
414
+ "lstrip": false,
415
+ "normalized": false,
416
+ "rstrip": false,
417
+ "single_word": false,
418
+ "special": true
419
+ },
420
+ "52": {
421
+ "content": "PI:URL",
422
+ "lstrip": false,
423
+ "normalized": false,
424
+ "rstrip": false,
425
+ "single_word": false,
426
+ "special": true
427
+ },
428
+ "53": {
429
+ "content": "PI:EMAIL",
430
+ "lstrip": false,
431
+ "normalized": false,
432
+ "rstrip": false,
433
+ "single_word": false,
434
+ "special": true
435
+ },
436
+ "54": {
437
+ "content": "PI:ACCOUNT_NUM",
438
+ "lstrip": false,
439
+ "normalized": false,
440
+ "rstrip": false,
441
+ "single_word": false,
442
+ "special": true
443
+ },
444
+ "55": {
445
+ "content": "PI:PHONE_NUM",
446
+ "lstrip": false,
447
+ "normalized": false,
448
+ "rstrip": false,
449
+ "single_word": false,
450
+ "special": true
451
+ },
452
+ "56": {
453
+ "content": "PI:BUSINESS_NUM",
454
+ "lstrip": false,
455
+ "normalized": false,
456
+ "rstrip": false,
457
+ "single_word": false,
458
+ "special": true
459
+ },
460
+ "57": {
461
+ "content": "PI:ANNON",
462
+ "lstrip": false,
463
+ "normalized": false,
464
+ "rstrip": false,
465
+ "single_word": false,
466
+ "special": true
467
+ },
468
+ "58": {
469
+ "content": "PI:KEY",
470
+ "lstrip": false,
471
+ "normalized": false,
472
+ "rstrip": false,
473
+ "single_word": false,
474
+ "special": true
475
+ },
476
+ "59": {
477
+ "content": "PI:ID",
478
+ "lstrip": false,
479
+ "normalized": false,
480
+ "rstrip": false,
481
+ "single_word": false,
482
+ "special": true
483
+ },
484
+ "60": {
485
+ "content": "PI:IP_ADDRESS",
486
+ "lstrip": false,
487
+ "normalized": false,
488
+ "rstrip": false,
489
+ "single_word": false,
490
+ "special": true
491
+ },
492
+ "61": {
493
+ "content": "PI:USER",
494
+ "lstrip": false,
495
+ "normalized": false,
496
+ "rstrip": false,
497
+ "single_word": false,
498
+ "special": true
499
+ },
500
+ "62": {
501
+ "content": "[unused0]",
502
+ "lstrip": false,
503
+ "normalized": false,
504
+ "rstrip": false,
505
+ "single_word": false,
506
+ "special": true
507
+ },
508
+ "63": {
509
+ "content": "[unused1]",
510
+ "lstrip": false,
511
+ "normalized": false,
512
+ "rstrip": false,
513
+ "single_word": false,
514
+ "special": true
515
+ },
516
+ "64": {
517
+ "content": "[unused2]",
518
+ "lstrip": false,
519
+ "normalized": false,
520
+ "rstrip": false,
521
+ "single_word": false,
522
+ "special": true
523
+ },
524
+ "65": {
525
+ "content": "[unused3]",
526
+ "lstrip": false,
527
+ "normalized": false,
528
+ "rstrip": false,
529
+ "single_word": false,
530
+ "special": true
531
+ },
532
+ "66": {
533
+ "content": "[unused4]",
534
+ "lstrip": false,
535
+ "normalized": false,
536
+ "rstrip": false,
537
+ "single_word": false,
538
+ "special": true
539
+ },
540
+ "67": {
541
+ "content": "[unused5]",
542
+ "lstrip": false,
543
+ "normalized": false,
544
+ "rstrip": false,
545
+ "single_word": false,
546
+ "special": true
547
+ },
548
+ "68": {
549
+ "content": "[unused6]",
550
+ "lstrip": false,
551
+ "normalized": false,
552
+ "rstrip": false,
553
+ "single_word": false,
554
+ "special": true
555
+ },
556
+ "69": {
557
+ "content": "[unused7]",
558
+ "lstrip": false,
559
+ "normalized": false,
560
+ "rstrip": false,
561
+ "single_word": false,
562
+ "special": true
563
+ },
564
+ "70": {
565
+ "content": "[unused8]",
566
+ "lstrip": false,
567
+ "normalized": false,
568
+ "rstrip": false,
569
+ "single_word": false,
570
+ "special": true
571
+ },
572
+ "71": {
573
+ "content": "[unused9]",
574
+ "lstrip": false,
575
+ "normalized": false,
576
+ "rstrip": false,
577
+ "single_word": false,
578
+ "special": true
579
+ },
580
+ "72": {
581
+ "content": "[unused10]",
582
+ "lstrip": false,
583
+ "normalized": false,
584
+ "rstrip": false,
585
+ "single_word": false,
586
+ "special": true
587
+ },
588
+ "73": {
589
+ "content": "[unused11]",
590
+ "lstrip": false,
591
+ "normalized": false,
592
+ "rstrip": false,
593
+ "single_word": false,
594
+ "special": true
595
+ },
596
+ "74": {
597
+ "content": "[unused12]",
598
+ "lstrip": false,
599
+ "normalized": false,
600
+ "rstrip": false,
601
+ "single_word": false,
602
+ "special": true
603
+ },
604
+ "75": {
605
+ "content": "[unused13]",
606
+ "lstrip": false,
607
+ "normalized": false,
608
+ "rstrip": false,
609
+ "single_word": false,
610
+ "special": true
611
+ },
612
+ "76": {
613
+ "content": "[unused14]",
614
+ "lstrip": false,
615
+ "normalized": false,
616
+ "rstrip": false,
617
+ "single_word": false,
618
+ "special": true
619
+ },
620
+ "77": {
621
+ "content": "[unused15]",
622
+ "lstrip": false,
623
+ "normalized": false,
624
+ "rstrip": false,
625
+ "single_word": false,
626
+ "special": true
627
+ },
628
+ "78": {
629
+ "content": "[unused16]",
630
+ "lstrip": false,
631
+ "normalized": false,
632
+ "rstrip": false,
633
+ "single_word": false,
634
+ "special": true
635
+ },
636
+ "79": {
637
+ "content": "[unused17]",
638
+ "lstrip": false,
639
+ "normalized": false,
640
+ "rstrip": false,
641
+ "single_word": false,
642
+ "special": true
643
+ },
644
+ "80": {
645
+ "content": "[unused18]",
646
+ "lstrip": false,
647
+ "normalized": false,
648
+ "rstrip": false,
649
+ "single_word": false,
650
+ "special": true
651
+ },
652
+ "81": {
653
+ "content": "[unused19]",
654
+ "lstrip": false,
655
+ "normalized": false,
656
+ "rstrip": false,
657
+ "single_word": false,
658
+ "special": true
659
+ },
660
+ "82": {
661
+ "content": "[unused20]",
662
+ "lstrip": false,
663
+ "normalized": false,
664
+ "rstrip": false,
665
+ "single_word": false,
666
+ "special": true
667
+ },
668
+ "83": {
669
+ "content": "[unused21]",
670
+ "lstrip": false,
671
+ "normalized": false,
672
+ "rstrip": false,
673
+ "single_word": false,
674
+ "special": true
675
+ },
676
+ "84": {
677
+ "content": "[unused22]",
678
+ "lstrip": false,
679
+ "normalized": false,
680
+ "rstrip": false,
681
+ "single_word": false,
682
+ "special": true
683
+ },
684
+ "85": {
685
+ "content": "[unused23]",
686
+ "lstrip": false,
687
+ "normalized": false,
688
+ "rstrip": false,
689
+ "single_word": false,
690
+ "special": true
691
+ },
692
+ "86": {
693
+ "content": "[unused24]",
694
+ "lstrip": false,
695
+ "normalized": false,
696
+ "rstrip": false,
697
+ "single_word": false,
698
+ "special": true
699
+ },
700
+ "87": {
701
+ "content": "[unused25]",
702
+ "lstrip": false,
703
+ "normalized": false,
704
+ "rstrip": false,
705
+ "single_word": false,
706
+ "special": true
707
+ },
708
+ "88": {
709
+ "content": "[unused26]",
710
+ "lstrip": false,
711
+ "normalized": false,
712
+ "rstrip": false,
713
+ "single_word": false,
714
+ "special": true
715
+ },
716
+ "89": {
717
+ "content": "[unused27]",
718
+ "lstrip": false,
719
+ "normalized": false,
720
+ "rstrip": false,
721
+ "single_word": false,
722
+ "special": true
723
+ },
724
+ "90": {
725
+ "content": "[unused28]",
726
+ "lstrip": false,
727
+ "normalized": false,
728
+ "rstrip": false,
729
+ "single_word": false,
730
+ "special": true
731
+ },
732
+ "91": {
733
+ "content": "[unused29]",
734
+ "lstrip": false,
735
+ "normalized": false,
736
+ "rstrip": false,
737
+ "single_word": false,
738
+ "special": true
739
+ },
740
+ "92": {
741
+ "content": "[unused30]",
742
+ "lstrip": false,
743
+ "normalized": false,
744
+ "rstrip": false,
745
+ "single_word": false,
746
+ "special": true
747
+ },
748
+ "93": {
749
+ "content": "[unused31]",
750
+ "lstrip": false,
751
+ "normalized": false,
752
+ "rstrip": false,
753
+ "single_word": false,
754
+ "special": true
755
+ },
756
+ "94": {
757
+ "content": "[unused32]",
758
+ "lstrip": false,
759
+ "normalized": false,
760
+ "rstrip": false,
761
+ "single_word": false,
762
+ "special": true
763
+ },
764
+ "95": {
765
+ "content": "[unused33]",
766
+ "lstrip": false,
767
+ "normalized": false,
768
+ "rstrip": false,
769
+ "single_word": false,
770
+ "special": true
771
+ },
772
+ "96": {
773
+ "content": "[unused34]",
774
+ "lstrip": false,
775
+ "normalized": false,
776
+ "rstrip": false,
777
+ "single_word": false,
778
+ "special": true
779
+ },
780
+ "97": {
781
+ "content": "[unused35]",
782
+ "lstrip": false,
783
+ "normalized": false,
784
+ "rstrip": false,
785
+ "single_word": false,
786
+ "special": true
787
+ },
788
+ "98": {
789
+ "content": "[unused36]",
790
+ "lstrip": false,
791
+ "normalized": false,
792
+ "rstrip": false,
793
+ "single_word": false,
794
+ "special": true
795
+ },
796
+ "99": {
797
+ "content": "[unused37]",
798
+ "lstrip": false,
799
+ "normalized": false,
800
+ "rstrip": false,
801
+ "single_word": false,
802
+ "special": true
803
+ },
804
+ "100": {
805
+ "content": "[unused38]",
806
+ "lstrip": false,
807
+ "normalized": false,
808
+ "rstrip": false,
809
+ "single_word": false,
810
+ "special": true
811
+ },
812
+ "101": {
813
+ "content": "[unused39]",
814
+ "lstrip": false,
815
+ "normalized": false,
816
+ "rstrip": false,
817
+ "single_word": false,
818
+ "special": true
819
+ },
820
+ "102": {
821
+ "content": "[unused40]",
822
+ "lstrip": false,
823
+ "normalized": false,
824
+ "rstrip": false,
825
+ "single_word": false,
826
+ "special": true
827
+ },
828
+ "103": {
829
+ "content": "[unused41]",
830
+ "lstrip": false,
831
+ "normalized": false,
832
+ "rstrip": false,
833
+ "single_word": false,
834
+ "special": true
835
+ },
836
+ "104": {
837
+ "content": "[unused42]",
838
+ "lstrip": false,
839
+ "normalized": false,
840
+ "rstrip": false,
841
+ "single_word": false,
842
+ "special": true
843
+ },
844
+ "105": {
845
+ "content": "[unused43]",
846
+ "lstrip": false,
847
+ "normalized": false,
848
+ "rstrip": false,
849
+ "single_word": false,
850
+ "special": true
851
+ },
852
+ "106": {
853
+ "content": "[unused44]",
854
+ "lstrip": false,
855
+ "normalized": false,
856
+ "rstrip": false,
857
+ "single_word": false,
858
+ "special": true
859
+ },
860
+ "107": {
861
+ "content": "[unused45]",
862
+ "lstrip": false,
863
+ "normalized": false,
864
+ "rstrip": false,
865
+ "single_word": false,
866
+ "special": true
867
+ },
868
+ "108": {
869
+ "content": "[unused46]",
870
+ "lstrip": false,
871
+ "normalized": false,
872
+ "rstrip": false,
873
+ "single_word": false,
874
+ "special": true
875
+ },
876
+ "109": {
877
+ "content": "[unused47]",
878
+ "lstrip": false,
879
+ "normalized": false,
880
+ "rstrip": false,
881
+ "single_word": false,
882
+ "special": true
883
+ },
884
+ "110": {
885
+ "content": "[unused48]",
886
+ "lstrip": false,
887
+ "normalized": false,
888
+ "rstrip": false,
889
+ "single_word": false,
890
+ "special": true
891
+ },
892
+ "111": {
893
+ "content": "[unused49]",
894
+ "lstrip": false,
895
+ "normalized": false,
896
+ "rstrip": false,
897
+ "single_word": false,
898
+ "special": true
899
+ },
900
+ "112": {
901
+ "content": "[unused50]",
902
+ "lstrip": false,
903
+ "normalized": false,
904
+ "rstrip": false,
905
+ "single_word": false,
906
+ "special": true
907
+ },
908
+ "113": {
909
+ "content": "[unused51]",
910
+ "lstrip": false,
911
+ "normalized": false,
912
+ "rstrip": false,
913
+ "single_word": false,
914
+ "special": true
915
+ },
916
+ "114": {
917
+ "content": "[unused52]",
918
+ "lstrip": false,
919
+ "normalized": false,
920
+ "rstrip": false,
921
+ "single_word": false,
922
+ "special": true
923
+ },
924
+ "115": {
925
+ "content": "[unused53]",
926
+ "lstrip": false,
927
+ "normalized": false,
928
+ "rstrip": false,
929
+ "single_word": false,
930
+ "special": true
931
+ },
932
+ "116": {
933
+ "content": "[unused54]",
934
+ "lstrip": false,
935
+ "normalized": false,
936
+ "rstrip": false,
937
+ "single_word": false,
938
+ "special": true
939
+ },
940
+ "117": {
941
+ "content": "[unused55]",
942
+ "lstrip": false,
943
+ "normalized": false,
944
+ "rstrip": false,
945
+ "single_word": false,
946
+ "special": true
947
+ },
948
+ "118": {
949
+ "content": "[unused56]",
950
+ "lstrip": false,
951
+ "normalized": false,
952
+ "rstrip": false,
953
+ "single_word": false,
954
+ "special": true
955
+ },
956
+ "119": {
957
+ "content": "[unused57]",
958
+ "lstrip": false,
959
+ "normalized": false,
960
+ "rstrip": false,
961
+ "single_word": false,
962
+ "special": true
963
+ },
964
+ "120": {
965
+ "content": "[unused58]",
966
+ "lstrip": false,
967
+ "normalized": false,
968
+ "rstrip": false,
969
+ "single_word": false,
970
+ "special": true
971
+ },
972
+ "121": {
973
+ "content": "[unused59]",
974
+ "lstrip": false,
975
+ "normalized": false,
976
+ "rstrip": false,
977
+ "single_word": false,
978
+ "special": true
979
+ },
980
+ "122": {
981
+ "content": "[unused60]",
982
+ "lstrip": false,
983
+ "normalized": false,
984
+ "rstrip": false,
985
+ "single_word": false,
986
+ "special": true
987
+ },
988
+ "123": {
989
+ "content": "[unused61]",
990
+ "lstrip": false,
991
+ "normalized": false,
992
+ "rstrip": false,
993
+ "single_word": false,
994
+ "special": true
995
+ },
996
+ "124": {
997
+ "content": "[unused62]",
998
+ "lstrip": false,
999
+ "normalized": false,
1000
+ "rstrip": false,
1001
+ "single_word": false,
1002
+ "special": true
1003
+ },
1004
+ "125": {
1005
+ "content": "[unused63]",
1006
+ "lstrip": false,
1007
+ "normalized": false,
1008
+ "rstrip": false,
1009
+ "single_word": false,
1010
+ "special": true
1011
+ },
1012
+ "126": {
1013
+ "content": "[unused64]",
1014
+ "lstrip": false,
1015
+ "normalized": false,
1016
+ "rstrip": false,
1017
+ "single_word": false,
1018
+ "special": true
1019
+ },
1020
+ "127": {
1021
+ "content": "[unused65]",
1022
+ "lstrip": false,
1023
+ "normalized": false,
1024
+ "rstrip": false,
1025
+ "single_word": false,
1026
+ "special": true
1027
+ },
1028
+ "128": {
1029
+ "content": "[unused66]",
1030
+ "lstrip": false,
1031
+ "normalized": false,
1032
+ "rstrip": false,
1033
+ "single_word": false,
1034
+ "special": true
1035
+ },
1036
+ "129": {
1037
+ "content": "[unused67]",
1038
+ "lstrip": false,
1039
+ "normalized": false,
1040
+ "rstrip": false,
1041
+ "single_word": false,
1042
+ "special": true
1043
+ },
1044
+ "130": {
1045
+ "content": "[unused68]",
1046
+ "lstrip": false,
1047
+ "normalized": false,
1048
+ "rstrip": false,
1049
+ "single_word": false,
1050
+ "special": true
1051
+ },
1052
+ "131": {
1053
+ "content": "[unused69]",
1054
+ "lstrip": false,
1055
+ "normalized": false,
1056
+ "rstrip": false,
1057
+ "single_word": false,
1058
+ "special": true
1059
+ },
1060
+ "132": {
1061
+ "content": "[unused70]",
1062
+ "lstrip": false,
1063
+ "normalized": false,
1064
+ "rstrip": false,
1065
+ "single_word": false,
1066
+ "special": true
1067
+ },
1068
+ "133": {
1069
+ "content": "[unused71]",
1070
+ "lstrip": false,
1071
+ "normalized": false,
1072
+ "rstrip": false,
1073
+ "single_word": false,
1074
+ "special": true
1075
+ },
1076
+ "134": {
1077
+ "content": "[unused72]",
1078
+ "lstrip": false,
1079
+ "normalized": false,
1080
+ "rstrip": false,
1081
+ "single_word": false,
1082
+ "special": true
1083
+ },
1084
+ "135": {
1085
+ "content": "[unused73]",
1086
+ "lstrip": false,
1087
+ "normalized": false,
1088
+ "rstrip": false,
1089
+ "single_word": false,
1090
+ "special": true
1091
+ },
1092
+ "136": {
1093
+ "content": "[unused74]",
1094
+ "lstrip": false,
1095
+ "normalized": false,
1096
+ "rstrip": false,
1097
+ "single_word": false,
1098
+ "special": true
1099
+ },
1100
+ "137": {
1101
+ "content": "[unused75]",
1102
+ "lstrip": false,
1103
+ "normalized": false,
1104
+ "rstrip": false,
1105
+ "single_word": false,
1106
+ "special": true
1107
+ },
1108
+ "138": {
1109
+ "content": "[unused76]",
1110
+ "lstrip": false,
1111
+ "normalized": false,
1112
+ "rstrip": false,
1113
+ "single_word": false,
1114
+ "special": true
1115
+ },
1116
+ "139": {
1117
+ "content": "[unused77]",
1118
+ "lstrip": false,
1119
+ "normalized": false,
1120
+ "rstrip": false,
1121
+ "single_word": false,
1122
+ "special": true
1123
+ },
1124
+ "140": {
1125
+ "content": "[unused78]",
1126
+ "lstrip": false,
1127
+ "normalized": false,
1128
+ "rstrip": false,
1129
+ "single_word": false,
1130
+ "special": true
1131
+ },
1132
+ "141": {
1133
+ "content": "[unused79]",
1134
+ "lstrip": false,
1135
+ "normalized": false,
1136
+ "rstrip": false,
1137
+ "single_word": false,
1138
+ "special": true
1139
+ },
1140
+ "142": {
1141
+ "content": "[unused80]",
1142
+ "lstrip": false,
1143
+ "normalized": false,
1144
+ "rstrip": false,
1145
+ "single_word": false,
1146
+ "special": true
1147
+ },
1148
+ "143": {
1149
+ "content": "[unused81]",
1150
+ "lstrip": false,
1151
+ "normalized": false,
1152
+ "rstrip": false,
1153
+ "single_word": false,
1154
+ "special": true
1155
+ },
1156
+ "144": {
1157
+ "content": "[unused82]",
1158
+ "lstrip": false,
1159
+ "normalized": false,
1160
+ "rstrip": false,
1161
+ "single_word": false,
1162
+ "special": true
1163
+ },
1164
+ "145": {
1165
+ "content": "[unused83]",
1166
+ "lstrip": false,
1167
+ "normalized": false,
1168
+ "rstrip": false,
1169
+ "single_word": false,
1170
+ "special": true
1171
+ },
1172
+ "146": {
1173
+ "content": "[unused84]",
1174
+ "lstrip": false,
1175
+ "normalized": false,
1176
+ "rstrip": false,
1177
+ "single_word": false,
1178
+ "special": true
1179
+ },
1180
+ "147": {
1181
+ "content": "[unused85]",
1182
+ "lstrip": false,
1183
+ "normalized": false,
1184
+ "rstrip": false,
1185
+ "single_word": false,
1186
+ "special": true
1187
+ },
1188
+ "148": {
1189
+ "content": "[unused86]",
1190
+ "lstrip": false,
1191
+ "normalized": false,
1192
+ "rstrip": false,
1193
+ "single_word": false,
1194
+ "special": true
1195
+ },
1196
+ "149": {
1197
+ "content": "[unused87]",
1198
+ "lstrip": false,
1199
+ "normalized": false,
1200
+ "rstrip": false,
1201
+ "single_word": false,
1202
+ "special": true
1203
+ },
1204
+ "150": {
1205
+ "content": "[unused88]",
1206
+ "lstrip": false,
1207
+ "normalized": false,
1208
+ "rstrip": false,
1209
+ "single_word": false,
1210
+ "special": true
1211
+ },
1212
+ "151": {
1213
+ "content": "[unused89]",
1214
+ "lstrip": false,
1215
+ "normalized": false,
1216
+ "rstrip": false,
1217
+ "single_word": false,
1218
+ "special": true
1219
+ },
1220
+ "152": {
1221
+ "content": "[unused90]",
1222
+ "lstrip": false,
1223
+ "normalized": false,
1224
+ "rstrip": false,
1225
+ "single_word": false,
1226
+ "special": true
1227
+ },
1228
+ "153": {
1229
+ "content": "[unused91]",
1230
+ "lstrip": false,
1231
+ "normalized": false,
1232
+ "rstrip": false,
1233
+ "single_word": false,
1234
+ "special": true
1235
+ },
1236
+ "154": {
1237
+ "content": "[unused92]",
1238
+ "lstrip": false,
1239
+ "normalized": false,
1240
+ "rstrip": false,
1241
+ "single_word": false,
1242
+ "special": true
1243
+ },
1244
+ "155": {
1245
+ "content": "[unused93]",
1246
+ "lstrip": false,
1247
+ "normalized": false,
1248
+ "rstrip": false,
1249
+ "single_word": false,
1250
+ "special": true
1251
+ },
1252
+ "156": {
1253
+ "content": "[unused94]",
1254
+ "lstrip": false,
1255
+ "normalized": false,
1256
+ "rstrip": false,
1257
+ "single_word": false,
1258
+ "special": true
1259
+ },
1260
+ "157": {
1261
+ "content": "[unused95]",
1262
+ "lstrip": false,
1263
+ "normalized": false,
1264
+ "rstrip": false,
1265
+ "single_word": false,
1266
+ "special": true
1267
+ },
1268
+ "158": {
1269
+ "content": "[unused96]",
1270
+ "lstrip": false,
1271
+ "normalized": false,
1272
+ "rstrip": false,
1273
+ "single_word": false,
1274
+ "special": true
1275
+ },
1276
+ "159": {
1277
+ "content": "[unused97]",
1278
+ "lstrip": false,
1279
+ "normalized": false,
1280
+ "rstrip": false,
1281
+ "single_word": false,
1282
+ "special": true
1283
+ },
1284
+ "160": {
1285
+ "content": "[unused98]",
1286
+ "lstrip": false,
1287
+ "normalized": false,
1288
+ "rstrip": false,
1289
+ "single_word": false,
1290
+ "special": true
1291
+ },
1292
+ "161": {
1293
+ "content": "[unused99]",
1294
+ "lstrip": false,
1295
+ "normalized": false,
1296
+ "rstrip": false,
1297
+ "single_word": false,
1298
+ "special": true
1299
+ },
1300
+ "162": {
1301
+ "content": "[extra_id_0]",
1302
+ "lstrip": false,
1303
+ "normalized": false,
1304
+ "rstrip": false,
1305
+ "single_word": false,
1306
+ "special": true
1307
+ },
1308
+ "163": {
1309
+ "content": "[extra_id_1]",
1310
+ "lstrip": false,
1311
+ "normalized": false,
1312
+ "rstrip": false,
1313
+ "single_word": false,
1314
+ "special": true
1315
+ },
1316
+ "164": {
1317
+ "content": "[extra_id_2]",
1318
+ "lstrip": false,
1319
+ "normalized": false,
1320
+ "rstrip": false,
1321
+ "single_word": false,
1322
+ "special": true
1323
+ },
1324
+ "165": {
1325
+ "content": "[extra_id_3]",
1326
+ "lstrip": false,
1327
+ "normalized": false,
1328
+ "rstrip": false,
1329
+ "single_word": false,
1330
+ "special": true
1331
+ },
1332
+ "166": {
1333
+ "content": "[extra_id_4]",
1334
+ "lstrip": false,
1335
+ "normalized": false,
1336
+ "rstrip": false,
1337
+ "single_word": false,
1338
+ "special": true
1339
+ },
1340
+ "167": {
1341
+ "content": "[extra_id_5]",
1342
+ "lstrip": false,
1343
+ "normalized": false,
1344
+ "rstrip": false,
1345
+ "single_word": false,
1346
+ "special": true
1347
+ },
1348
+ "168": {
1349
+ "content": "[extra_id_6]",
1350
+ "lstrip": false,
1351
+ "normalized": false,
1352
+ "rstrip": false,
1353
+ "single_word": false,
1354
+ "special": true
1355
+ },
1356
+ "169": {
1357
+ "content": "[extra_id_7]",
1358
+ "lstrip": false,
1359
+ "normalized": false,
1360
+ "rstrip": false,
1361
+ "single_word": false,
1362
+ "special": true
1363
+ },
1364
+ "170": {
1365
+ "content": "[extra_id_8]",
1366
+ "lstrip": false,
1367
+ "normalized": false,
1368
+ "rstrip": false,
1369
+ "single_word": false,
1370
+ "special": true
1371
+ },
1372
+ "171": {
1373
+ "content": "[extra_id_9]",
1374
+ "lstrip": false,
1375
+ "normalized": false,
1376
+ "rstrip": false,
1377
+ "single_word": false,
1378
+ "special": true
1379
+ },
1380
+ "172": {
1381
+ "content": "[extra_id_10]",
1382
+ "lstrip": false,
1383
+ "normalized": false,
1384
+ "rstrip": false,
1385
+ "single_word": false,
1386
+ "special": true
1387
+ },
1388
+ "173": {
1389
+ "content": "[extra_id_11]",
1390
+ "lstrip": false,
1391
+ "normalized": false,
1392
+ "rstrip": false,
1393
+ "single_word": false,
1394
+ "special": true
1395
+ },
1396
+ "174": {
1397
+ "content": "[extra_id_12]",
1398
+ "lstrip": false,
1399
+ "normalized": false,
1400
+ "rstrip": false,
1401
+ "single_word": false,
1402
+ "special": true
1403
+ },
1404
+ "175": {
1405
+ "content": "[extra_id_13]",
1406
+ "lstrip": false,
1407
+ "normalized": false,
1408
+ "rstrip": false,
1409
+ "single_word": false,
1410
+ "special": true
1411
+ },
1412
+ "176": {
1413
+ "content": "[extra_id_14]",
1414
+ "lstrip": false,
1415
+ "normalized": false,
1416
+ "rstrip": false,
1417
+ "single_word": false,
1418
+ "special": true
1419
+ },
1420
+ "177": {
1421
+ "content": "[extra_id_15]",
1422
+ "lstrip": false,
1423
+ "normalized": false,
1424
+ "rstrip": false,
1425
+ "single_word": false,
1426
+ "special": true
1427
+ },
1428
+ "178": {
1429
+ "content": "[extra_id_16]",
1430
+ "lstrip": false,
1431
+ "normalized": false,
1432
+ "rstrip": false,
1433
+ "single_word": false,
1434
+ "special": true
1435
+ },
1436
+ "179": {
1437
+ "content": "[extra_id_17]",
1438
+ "lstrip": false,
1439
+ "normalized": false,
1440
+ "rstrip": false,
1441
+ "single_word": false,
1442
+ "special": true
1443
+ },
1444
+ "180": {
1445
+ "content": "[extra_id_18]",
1446
+ "lstrip": false,
1447
+ "normalized": false,
1448
+ "rstrip": false,
1449
+ "single_word": false,
1450
+ "special": true
1451
+ },
1452
+ "181": {
1453
+ "content": "[extra_id_19]",
1454
+ "lstrip": false,
1455
+ "normalized": false,
1456
+ "rstrip": false,
1457
+ "single_word": false,
1458
+ "special": true
1459
+ },
1460
+ "182": {
1461
+ "content": "[extra_id_20]",
1462
+ "lstrip": false,
1463
+ "normalized": false,
1464
+ "rstrip": false,
1465
+ "single_word": false,
1466
+ "special": true
1467
+ },
1468
+ "183": {
1469
+ "content": "[extra_id_21]",
1470
+ "lstrip": false,
1471
+ "normalized": false,
1472
+ "rstrip": false,
1473
+ "single_word": false,
1474
+ "special": true
1475
+ },
1476
+ "184": {
1477
+ "content": "[extra_id_22]",
1478
+ "lstrip": false,
1479
+ "normalized": false,
1480
+ "rstrip": false,
1481
+ "single_word": false,
1482
+ "special": true
1483
+ },
1484
+ "185": {
1485
+ "content": "[extra_id_23]",
1486
+ "lstrip": false,
1487
+ "normalized": false,
1488
+ "rstrip": false,
1489
+ "single_word": false,
1490
+ "special": true
1491
+ },
1492
+ "186": {
1493
+ "content": "[extra_id_24]",
1494
+ "lstrip": false,
1495
+ "normalized": false,
1496
+ "rstrip": false,
1497
+ "single_word": false,
1498
+ "special": true
1499
+ },
1500
+ "187": {
1501
+ "content": "[extra_id_25]",
1502
+ "lstrip": false,
1503
+ "normalized": false,
1504
+ "rstrip": false,
1505
+ "single_word": false,
1506
+ "special": true
1507
+ },
1508
+ "188": {
1509
+ "content": "[extra_id_26]",
1510
+ "lstrip": false,
1511
+ "normalized": false,
1512
+ "rstrip": false,
1513
+ "single_word": false,
1514
+ "special": true
1515
+ },
1516
+ "189": {
1517
+ "content": "[extra_id_27]",
1518
+ "lstrip": false,
1519
+ "normalized": false,
1520
+ "rstrip": false,
1521
+ "single_word": false,
1522
+ "special": true
1523
+ },
1524
+ "190": {
1525
+ "content": "[extra_id_28]",
1526
+ "lstrip": false,
1527
+ "normalized": false,
1528
+ "rstrip": false,
1529
+ "single_word": false,
1530
+ "special": true
1531
+ },
1532
+ "191": {
1533
+ "content": "[extra_id_29]",
1534
+ "lstrip": false,
1535
+ "normalized": false,
1536
+ "rstrip": false,
1537
+ "single_word": false,
1538
+ "special": true
1539
+ },
1540
+ "192": {
1541
+ "content": "[extra_id_30]",
1542
+ "lstrip": false,
1543
+ "normalized": false,
1544
+ "rstrip": false,
1545
+ "single_word": false,
1546
+ "special": true
1547
+ },
1548
+ "193": {
1549
+ "content": "[extra_id_31]",
1550
+ "lstrip": false,
1551
+ "normalized": false,
1552
+ "rstrip": false,
1553
+ "single_word": false,
1554
+ "special": true
1555
+ },
1556
+ "194": {
1557
+ "content": "[extra_id_32]",
1558
+ "lstrip": false,
1559
+ "normalized": false,
1560
+ "rstrip": false,
1561
+ "single_word": false,
1562
+ "special": true
1563
+ },
1564
+ "195": {
1565
+ "content": "[extra_id_33]",
1566
+ "lstrip": false,
1567
+ "normalized": false,
1568
+ "rstrip": false,
1569
+ "single_word": false,
1570
+ "special": true
1571
+ },
1572
+ "196": {
1573
+ "content": "[extra_id_34]",
1574
+ "lstrip": false,
1575
+ "normalized": false,
1576
+ "rstrip": false,
1577
+ "single_word": false,
1578
+ "special": true
1579
+ },
1580
+ "197": {
1581
+ "content": "[extra_id_35]",
1582
+ "lstrip": false,
1583
+ "normalized": false,
1584
+ "rstrip": false,
1585
+ "single_word": false,
1586
+ "special": true
1587
+ },
1588
+ "198": {
1589
+ "content": "[extra_id_36]",
1590
+ "lstrip": false,
1591
+ "normalized": false,
1592
+ "rstrip": false,
1593
+ "single_word": false,
1594
+ "special": true
1595
+ },
1596
+ "199": {
1597
+ "content": "[extra_id_37]",
1598
+ "lstrip": false,
1599
+ "normalized": false,
1600
+ "rstrip": false,
1601
+ "single_word": false,
1602
+ "special": true
1603
+ },
1604
+ "200": {
1605
+ "content": "[extra_id_38]",
1606
+ "lstrip": false,
1607
+ "normalized": false,
1608
+ "rstrip": false,
1609
+ "single_word": false,
1610
+ "special": true
1611
+ },
1612
+ "201": {
1613
+ "content": "[extra_id_39]",
1614
+ "lstrip": false,
1615
+ "normalized": false,
1616
+ "rstrip": false,
1617
+ "single_word": false,
1618
+ "special": true
1619
+ },
1620
+ "202": {
1621
+ "content": "[extra_id_40]",
1622
+ "lstrip": false,
1623
+ "normalized": false,
1624
+ "rstrip": false,
1625
+ "single_word": false,
1626
+ "special": true
1627
+ },
1628
+ "203": {
1629
+ "content": "[extra_id_41]",
1630
+ "lstrip": false,
1631
+ "normalized": false,
1632
+ "rstrip": false,
1633
+ "single_word": false,
1634
+ "special": true
1635
+ },
1636
+ "204": {
1637
+ "content": "[extra_id_42]",
1638
+ "lstrip": false,
1639
+ "normalized": false,
1640
+ "rstrip": false,
1641
+ "single_word": false,
1642
+ "special": true
1643
+ },
1644
+ "205": {
1645
+ "content": "[extra_id_43]",
1646
+ "lstrip": false,
1647
+ "normalized": false,
1648
+ "rstrip": false,
1649
+ "single_word": false,
1650
+ "special": true
1651
+ },
1652
+ "206": {
1653
+ "content": "[extra_id_44]",
1654
+ "lstrip": false,
1655
+ "normalized": false,
1656
+ "rstrip": false,
1657
+ "single_word": false,
1658
+ "special": true
1659
+ },
1660
+ "207": {
1661
+ "content": "[extra_id_45]",
1662
+ "lstrip": false,
1663
+ "normalized": false,
1664
+ "rstrip": false,
1665
+ "single_word": false,
1666
+ "special": true
1667
+ },
1668
+ "208": {
1669
+ "content": "[extra_id_46]",
1670
+ "lstrip": false,
1671
+ "normalized": false,
1672
+ "rstrip": false,
1673
+ "single_word": false,
1674
+ "special": true
1675
+ },
1676
+ "209": {
1677
+ "content": "[extra_id_47]",
1678
+ "lstrip": false,
1679
+ "normalized": false,
1680
+ "rstrip": false,
1681
+ "single_word": false,
1682
+ "special": true
1683
+ },
1684
+ "210": {
1685
+ "content": "[extra_id_48]",
1686
+ "lstrip": false,
1687
+ "normalized": false,
1688
+ "rstrip": false,
1689
+ "single_word": false,
1690
+ "special": true
1691
+ },
1692
+ "211": {
1693
+ "content": "[extra_id_49]",
1694
+ "lstrip": false,
1695
+ "normalized": false,
1696
+ "rstrip": false,
1697
+ "single_word": false,
1698
+ "special": true
1699
+ },
1700
+ "212": {
1701
+ "content": "[extra_id_50]",
1702
+ "lstrip": false,
1703
+ "normalized": false,
1704
+ "rstrip": false,
1705
+ "single_word": false,
1706
+ "special": true
1707
+ },
1708
+ "213": {
1709
+ "content": "[extra_id_51]",
1710
+ "lstrip": false,
1711
+ "normalized": false,
1712
+ "rstrip": false,
1713
+ "single_word": false,
1714
+ "special": true
1715
+ },
1716
+ "214": {
1717
+ "content": "[extra_id_52]",
1718
+ "lstrip": false,
1719
+ "normalized": false,
1720
+ "rstrip": false,
1721
+ "single_word": false,
1722
+ "special": true
1723
+ },
1724
+ "215": {
1725
+ "content": "[extra_id_53]",
1726
+ "lstrip": false,
1727
+ "normalized": false,
1728
+ "rstrip": false,
1729
+ "single_word": false,
1730
+ "special": true
1731
+ },
1732
+ "216": {
1733
+ "content": "[extra_id_54]",
1734
+ "lstrip": false,
1735
+ "normalized": false,
1736
+ "rstrip": false,
1737
+ "single_word": false,
1738
+ "special": true
1739
+ },
1740
+ "217": {
1741
+ "content": "[extra_id_55]",
1742
+ "lstrip": false,
1743
+ "normalized": false,
1744
+ "rstrip": false,
1745
+ "single_word": false,
1746
+ "special": true
1747
+ },
1748
+ "218": {
1749
+ "content": "[extra_id_56]",
1750
+ "lstrip": false,
1751
+ "normalized": false,
1752
+ "rstrip": false,
1753
+ "single_word": false,
1754
+ "special": true
1755
+ },
1756
+ "219": {
1757
+ "content": "[extra_id_57]",
1758
+ "lstrip": false,
1759
+ "normalized": false,
1760
+ "rstrip": false,
1761
+ "single_word": false,
1762
+ "special": true
1763
+ },
1764
+ "220": {
1765
+ "content": "[extra_id_58]",
1766
+ "lstrip": false,
1767
+ "normalized": false,
1768
+ "rstrip": false,
1769
+ "single_word": false,
1770
+ "special": true
1771
+ },
1772
+ "221": {
1773
+ "content": "[extra_id_59]",
1774
+ "lstrip": false,
1775
+ "normalized": false,
1776
+ "rstrip": false,
1777
+ "single_word": false,
1778
+ "special": true
1779
+ },
1780
+ "222": {
1781
+ "content": "[extra_id_60]",
1782
+ "lstrip": false,
1783
+ "normalized": false,
1784
+ "rstrip": false,
1785
+ "single_word": false,
1786
+ "special": true
1787
+ },
1788
+ "223": {
1789
+ "content": "[extra_id_61]",
1790
+ "lstrip": false,
1791
+ "normalized": false,
1792
+ "rstrip": false,
1793
+ "single_word": false,
1794
+ "special": true
1795
+ },
1796
+ "224": {
1797
+ "content": "[extra_id_62]",
1798
+ "lstrip": false,
1799
+ "normalized": false,
1800
+ "rstrip": false,
1801
+ "single_word": false,
1802
+ "special": true
1803
+ },
1804
+ "225": {
1805
+ "content": "[extra_id_63]",
1806
+ "lstrip": false,
1807
+ "normalized": false,
1808
+ "rstrip": false,
1809
+ "single_word": false,
1810
+ "special": true
1811
+ },
1812
+ "226": {
1813
+ "content": "[extra_id_64]",
1814
+ "lstrip": false,
1815
+ "normalized": false,
1816
+ "rstrip": false,
1817
+ "single_word": false,
1818
+ "special": true
1819
+ },
1820
+ "227": {
1821
+ "content": "[extra_id_65]",
1822
+ "lstrip": false,
1823
+ "normalized": false,
1824
+ "rstrip": false,
1825
+ "single_word": false,
1826
+ "special": true
1827
+ },
1828
+ "228": {
1829
+ "content": "[extra_id_66]",
1830
+ "lstrip": false,
1831
+ "normalized": false,
1832
+ "rstrip": false,
1833
+ "single_word": false,
1834
+ "special": true
1835
+ },
1836
+ "229": {
1837
+ "content": "[extra_id_67]",
1838
+ "lstrip": false,
1839
+ "normalized": false,
1840
+ "rstrip": false,
1841
+ "single_word": false,
1842
+ "special": true
1843
+ },
1844
+ "230": {
1845
+ "content": "[extra_id_68]",
1846
+ "lstrip": false,
1847
+ "normalized": false,
1848
+ "rstrip": false,
1849
+ "single_word": false,
1850
+ "special": true
1851
+ },
1852
+ "231": {
1853
+ "content": "[extra_id_69]",
1854
+ "lstrip": false,
1855
+ "normalized": false,
1856
+ "rstrip": false,
1857
+ "single_word": false,
1858
+ "special": true
1859
+ },
1860
+ "232": {
1861
+ "content": "[extra_id_70]",
1862
+ "lstrip": false,
1863
+ "normalized": false,
1864
+ "rstrip": false,
1865
+ "single_word": false,
1866
+ "special": true
1867
+ },
1868
+ "233": {
1869
+ "content": "[extra_id_71]",
1870
+ "lstrip": false,
1871
+ "normalized": false,
1872
+ "rstrip": false,
1873
+ "single_word": false,
1874
+ "special": true
1875
+ },
1876
+ "234": {
1877
+ "content": "[extra_id_72]",
1878
+ "lstrip": false,
1879
+ "normalized": false,
1880
+ "rstrip": false,
1881
+ "single_word": false,
1882
+ "special": true
1883
+ },
1884
+ "235": {
1885
+ "content": "[extra_id_73]",
1886
+ "lstrip": false,
1887
+ "normalized": false,
1888
+ "rstrip": false,
1889
+ "single_word": false,
1890
+ "special": true
1891
+ },
1892
+ "236": {
1893
+ "content": "[extra_id_74]",
1894
+ "lstrip": false,
1895
+ "normalized": false,
1896
+ "rstrip": false,
1897
+ "single_word": false,
1898
+ "special": true
1899
+ },
1900
+ "237": {
1901
+ "content": "[extra_id_75]",
1902
+ "lstrip": false,
1903
+ "normalized": false,
1904
+ "rstrip": false,
1905
+ "single_word": false,
1906
+ "special": true
1907
+ },
1908
+ "238": {
1909
+ "content": "[extra_id_76]",
1910
+ "lstrip": false,
1911
+ "normalized": false,
1912
+ "rstrip": false,
1913
+ "single_word": false,
1914
+ "special": true
1915
+ },
1916
+ "239": {
1917
+ "content": "[extra_id_77]",
1918
+ "lstrip": false,
1919
+ "normalized": false,
1920
+ "rstrip": false,
1921
+ "single_word": false,
1922
+ "special": true
1923
+ },
1924
+ "240": {
1925
+ "content": "[extra_id_78]",
1926
+ "lstrip": false,
1927
+ "normalized": false,
1928
+ "rstrip": false,
1929
+ "single_word": false,
1930
+ "special": true
1931
+ },
1932
+ "241": {
1933
+ "content": "[extra_id_79]",
1934
+ "lstrip": false,
1935
+ "normalized": false,
1936
+ "rstrip": false,
1937
+ "single_word": false,
1938
+ "special": true
1939
+ },
1940
+ "242": {
1941
+ "content": "[extra_id_80]",
1942
+ "lstrip": false,
1943
+ "normalized": false,
1944
+ "rstrip": false,
1945
+ "single_word": false,
1946
+ "special": true
1947
+ },
1948
+ "243": {
1949
+ "content": "[extra_id_81]",
1950
+ "lstrip": false,
1951
+ "normalized": false,
1952
+ "rstrip": false,
1953
+ "single_word": false,
1954
+ "special": true
1955
+ },
1956
+ "244": {
1957
+ "content": "[extra_id_82]",
1958
+ "lstrip": false,
1959
+ "normalized": false,
1960
+ "rstrip": false,
1961
+ "single_word": false,
1962
+ "special": true
1963
+ },
1964
+ "245": {
1965
+ "content": "[extra_id_83]",
1966
+ "lstrip": false,
1967
+ "normalized": false,
1968
+ "rstrip": false,
1969
+ "single_word": false,
1970
+ "special": true
1971
+ },
1972
+ "246": {
1973
+ "content": "[extra_id_84]",
1974
+ "lstrip": false,
1975
+ "normalized": false,
1976
+ "rstrip": false,
1977
+ "single_word": false,
1978
+ "special": true
1979
+ },
1980
+ "247": {
1981
+ "content": "[extra_id_85]",
1982
+ "lstrip": false,
1983
+ "normalized": false,
1984
+ "rstrip": false,
1985
+ "single_word": false,
1986
+ "special": true
1987
+ },
1988
+ "248": {
1989
+ "content": "[extra_id_86]",
1990
+ "lstrip": false,
1991
+ "normalized": false,
1992
+ "rstrip": false,
1993
+ "single_word": false,
1994
+ "special": true
1995
+ },
1996
+ "249": {
1997
+ "content": "[extra_id_87]",
1998
+ "lstrip": false,
1999
+ "normalized": false,
2000
+ "rstrip": false,
2001
+ "single_word": false,
2002
+ "special": true
2003
+ },
2004
+ "250": {
2005
+ "content": "[extra_id_88]",
2006
+ "lstrip": false,
2007
+ "normalized": false,
2008
+ "rstrip": false,
2009
+ "single_word": false,
2010
+ "special": true
2011
+ },
2012
+ "251": {
2013
+ "content": "[extra_id_89]",
2014
+ "lstrip": false,
2015
+ "normalized": false,
2016
+ "rstrip": false,
2017
+ "single_word": false,
2018
+ "special": true
2019
+ },
2020
+ "252": {
2021
+ "content": "[extra_id_90]",
2022
+ "lstrip": false,
2023
+ "normalized": false,
2024
+ "rstrip": false,
2025
+ "single_word": false,
2026
+ "special": true
2027
+ },
2028
+ "253": {
2029
+ "content": "[extra_id_91]",
2030
+ "lstrip": false,
2031
+ "normalized": false,
2032
+ "rstrip": false,
2033
+ "single_word": false,
2034
+ "special": true
2035
+ },
2036
+ "254": {
2037
+ "content": "[extra_id_92]",
2038
+ "lstrip": false,
2039
+ "normalized": false,
2040
+ "rstrip": false,
2041
+ "single_word": false,
2042
+ "special": true
2043
+ },
2044
+ "255": {
2045
+ "content": "[extra_id_93]",
2046
+ "lstrip": false,
2047
+ "normalized": false,
2048
+ "rstrip": false,
2049
+ "single_word": false,
2050
+ "special": true
2051
+ },
2052
+ "256": {
2053
+ "content": "[extra_id_94]",
2054
+ "lstrip": false,
2055
+ "normalized": false,
2056
+ "rstrip": false,
2057
+ "single_word": false,
2058
+ "special": true
2059
+ },
2060
+ "257": {
2061
+ "content": "[extra_id_95]",
2062
+ "lstrip": false,
2063
+ "normalized": false,
2064
+ "rstrip": false,
2065
+ "single_word": false,
2066
+ "special": true
2067
+ },
2068
+ "258": {
2069
+ "content": "[extra_id_96]",
2070
+ "lstrip": false,
2071
+ "normalized": false,
2072
+ "rstrip": false,
2073
+ "single_word": false,
2074
+ "special": true
2075
+ },
2076
+ "259": {
2077
+ "content": "[extra_id_97]",
2078
+ "lstrip": false,
2079
+ "normalized": false,
2080
+ "rstrip": false,
2081
+ "single_word": false,
2082
+ "special": true
2083
+ },
2084
+ "260": {
2085
+ "content": "[extra_id_98]",
2086
+ "lstrip": false,
2087
+ "normalized": false,
2088
+ "rstrip": false,
2089
+ "single_word": false,
2090
+ "special": true
2091
+ },
2092
+ "261": {
2093
+ "content": "[extra_id_99]",
2094
+ "lstrip": false,
2095
+ "normalized": false,
2096
+ "rstrip": false,
2097
+ "single_word": false,
2098
+ "special": true
2099
+ },
2100
+ "262": {
2101
+ "content": "[extra_id_100]",
2102
+ "lstrip": false,
2103
+ "normalized": false,
2104
+ "rstrip": false,
2105
+ "single_word": false,
2106
+ "special": true
2107
+ },
2108
+ "263": {
2109
+ "content": "[extra_id_101]",
2110
+ "lstrip": false,
2111
+ "normalized": false,
2112
+ "rstrip": false,
2113
+ "single_word": false,
2114
+ "special": true
2115
+ },
2116
+ "264": {
2117
+ "content": "[extra_id_102]",
2118
+ "lstrip": false,
2119
+ "normalized": false,
2120
+ "rstrip": false,
2121
+ "single_word": false,
2122
+ "special": true
2123
+ },
2124
+ "265": {
2125
+ "content": "[extra_id_103]",
2126
+ "lstrip": false,
2127
+ "normalized": false,
2128
+ "rstrip": false,
2129
+ "single_word": false,
2130
+ "special": true
2131
+ },
2132
+ "266": {
2133
+ "content": "[extra_id_104]",
2134
+ "lstrip": false,
2135
+ "normalized": false,
2136
+ "rstrip": false,
2137
+ "single_word": false,
2138
+ "special": true
2139
+ },
2140
+ "267": {
2141
+ "content": "[extra_id_105]",
2142
+ "lstrip": false,
2143
+ "normalized": false,
2144
+ "rstrip": false,
2145
+ "single_word": false,
2146
+ "special": true
2147
+ },
2148
+ "268": {
2149
+ "content": "[extra_id_106]",
2150
+ "lstrip": false,
2151
+ "normalized": false,
2152
+ "rstrip": false,
2153
+ "single_word": false,
2154
+ "special": true
2155
+ },
2156
+ "269": {
2157
+ "content": "[extra_id_107]",
2158
+ "lstrip": false,
2159
+ "normalized": false,
2160
+ "rstrip": false,
2161
+ "single_word": false,
2162
+ "special": true
2163
+ },
2164
+ "270": {
2165
+ "content": "[extra_id_108]",
2166
+ "lstrip": false,
2167
+ "normalized": false,
2168
+ "rstrip": false,
2169
+ "single_word": false,
2170
+ "special": true
2171
+ },
2172
+ "271": {
2173
+ "content": "[extra_id_109]",
2174
+ "lstrip": false,
2175
+ "normalized": false,
2176
+ "rstrip": false,
2177
+ "single_word": false,
2178
+ "special": true
2179
+ },
2180
+ "272": {
2181
+ "content": "[extra_id_110]",
2182
+ "lstrip": false,
2183
+ "normalized": false,
2184
+ "rstrip": false,
2185
+ "single_word": false,
2186
+ "special": true
2187
+ },
2188
+ "273": {
2189
+ "content": "[extra_id_111]",
2190
+ "lstrip": false,
2191
+ "normalized": false,
2192
+ "rstrip": false,
2193
+ "single_word": false,
2194
+ "special": true
2195
+ },
2196
+ "274": {
2197
+ "content": "[extra_id_112]",
2198
+ "lstrip": false,
2199
+ "normalized": false,
2200
+ "rstrip": false,
2201
+ "single_word": false,
2202
+ "special": true
2203
+ },
2204
+ "275": {
2205
+ "content": "[extra_id_113]",
2206
+ "lstrip": false,
2207
+ "normalized": false,
2208
+ "rstrip": false,
2209
+ "single_word": false,
2210
+ "special": true
2211
+ },
2212
+ "276": {
2213
+ "content": "[extra_id_114]",
2214
+ "lstrip": false,
2215
+ "normalized": false,
2216
+ "rstrip": false,
2217
+ "single_word": false,
2218
+ "special": true
2219
+ },
2220
+ "277": {
2221
+ "content": "[extra_id_115]",
2222
+ "lstrip": false,
2223
+ "normalized": false,
2224
+ "rstrip": false,
2225
+ "single_word": false,
2226
+ "special": true
2227
+ },
2228
+ "278": {
2229
+ "content": "[extra_id_116]",
2230
+ "lstrip": false,
2231
+ "normalized": false,
2232
+ "rstrip": false,
2233
+ "single_word": false,
2234
+ "special": true
2235
+ },
2236
+ "279": {
2237
+ "content": "[extra_id_117]",
2238
+ "lstrip": false,
2239
+ "normalized": false,
2240
+ "rstrip": false,
2241
+ "single_word": false,
2242
+ "special": true
2243
+ },
2244
+ "280": {
2245
+ "content": "[extra_id_118]",
2246
+ "lstrip": false,
2247
+ "normalized": false,
2248
+ "rstrip": false,
2249
+ "single_word": false,
2250
+ "special": true
2251
+ },
2252
+ "281": {
2253
+ "content": "[extra_id_119]",
2254
+ "lstrip": false,
2255
+ "normalized": false,
2256
+ "rstrip": false,
2257
+ "single_word": false,
2258
+ "special": true
2259
+ },
2260
+ "282": {
2261
+ "content": "[extra_id_120]",
2262
+ "lstrip": false,
2263
+ "normalized": false,
2264
+ "rstrip": false,
2265
+ "single_word": false,
2266
+ "special": true
2267
+ },
2268
+ "283": {
2269
+ "content": "[extra_id_121]",
2270
+ "lstrip": false,
2271
+ "normalized": false,
2272
+ "rstrip": false,
2273
+ "single_word": false,
2274
+ "special": true
2275
+ },
2276
+ "284": {
2277
+ "content": "[extra_id_122]",
2278
+ "lstrip": false,
2279
+ "normalized": false,
2280
+ "rstrip": false,
2281
+ "single_word": false,
2282
+ "special": true
2283
+ },
2284
+ "285": {
2285
+ "content": "[extra_id_123]",
2286
+ "lstrip": false,
2287
+ "normalized": false,
2288
+ "rstrip": false,
2289
+ "single_word": false,
2290
+ "special": true
2291
+ },
2292
+ "286": {
2293
+ "content": "[extra_id_124]",
2294
+ "lstrip": false,
2295
+ "normalized": false,
2296
+ "rstrip": false,
2297
+ "single_word": false,
2298
+ "special": true
2299
+ },
2300
+ "287": {
2301
+ "content": "[extra_id_125]",
2302
+ "lstrip": false,
2303
+ "normalized": false,
2304
+ "rstrip": false,
2305
+ "single_word": false,
2306
+ "special": true
2307
+ },
2308
+ "288": {
2309
+ "content": "[extra_id_126]",
2310
+ "lstrip": false,
2311
+ "normalized": false,
2312
+ "rstrip": false,
2313
+ "single_word": false,
2314
+ "special": true
2315
+ },
2316
+ "289": {
2317
+ "content": "[extra_id_127]",
2318
+ "lstrip": false,
2319
+ "normalized": false,
2320
+ "rstrip": false,
2321
+ "single_word": false,
2322
+ "special": true
2323
+ },
2324
+ "290": {
2325
+ "content": "[extra_id_128]",
2326
+ "lstrip": false,
2327
+ "normalized": false,
2328
+ "rstrip": false,
2329
+ "single_word": false,
2330
+ "special": true
2331
+ },
2332
+ "291": {
2333
+ "content": "[extra_id_129]",
2334
+ "lstrip": false,
2335
+ "normalized": false,
2336
+ "rstrip": false,
2337
+ "single_word": false,
2338
+ "special": true
2339
+ },
2340
+ "292": {
2341
+ "content": "[extra_id_130]",
2342
+ "lstrip": false,
2343
+ "normalized": false,
2344
+ "rstrip": false,
2345
+ "single_word": false,
2346
+ "special": true
2347
+ },
2348
+ "293": {
2349
+ "content": "[extra_id_131]",
2350
+ "lstrip": false,
2351
+ "normalized": false,
2352
+ "rstrip": false,
2353
+ "single_word": false,
2354
+ "special": true
2355
+ },
2356
+ "294": {
2357
+ "content": "[extra_id_132]",
2358
+ "lstrip": false,
2359
+ "normalized": false,
2360
+ "rstrip": false,
2361
+ "single_word": false,
2362
+ "special": true
2363
+ },
2364
+ "295": {
2365
+ "content": "[extra_id_133]",
2366
+ "lstrip": false,
2367
+ "normalized": false,
2368
+ "rstrip": false,
2369
+ "single_word": false,
2370
+ "special": true
2371
+ },
2372
+ "296": {
2373
+ "content": "[extra_id_134]",
2374
+ "lstrip": false,
2375
+ "normalized": false,
2376
+ "rstrip": false,
2377
+ "single_word": false,
2378
+ "special": true
2379
+ },
2380
+ "297": {
2381
+ "content": "[extra_id_135]",
2382
+ "lstrip": false,
2383
+ "normalized": false,
2384
+ "rstrip": false,
2385
+ "single_word": false,
2386
+ "special": true
2387
+ },
2388
+ "298": {
2389
+ "content": "[extra_id_136]",
2390
+ "lstrip": false,
2391
+ "normalized": false,
2392
+ "rstrip": false,
2393
+ "single_word": false,
2394
+ "special": true
2395
+ },
2396
+ "299": {
2397
+ "content": "[extra_id_137]",
2398
+ "lstrip": false,
2399
+ "normalized": false,
2400
+ "rstrip": false,
2401
+ "single_word": false,
2402
+ "special": true
2403
+ },
2404
+ "300": {
2405
+ "content": "[extra_id_138]",
2406
+ "lstrip": false,
2407
+ "normalized": false,
2408
+ "rstrip": false,
2409
+ "single_word": false,
2410
+ "special": true
2411
+ },
2412
+ "301": {
2413
+ "content": "[extra_id_139]",
2414
+ "lstrip": false,
2415
+ "normalized": false,
2416
+ "rstrip": false,
2417
+ "single_word": false,
2418
+ "special": true
2419
+ },
2420
+ "302": {
2421
+ "content": "[extra_id_140]",
2422
+ "lstrip": false,
2423
+ "normalized": false,
2424
+ "rstrip": false,
2425
+ "single_word": false,
2426
+ "special": true
2427
+ },
2428
+ "303": {
2429
+ "content": "[extra_id_141]",
2430
+ "lstrip": false,
2431
+ "normalized": false,
2432
+ "rstrip": false,
2433
+ "single_word": false,
2434
+ "special": true
2435
+ },
2436
+ "304": {
2437
+ "content": "[extra_id_142]",
2438
+ "lstrip": false,
2439
+ "normalized": false,
2440
+ "rstrip": false,
2441
+ "single_word": false,
2442
+ "special": true
2443
+ },
2444
+ "305": {
2445
+ "content": "[extra_id_143]",
2446
+ "lstrip": false,
2447
+ "normalized": false,
2448
+ "rstrip": false,
2449
+ "single_word": false,
2450
+ "special": true
2451
+ },
2452
+ "306": {
2453
+ "content": "[extra_id_144]",
2454
+ "lstrip": false,
2455
+ "normalized": false,
2456
+ "rstrip": false,
2457
+ "single_word": false,
2458
+ "special": true
2459
+ },
2460
+ "307": {
2461
+ "content": "[extra_id_145]",
2462
+ "lstrip": false,
2463
+ "normalized": false,
2464
+ "rstrip": false,
2465
+ "single_word": false,
2466
+ "special": true
2467
+ },
2468
+ "308": {
2469
+ "content": "[extra_id_146]",
2470
+ "lstrip": false,
2471
+ "normalized": false,
2472
+ "rstrip": false,
2473
+ "single_word": false,
2474
+ "special": true
2475
+ },
2476
+ "309": {
2477
+ "content": "[extra_id_147]",
2478
+ "lstrip": false,
2479
+ "normalized": false,
2480
+ "rstrip": false,
2481
+ "single_word": false,
2482
+ "special": true
2483
+ },
2484
+ "310": {
2485
+ "content": "[extra_id_148]",
2486
+ "lstrip": false,
2487
+ "normalized": false,
2488
+ "rstrip": false,
2489
+ "single_word": false,
2490
+ "special": true
2491
+ },
2492
+ "311": {
2493
+ "content": "[extra_id_149]",
2494
+ "lstrip": false,
2495
+ "normalized": false,
2496
+ "rstrip": false,
2497
+ "single_word": false,
2498
+ "special": true
2499
+ },
2500
+ "312": {
2501
+ "content": "[extra_id_150]",
2502
+ "lstrip": false,
2503
+ "normalized": false,
2504
+ "rstrip": false,
2505
+ "single_word": false,
2506
+ "special": true
2507
+ },
2508
+ "313": {
2509
+ "content": "[extra_id_151]",
2510
+ "lstrip": false,
2511
+ "normalized": false,
2512
+ "rstrip": false,
2513
+ "single_word": false,
2514
+ "special": true
2515
+ },
2516
+ "314": {
2517
+ "content": "[extra_id_152]",
2518
+ "lstrip": false,
2519
+ "normalized": false,
2520
+ "rstrip": false,
2521
+ "single_word": false,
2522
+ "special": true
2523
+ },
2524
+ "315": {
2525
+ "content": "[extra_id_153]",
2526
+ "lstrip": false,
2527
+ "normalized": false,
2528
+ "rstrip": false,
2529
+ "single_word": false,
2530
+ "special": true
2531
+ },
2532
+ "316": {
2533
+ "content": "[extra_id_154]",
2534
+ "lstrip": false,
2535
+ "normalized": false,
2536
+ "rstrip": false,
2537
+ "single_word": false,
2538
+ "special": true
2539
+ },
2540
+ "317": {
2541
+ "content": "[extra_id_155]",
2542
+ "lstrip": false,
2543
+ "normalized": false,
2544
+ "rstrip": false,
2545
+ "single_word": false,
2546
+ "special": true
2547
+ },
2548
+ "318": {
2549
+ "content": "[extra_id_156]",
2550
+ "lstrip": false,
2551
+ "normalized": false,
2552
+ "rstrip": false,
2553
+ "single_word": false,
2554
+ "special": true
2555
+ },
2556
+ "319": {
2557
+ "content": "[extra_id_157]",
2558
+ "lstrip": false,
2559
+ "normalized": false,
2560
+ "rstrip": false,
2561
+ "single_word": false,
2562
+ "special": true
2563
+ },
2564
+ "320": {
2565
+ "content": "[extra_id_158]",
2566
+ "lstrip": false,
2567
+ "normalized": false,
2568
+ "rstrip": false,
2569
+ "single_word": false,
2570
+ "special": true
2571
+ },
2572
+ "321": {
2573
+ "content": "[extra_id_159]",
2574
+ "lstrip": false,
2575
+ "normalized": false,
2576
+ "rstrip": false,
2577
+ "single_word": false,
2578
+ "special": true
2579
+ },
2580
+ "322": {
2581
+ "content": "[extra_id_160]",
2582
+ "lstrip": false,
2583
+ "normalized": false,
2584
+ "rstrip": false,
2585
+ "single_word": false,
2586
+ "special": true
2587
+ },
2588
+ "323": {
2589
+ "content": "[extra_id_161]",
2590
+ "lstrip": false,
2591
+ "normalized": false,
2592
+ "rstrip": false,
2593
+ "single_word": false,
2594
+ "special": true
2595
+ },
2596
+ "324": {
2597
+ "content": "[extra_id_162]",
2598
+ "lstrip": false,
2599
+ "normalized": false,
2600
+ "rstrip": false,
2601
+ "single_word": false,
2602
+ "special": true
2603
+ },
2604
+ "325": {
2605
+ "content": "[extra_id_163]",
2606
+ "lstrip": false,
2607
+ "normalized": false,
2608
+ "rstrip": false,
2609
+ "single_word": false,
2610
+ "special": true
2611
+ },
2612
+ "326": {
2613
+ "content": "[extra_id_164]",
2614
+ "lstrip": false,
2615
+ "normalized": false,
2616
+ "rstrip": false,
2617
+ "single_word": false,
2618
+ "special": true
2619
+ },
2620
+ "327": {
2621
+ "content": "[extra_id_165]",
2622
+ "lstrip": false,
2623
+ "normalized": false,
2624
+ "rstrip": false,
2625
+ "single_word": false,
2626
+ "special": true
2627
+ },
2628
+ "328": {
2629
+ "content": "[extra_id_166]",
2630
+ "lstrip": false,
2631
+ "normalized": false,
2632
+ "rstrip": false,
2633
+ "single_word": false,
2634
+ "special": true
2635
+ },
2636
+ "329": {
2637
+ "content": "[extra_id_167]",
2638
+ "lstrip": false,
2639
+ "normalized": false,
2640
+ "rstrip": false,
2641
+ "single_word": false,
2642
+ "special": true
2643
+ },
2644
+ "330": {
2645
+ "content": "[extra_id_168]",
2646
+ "lstrip": false,
2647
+ "normalized": false,
2648
+ "rstrip": false,
2649
+ "single_word": false,
2650
+ "special": true
2651
+ },
2652
+ "331": {
2653
+ "content": "[extra_id_169]",
2654
+ "lstrip": false,
2655
+ "normalized": false,
2656
+ "rstrip": false,
2657
+ "single_word": false,
2658
+ "special": true
2659
+ },
2660
+ "332": {
2661
+ "content": "[extra_id_170]",
2662
+ "lstrip": false,
2663
+ "normalized": false,
2664
+ "rstrip": false,
2665
+ "single_word": false,
2666
+ "special": true
2667
+ },
2668
+ "333": {
2669
+ "content": "[extra_id_171]",
2670
+ "lstrip": false,
2671
+ "normalized": false,
2672
+ "rstrip": false,
2673
+ "single_word": false,
2674
+ "special": true
2675
+ },
2676
+ "334": {
2677
+ "content": "[extra_id_172]",
2678
+ "lstrip": false,
2679
+ "normalized": false,
2680
+ "rstrip": false,
2681
+ "single_word": false,
2682
+ "special": true
2683
+ },
2684
+ "335": {
2685
+ "content": "[extra_id_173]",
2686
+ "lstrip": false,
2687
+ "normalized": false,
2688
+ "rstrip": false,
2689
+ "single_word": false,
2690
+ "special": true
2691
+ },
2692
+ "336": {
2693
+ "content": "[extra_id_174]",
2694
+ "lstrip": false,
2695
+ "normalized": false,
2696
+ "rstrip": false,
2697
+ "single_word": false,
2698
+ "special": true
2699
+ },
2700
+ "337": {
2701
+ "content": "[extra_id_175]",
2702
+ "lstrip": false,
2703
+ "normalized": false,
2704
+ "rstrip": false,
2705
+ "single_word": false,
2706
+ "special": true
2707
+ },
2708
+ "338": {
2709
+ "content": "[extra_id_176]",
2710
+ "lstrip": false,
2711
+ "normalized": false,
2712
+ "rstrip": false,
2713
+ "single_word": false,
2714
+ "special": true
2715
+ },
2716
+ "339": {
2717
+ "content": "[extra_id_177]",
2718
+ "lstrip": false,
2719
+ "normalized": false,
2720
+ "rstrip": false,
2721
+ "single_word": false,
2722
+ "special": true
2723
+ },
2724
+ "340": {
2725
+ "content": "[extra_id_178]",
2726
+ "lstrip": false,
2727
+ "normalized": false,
2728
+ "rstrip": false,
2729
+ "single_word": false,
2730
+ "special": true
2731
+ },
2732
+ "341": {
2733
+ "content": "[extra_id_179]",
2734
+ "lstrip": false,
2735
+ "normalized": false,
2736
+ "rstrip": false,
2737
+ "single_word": false,
2738
+ "special": true
2739
+ },
2740
+ "342": {
2741
+ "content": "[extra_id_180]",
2742
+ "lstrip": false,
2743
+ "normalized": false,
2744
+ "rstrip": false,
2745
+ "single_word": false,
2746
+ "special": true
2747
+ },
2748
+ "343": {
2749
+ "content": "[extra_id_181]",
2750
+ "lstrip": false,
2751
+ "normalized": false,
2752
+ "rstrip": false,
2753
+ "single_word": false,
2754
+ "special": true
2755
+ },
2756
+ "344": {
2757
+ "content": "[extra_id_182]",
2758
+ "lstrip": false,
2759
+ "normalized": false,
2760
+ "rstrip": false,
2761
+ "single_word": false,
2762
+ "special": true
2763
+ },
2764
+ "345": {
2765
+ "content": "[extra_id_183]",
2766
+ "lstrip": false,
2767
+ "normalized": false,
2768
+ "rstrip": false,
2769
+ "single_word": false,
2770
+ "special": true
2771
+ },
2772
+ "346": {
2773
+ "content": "[extra_id_184]",
2774
+ "lstrip": false,
2775
+ "normalized": false,
2776
+ "rstrip": false,
2777
+ "single_word": false,
2778
+ "special": true
2779
+ },
2780
+ "347": {
2781
+ "content": "[extra_id_185]",
2782
+ "lstrip": false,
2783
+ "normalized": false,
2784
+ "rstrip": false,
2785
+ "single_word": false,
2786
+ "special": true
2787
+ },
2788
+ "348": {
2789
+ "content": "[extra_id_186]",
2790
+ "lstrip": false,
2791
+ "normalized": false,
2792
+ "rstrip": false,
2793
+ "single_word": false,
2794
+ "special": true
2795
+ },
2796
+ "349": {
2797
+ "content": "[extra_id_187]",
2798
+ "lstrip": false,
2799
+ "normalized": false,
2800
+ "rstrip": false,
2801
+ "single_word": false,
2802
+ "special": true
2803
+ },
2804
+ "350": {
2805
+ "content": "[extra_id_188]",
2806
+ "lstrip": false,
2807
+ "normalized": false,
2808
+ "rstrip": false,
2809
+ "single_word": false,
2810
+ "special": true
2811
+ },
2812
+ "351": {
2813
+ "content": "[extra_id_189]",
2814
+ "lstrip": false,
2815
+ "normalized": false,
2816
+ "rstrip": false,
2817
+ "single_word": false,
2818
+ "special": true
2819
+ },
2820
+ "352": {
2821
+ "content": "[extra_id_190]",
2822
+ "lstrip": false,
2823
+ "normalized": false,
2824
+ "rstrip": false,
2825
+ "single_word": false,
2826
+ "special": true
2827
+ },
2828
+ "353": {
2829
+ "content": "[extra_id_191]",
2830
+ "lstrip": false,
2831
+ "normalized": false,
2832
+ "rstrip": false,
2833
+ "single_word": false,
2834
+ "special": true
2835
+ },
2836
+ "354": {
2837
+ "content": "[extra_id_192]",
2838
+ "lstrip": false,
2839
+ "normalized": false,
2840
+ "rstrip": false,
2841
+ "single_word": false,
2842
+ "special": true
2843
+ },
2844
+ "355": {
2845
+ "content": "[extra_id_193]",
2846
+ "lstrip": false,
2847
+ "normalized": false,
2848
+ "rstrip": false,
2849
+ "single_word": false,
2850
+ "special": true
2851
+ },
2852
+ "356": {
2853
+ "content": "[extra_id_194]",
2854
+ "lstrip": false,
2855
+ "normalized": false,
2856
+ "rstrip": false,
2857
+ "single_word": false,
2858
+ "special": true
2859
+ },
2860
+ "357": {
2861
+ "content": "[extra_id_195]",
2862
+ "lstrip": false,
2863
+ "normalized": false,
2864
+ "rstrip": false,
2865
+ "single_word": false,
2866
+ "special": true
2867
+ },
2868
+ "358": {
2869
+ "content": "[extra_id_196]",
2870
+ "lstrip": false,
2871
+ "normalized": false,
2872
+ "rstrip": false,
2873
+ "single_word": false,
2874
+ "special": true
2875
+ },
2876
+ "359": {
2877
+ "content": "[extra_id_197]",
2878
+ "lstrip": false,
2879
+ "normalized": false,
2880
+ "rstrip": false,
2881
+ "single_word": false,
2882
+ "special": true
2883
+ },
2884
+ "360": {
2885
+ "content": "[extra_id_198]",
2886
+ "lstrip": false,
2887
+ "normalized": false,
2888
+ "rstrip": false,
2889
+ "single_word": false,
2890
+ "special": true
2891
+ },
2892
+ "361": {
2893
+ "content": "[|endofturn|]",
2894
+ "lstrip": false,
2895
+ "normalized": false,
2896
+ "rstrip": false,
2897
+ "single_word": false,
2898
+ "special": true
2899
+ }
2900
+ },
2901
+ "additional_special_token": [
2902
+ "[unused0]",
2903
+ "[unused1]",
2904
+ "[unused2]",
2905
+ "[unused3]",
2906
+ "[unused4]",
2907
+ "[unused5]",
2908
+ "[unused6]",
2909
+ "[unused7]",
2910
+ "[unused8]",
2911
+ "[unused9]",
2912
+ "[unused10]",
2913
+ "[unused11]",
2914
+ "[unused12]",
2915
+ "[unused13]",
2916
+ "[unused14]",
2917
+ "[unused15]",
2918
+ "[unused16]",
2919
+ "[unused17]",
2920
+ "[unused18]",
2921
+ "[unused19]",
2922
+ "[unused20]",
2923
+ "[unused21]",
2924
+ "[unused22]",
2925
+ "[unused23]",
2926
+ "[unused24]",
2927
+ "[unused25]",
2928
+ "[unused26]",
2929
+ "[unused27]",
2930
+ "[unused28]",
2931
+ "[unused29]",
2932
+ "[unused30]",
2933
+ "[unused31]",
2934
+ "[unused32]",
2935
+ "[unused33]",
2936
+ "[unused34]",
2937
+ "[unused35]",
2938
+ "[unused36]",
2939
+ "[unused37]",
2940
+ "[unused38]",
2941
+ "[unused39]",
2942
+ "[unused40]",
2943
+ "[unused41]",
2944
+ "[unused42]",
2945
+ "[unused43]",
2946
+ "[unused44]",
2947
+ "[unused45]",
2948
+ "[unused46]",
2949
+ "[unused47]",
2950
+ "[unused48]",
2951
+ "[unused49]",
2952
+ "[unused50]",
2953
+ "[unused51]",
2954
+ "[unused52]",
2955
+ "[unused53]",
2956
+ "[unused54]",
2957
+ "[unused55]",
2958
+ "[unused56]",
2959
+ "[unused57]",
2960
+ "[unused58]",
2961
+ "[unused59]",
2962
+ "[unused60]",
2963
+ "[unused61]",
2964
+ "[unused62]",
2965
+ "[unused63]",
2966
+ "[unused64]",
2967
+ "[unused65]",
2968
+ "[unused66]",
2969
+ "[unused67]",
2970
+ "[unused68]",
2971
+ "[unused69]",
2972
+ "[unused70]",
2973
+ "[unused71]",
2974
+ "[unused72]",
2975
+ "[unused73]",
2976
+ "[unused74]",
2977
+ "[unused75]",
2978
+ "[unused76]",
2979
+ "[unused77]",
2980
+ "[unused78]",
2981
+ "[unused79]",
2982
+ "[unused80]",
2983
+ "[unused81]",
2984
+ "[unused82]",
2985
+ "[unused83]",
2986
+ "[unused84]",
2987
+ "[unused85]",
2988
+ "[unused86]",
2989
+ "[unused87]",
2990
+ "[unused88]",
2991
+ "[unused89]",
2992
+ "[unused90]",
2993
+ "[unused91]",
2994
+ "[unused92]",
2995
+ "[unused93]",
2996
+ "[unused94]",
2997
+ "[unused95]",
2998
+ "[unused96]",
2999
+ "[unused97]",
3000
+ "[unused98]",
3001
+ "[unused99]",
3002
+ "[extra_id_0]",
3003
+ "[extra_id_1]",
3004
+ "[extra_id_2]",
3005
+ "[extra_id_3]",
3006
+ "[extra_id_4]",
3007
+ "[extra_id_5]",
3008
+ "[extra_id_6]",
3009
+ "[extra_id_7]",
3010
+ "[extra_id_8]",
3011
+ "[extra_id_9]",
3012
+ "[extra_id_10]",
3013
+ "[extra_id_11]",
3014
+ "[extra_id_12]",
3015
+ "[extra_id_13]",
3016
+ "[extra_id_14]",
3017
+ "[extra_id_15]",
3018
+ "[extra_id_16]",
3019
+ "[extra_id_17]",
3020
+ "[extra_id_18]",
3021
+ "[extra_id_19]",
3022
+ "[extra_id_20]",
3023
+ "[extra_id_21]",
3024
+ "[extra_id_22]",
3025
+ "[extra_id_23]",
3026
+ "[extra_id_24]",
3027
+ "[extra_id_25]",
3028
+ "[extra_id_26]",
3029
+ "[extra_id_27]",
3030
+ "[extra_id_28]",
3031
+ "[extra_id_29]",
3032
+ "[extra_id_30]",
3033
+ "[extra_id_31]",
3034
+ "[extra_id_32]",
3035
+ "[extra_id_33]",
3036
+ "[extra_id_34]",
3037
+ "[extra_id_35]",
3038
+ "[extra_id_36]",
3039
+ "[extra_id_37]",
3040
+ "[extra_id_38]",
3041
+ "[extra_id_39]",
3042
+ "[extra_id_40]",
3043
+ "[extra_id_41]",
3044
+ "[extra_id_42]",
3045
+ "[extra_id_43]",
3046
+ "[extra_id_44]",
3047
+ "[extra_id_45]",
3048
+ "[extra_id_46]",
3049
+ "[extra_id_47]",
3050
+ "[extra_id_48]",
3051
+ "[extra_id_49]",
3052
+ "[extra_id_50]",
3053
+ "[extra_id_51]",
3054
+ "[extra_id_52]",
3055
+ "[extra_id_53]",
3056
+ "[extra_id_54]",
3057
+ "[extra_id_55]",
3058
+ "[extra_id_56]",
3059
+ "[extra_id_57]",
3060
+ "[extra_id_58]",
3061
+ "[extra_id_59]",
3062
+ "[extra_id_60]",
3063
+ "[extra_id_61]",
3064
+ "[extra_id_62]",
3065
+ "[extra_id_63]",
3066
+ "[extra_id_64]",
3067
+ "[extra_id_65]",
3068
+ "[extra_id_66]",
3069
+ "[extra_id_67]",
3070
+ "[extra_id_68]",
3071
+ "[extra_id_69]",
3072
+ "[extra_id_70]",
3073
+ "[extra_id_71]",
3074
+ "[extra_id_72]",
3075
+ "[extra_id_73]",
3076
+ "[extra_id_74]",
3077
+ "[extra_id_75]",
3078
+ "[extra_id_76]",
3079
+ "[extra_id_77]",
3080
+ "[extra_id_78]",
3081
+ "[extra_id_79]",
3082
+ "[extra_id_80]",
3083
+ "[extra_id_81]",
3084
+ "[extra_id_82]",
3085
+ "[extra_id_83]",
3086
+ "[extra_id_84]",
3087
+ "[extra_id_85]",
3088
+ "[extra_id_86]",
3089
+ "[extra_id_87]",
3090
+ "[extra_id_88]",
3091
+ "[extra_id_89]",
3092
+ "[extra_id_90]",
3093
+ "[extra_id_91]",
3094
+ "[extra_id_92]",
3095
+ "[extra_id_93]",
3096
+ "[extra_id_94]",
3097
+ "[extra_id_95]",
3098
+ "[extra_id_96]",
3099
+ "[extra_id_97]",
3100
+ "[extra_id_98]",
3101
+ "[extra_id_99]",
3102
+ "[extra_id_100]",
3103
+ "[extra_id_101]",
3104
+ "[extra_id_102]",
3105
+ "[extra_id_103]",
3106
+ "[extra_id_104]",
3107
+ "[extra_id_105]",
3108
+ "[extra_id_106]",
3109
+ "[extra_id_107]",
3110
+ "[extra_id_108]",
3111
+ "[extra_id_109]",
3112
+ "[extra_id_110]",
3113
+ "[extra_id_111]",
3114
+ "[extra_id_112]",
3115
+ "[extra_id_113]",
3116
+ "[extra_id_114]",
3117
+ "[extra_id_115]",
3118
+ "[extra_id_116]",
3119
+ "[extra_id_117]",
3120
+ "[extra_id_118]",
3121
+ "[extra_id_119]",
3122
+ "[extra_id_120]",
3123
+ "[extra_id_121]",
3124
+ "[extra_id_122]",
3125
+ "[extra_id_123]",
3126
+ "[extra_id_124]",
3127
+ "[extra_id_125]",
3128
+ "[extra_id_126]",
3129
+ "[extra_id_127]",
3130
+ "[extra_id_128]",
3131
+ "[extra_id_129]",
3132
+ "[extra_id_130]",
3133
+ "[extra_id_131]",
3134
+ "[extra_id_132]",
3135
+ "[extra_id_133]",
3136
+ "[extra_id_134]",
3137
+ "[extra_id_135]",
3138
+ "[extra_id_136]",
3139
+ "[extra_id_137]",
3140
+ "[extra_id_138]",
3141
+ "[extra_id_139]",
3142
+ "[extra_id_140]",
3143
+ "[extra_id_141]",
3144
+ "[extra_id_142]",
3145
+ "[extra_id_143]",
3146
+ "[extra_id_144]",
3147
+ "[extra_id_145]",
3148
+ "[extra_id_146]",
3149
+ "[extra_id_147]",
3150
+ "[extra_id_148]",
3151
+ "[extra_id_149]",
3152
+ "[extra_id_150]",
3153
+ "[extra_id_151]",
3154
+ "[extra_id_152]",
3155
+ "[extra_id_153]",
3156
+ "[extra_id_154]",
3157
+ "[extra_id_155]",
3158
+ "[extra_id_156]",
3159
+ "[extra_id_157]",
3160
+ "[extra_id_158]",
3161
+ "[extra_id_159]",
3162
+ "[extra_id_160]",
3163
+ "[extra_id_161]",
3164
+ "[extra_id_162]",
3165
+ "[extra_id_163]",
3166
+ "[extra_id_164]",
3167
+ "[extra_id_165]",
3168
+ "[extra_id_166]",
3169
+ "[extra_id_167]",
3170
+ "[extra_id_168]",
3171
+ "[extra_id_169]",
3172
+ "[extra_id_170]",
3173
+ "[extra_id_171]",
3174
+ "[extra_id_172]",
3175
+ "[extra_id_173]",
3176
+ "[extra_id_174]",
3177
+ "[extra_id_175]",
3178
+ "[extra_id_176]",
3179
+ "[extra_id_177]",
3180
+ "[extra_id_178]",
3181
+ "[extra_id_179]",
3182
+ "[extra_id_180]",
3183
+ "[extra_id_181]",
3184
+ "[extra_id_182]",
3185
+ "[extra_id_183]",
3186
+ "[extra_id_184]",
3187
+ "[extra_id_185]",
3188
+ "[extra_id_186]",
3189
+ "[extra_id_187]",
3190
+ "[extra_id_188]",
3191
+ "[extra_id_189]",
3192
+ "[extra_id_190]",
3193
+ "[extra_id_191]",
3194
+ "[extra_id_192]",
3195
+ "[extra_id_193]",
3196
+ "[extra_id_194]",
3197
+ "[extra_id_195]",
3198
+ "[extra_id_196]",
3199
+ "[extra_id_197]",
3200
+ "[extra_id_198]",
3201
+ "[|endofturn|]",
3202
+ "PI:URL",
3203
+ "PI:EMAIL",
3204
+ "PI:ACCOUNT_NUM",
3205
+ "PI:PHONE_NUM",
3206
+ "PI:BUSINESS_NUM",
3207
+ "PI:ANNON",
3208
+ "PI:KEY",
3209
+ "PI:ID",
3210
+ "PI:IP_ADDRESS",
3211
+ "PI:USER"
3212
+ ],
3213
+ "bos_token": "[BOS]",
3214
+ "chat_template": "{% for message in messages %}{% if loop.first and message['role'] != 'system' %}{{ '[|system|]You are EXAONE model from LG AI Research, a helpful assistant.[|endofturn|]\n' }}{% endif %}{{ '[|' + message['role'] + '|]' + message['content'] }}{% if message['role'] == 'user' %}{{ '\n' }}{% else %}{{ '[|endofturn|]\n' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '[|assistant|]' }}{% endif %}",
3215
+ "clean_up_tokenization_spaces": true,
3216
+ "eos_token": "[|endofturn|]",
3217
+ "model_max_length": 1000000000000000019884624838656,
3218
+ "pad_token": "[PAD]",
3219
+ "tokenizer_class": "GPT2Tokenizer",
3220
+ "unk_token": "[UNK]"
3221
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff