mlewand commited on
Commit
7793b5f
1 Parent(s): fede614

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -15,7 +15,7 @@ model-index:
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
- value: 3.61 +/- 0.67
19
  name: mean_reward
20
  verified: false
21
  ---
@@ -38,19 +38,19 @@ python -m sample_factory.huggingface.load_from_hub -r mlewand/rl_course_vizdoom_
38
 
39
  To run the model after download, use the `enjoy` script corresponding to this environment:
40
  ```
41
- python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
42
  ```
43
 
44
 
45
  You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
46
  See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
47
-
48
  ## Training with this model
49
 
50
  To continue training with this model, use the `train` script corresponding to this environment:
51
  ```
52
- python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
53
  ```
54
 
55
  Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
56
-
 
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
+ value: 9.99 +/- 4.96
19
  name: mean_reward
20
  verified: false
21
  ---
 
38
 
39
  To run the model after download, use the `enjoy` script corresponding to this environment:
40
  ```
41
+ python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
42
  ```
43
 
44
 
45
  You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
46
  See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
47
+
48
  ## Training with this model
49
 
50
  To continue training with this model, use the `train` script corresponding to this environment:
51
  ```
52
+ python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
53
  ```
54
 
55
  Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
56
+