mlsa-iai-msu-lab
commited on
Commit
•
06220cf
1
Parent(s):
4ad6b55
Update README.md
Browse files
README.md
CHANGED
@@ -17,4 +17,65 @@ tags:
|
|
17 |
- transformers
|
18 |
widget:
|
19 |
- text: Метод опорных векторов
|
20 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
- transformers
|
18 |
widget:
|
19 |
- text: Метод опорных векторов
|
20 |
+
---
|
21 |
+
SciRus-tiny is the model to obtain embeddings of scientific texts in russian and english. Model was trained on [eLibrary](https://www.elibrary.ru/) data with contrastive technics described in [habr post]() and achive quite good metrics values on the [ruSciBench](https://github.com/mlsa-iai-msu-lab/ru_sci_bench/tree/main) benchmark.
|
22 |
+
|
23 |
+
### How to get embeddings
|
24 |
+
|
25 |
+
```python
|
26 |
+
from transformers import AutoTokenizer, AutoModel
|
27 |
+
import torch
|
28 |
+
import torch.nn.functional as F
|
29 |
+
|
30 |
+
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained("mlsa-iai-msu-lab/sci-rus-tiny")
|
32 |
+
model = AutoModel.from_pretrained("mlsa-iai-msu-lab/sci-rus-tiny")
|
33 |
+
# model.cuda() # if you want to use a GPU
|
34 |
+
|
35 |
+
def mean_pooling(model_output, attention_mask):
|
36 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
37 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
38 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
39 |
+
|
40 |
+
|
41 |
+
def get_sentence_embedding(title, abstract, model, tokenizer, max_length=None):
|
42 |
+
# Tokenize sentences
|
43 |
+
sentence = '</s>'.join([title, abstract])
|
44 |
+
encoded_input = tokenizer(
|
45 |
+
[sentence], padding=True, truncation=True, return_tensors='pt', max_length=max_length).to(model.device)
|
46 |
+
|
47 |
+
# Compute token embeddings
|
48 |
+
with torch.no_grad():
|
49 |
+
model_output = model(**encoded_input)
|
50 |
+
|
51 |
+
# Perform pooling
|
52 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
53 |
+
|
54 |
+
# Normalize embeddings
|
55 |
+
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
56 |
+
return sentence_embeddings.cpu().detach().numpy()[0]
|
57 |
+
|
58 |
+
print(get_sentence_embedding('some title', 'some abstract', model, tokenizer).shape)
|
59 |
+
# (312,)
|
60 |
+
```
|
61 |
+
|
62 |
+
Or you can use the `sentence_transformers`:
|
63 |
+
```Python
|
64 |
+
from sentence_transformers import SentenceTransformer
|
65 |
+
|
66 |
+
|
67 |
+
model = SentenceTransformer('mlsa-iai-msu-lab/sci-rus-tiny')
|
68 |
+
embeddings = model.encode(['привет мир'])
|
69 |
+
print(embeddings[0].shape)
|
70 |
+
# (312,)
|
71 |
+
```
|
72 |
+
|
73 |
+
|
74 |
+
### Authors
|
75 |
+
Benchmark developed by MLSA Lab of Institute for AI, MSU.
|
76 |
+
|
77 |
+
### Acknowledgement
|
78 |
+
We would like to thank [eLibrary](https://elibrary.ru/) for provided datasets.
|
79 |
+
|
80 |
+
### Contact
|
81 |
+
Nikolai Gerasimenko (nikgerasimenko@gmail.com).
|