|
import argparse |
|
import glob |
|
|
|
import numpy as np |
|
import librosa |
|
from essentia.standard import (NSGConstantQ, |
|
NSGIConstantQ) |
|
|
|
import hparams |
|
import utils |
|
|
|
def parse_files(path, source): |
|
|
|
if source == 'mixture': |
|
path = path + 'Mixtures/Dev/*/' + str(source) + '.wav' |
|
paths = sorted(glob.glob(path)) |
|
else: |
|
path = path + 'Sources/Dev/*/' + str(source) + '.wav' |
|
paths = sorted(glob.glob(path)) |
|
return paths |
|
|
|
def forward_transform(y, min_f, max_f, bpo, gamma): |
|
|
|
params = { |
|
|
|
'inputSize': y.size, |
|
'minFrequency': min_f, |
|
'maxFrequency': max_f, |
|
'binsPerOctave': bpo, |
|
|
|
'minimumWindow': 4, |
|
'gamma': gamma |
|
} |
|
|
|
|
|
|
|
constantq, dcchannel, nfchannel = NSGConstantQ(**params)(y) |
|
|
|
return constantq, dcchannel, nfchannel |
|
|
|
def backward_transform(c, dc, nf, orig_size, min_f, max_f, bpo, gamma): |
|
|
|
params = { |
|
|
|
'inputSize': orig_size, |
|
'minFrequency': min_f, |
|
'maxFrequency': max_f, |
|
'binsPerOctave': bpo, |
|
|
|
'minimumWindow': 4, |
|
'gamma': gamma |
|
} |
|
|
|
|
|
|
|
y = NSGIConstantQ(**params)(c, dc, nf) |
|
|
|
return y |
|
|
|
|
|
def make_chunks(c): |
|
cqt = np.abs(c).astype(np.float16) |
|
cqt = np.asfortranarray(cqt) |
|
padded_cqt = librosa.util.fix_length(cqt,hparams.chunk_size*np.ceil(cqt.shape[-1]/hparams.chunk_size).astype(int)) |
|
framed_cqt = librosa.util.frame(padded_cqt,hparams.chunk_size,hparams.chunk_size) |
|
samples = np.transpose(framed_cqt,(2,0,1)) |
|
cqt_input = np.expand_dims(samples,-1) |
|
return cqt_input |
|
|
|
if __name__ == '__main__': |
|
args = argparse.ArgumentParser() |
|
|
|
args.add_argument('Path',metavar='path',type=str,help='Path to DSD100') |
|
args.add_argument('Source',metavar='source',type=str,help='Desired source to preprocess for separation. Use mixture to preprocess the mixtures') |
|
args.add_argument('Output_path',metavar='output_path',type=str,help='Output path for the pikled spectrograms') |
|
|
|
args = args.parse_args() |
|
path = args.Path |
|
source = args.Source |
|
outpath = args.Output_path |
|
|
|
if path[-1] != '/': |
|
path = path + '/' |
|
if outpath[-1] != '/': |
|
outpath = outpath + '/' |
|
|
|
|
|
files = parse_files(path, source) |
|
mag_lf_array = [] |
|
mag_hf_array = [] |
|
|
|
for i in range(0,len(files)): |
|
print(files[i]) |
|
y, sr = librosa.load(files[i], hparams.sr, mono = True) |
|
C_lf,_,_ = forward_transform(y,hparams.lf_params['min_f'],hparams.lf_params['max_f'],hparams.lf_params['bins_per_octave'], hparams.lf_params['gamma']) |
|
C_hf,_,_ = forward_transform(y,hparams.hf_params['min_f'],hparams.hf_params['max_f'],hparams.hf_params['bins_per_octave'], hparams.hf_params['gamma']) |
|
c_lf = make_chunks(C_lf) |
|
c_hf = make_chunks(C_hf) |
|
mag_lf_array.append(c_lf) |
|
mag_hf_array.append(c_hf) |
|
if i == 1: |
|
break |
|
|
|
|
|
mag_lf = utils.list_to_array(mag_lf_array) |
|
mag_hf = utils.list_to_array(mag_hf_array) |
|
|
|
|
|
filename_lf = source + '_lf.npy' |
|
filename_hf = source + '_hf.npy' |
|
utils.pickle(mag_lf, outpath, filename_lf) |
|
utils.pickle(mag_hf, outpath, filename_hf) |
|
|
|
|
|
|
|
|