Commit
·
84c1993
1
Parent(s):
7d5ca8a
Upload 3 files
Browse files- README.md +116 -0
- config.json +40 -0
- pytorch_model.bin +3 -0
README.md
CHANGED
@@ -1,3 +1,119 @@
|
|
1 |
---
|
|
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: ru
|
3 |
license: apache-2.0
|
4 |
+
datasets:
|
5 |
+
- mlenjoyneer/RuTextSegNews
|
6 |
+
- mlenjoyneer/RuTextSegWiki
|
7 |
---
|
8 |
+
|
9 |
+
# RuTextSegModel
|
10 |
+
|
11 |
+
Model for Russian text segmentation, trained on wiki and news corpora
|
12 |
+
|
13 |
+
## Model description
|
14 |
+
|
15 |
+
This model is a top-level part of HierBERT model and solves the problem of text segmentation as a token classification at the sentence level. The ai-forever/sbert_large_nlu_ru with max pooling is used as a low-level model (sentence embedding generator). It's recommended to use this model only with specified low-level model with defined pooling for embeddings.
|
16 |
+
|
17 |
+
## Intended uses & limitations
|
18 |
+
|
19 |
+
### How to use
|
20 |
+
|
21 |
+
Here is how to use this model in PyTorch:
|
22 |
+
|
23 |
+
```python
|
24 |
+
import torch
|
25 |
+
import torch.nn as nn
|
26 |
+
from transformers import BertForTokenClassification, AutoModel, AutoTokenizer
|
27 |
+
from razdel import sentenize
|
28 |
+
|
29 |
+
class BertForTextSegmentationEmbeddings(nn.Module):
|
30 |
+
def __init__(self, config, embeddings_dim=768):
|
31 |
+
super(BertForTextSegmentationEmbeddings, self).__init__()
|
32 |
+
|
33 |
+
self.config = config
|
34 |
+
self.position_embeddings = torch.nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
35 |
+
|
36 |
+
self.LayerNorm = torch.nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
37 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
38 |
+
|
39 |
+
def forward(self, inputs_embeds, position_ids=None, input_ids=None, token_type_ids=None, past_key_values_length=None):
|
40 |
+
input_shape = inputs_embeds.size()[:-1]
|
41 |
+
seq_length = input_shape[1]
|
42 |
+
device = inputs_embeds.device
|
43 |
+
|
44 |
+
assert seq_length <= self.config.max_position_embeddings, \
|
45 |
+
f"Too long sequence is passed {seq_length}. Maximum allowed sequence length is {self.config.max_position_embeddings}"
|
46 |
+
|
47 |
+
if position_ids is None:
|
48 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
|
49 |
+
position_ids = position_ids.unsqueeze(0).expand(input_shape)
|
50 |
+
|
51 |
+
position_embeddings = self.position_embeddings(position_ids)
|
52 |
+
|
53 |
+
embeddings = inputs_embeds + position_embeddings
|
54 |
+
embeddings = self.LayerNorm(embeddings)
|
55 |
+
embeddings = self.dropout(embeddings)
|
56 |
+
return embeddings
|
57 |
+
|
58 |
+
class BertForTextSegmentation(BertForTokenClassification):
|
59 |
+
def __init__(self, config):
|
60 |
+
super(BertForTextSegmentation, self).__init__(config)
|
61 |
+
|
62 |
+
self.bert.base_model.embeddings = BertForTextSegmentationEmbeddings(config)
|
63 |
+
|
64 |
+
self.init_weights()
|
65 |
+
|
66 |
+
def max_pooling(model_output, attention_mask):
|
67 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
68 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
69 |
+
token_embeddings[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value
|
70 |
+
return torch.max(token_embeddings, 1)[0]
|
71 |
+
|
72 |
+
def create_embeddings(sentences, tokenizer, model):
|
73 |
+
# Tokenize sentences
|
74 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
75 |
+
# Compute token embeddings
|
76 |
+
with torch.no_grad():
|
77 |
+
model_output = model(**encoded_input.to(device))
|
78 |
+
# Perform pooling. In this case, max pooling.
|
79 |
+
sentence_embeddings = max_pooling(model_output, encoded_input['attention_mask'])
|
80 |
+
|
81 |
+
return sentence_embeddings
|
82 |
+
|
83 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
84 |
+
|
85 |
+
emb_tokenizer = AutoTokenizer.from_pretrained("ai-forever/sbert_large_nlu_ru")
|
86 |
+
emb_model = AutoModel.from_pretrained("ai-forever/sbert_large_nlu_ru")
|
87 |
+
model = BertForTextSegmentation.from_pretrained("mlenjoyneer/RuTextSegModel")
|
88 |
+
|
89 |
+
emb_model.to(device)
|
90 |
+
model.to(device)
|
91 |
+
|
92 |
+
text = """В Норильске за годы работы телефона доверия консультанты приняли в общей сложности порядка 75 тысяч обращений, сообщает «Заполярная Правда». Служба психологической помощи появилась в 2000 году. Руководитель службы профилактики наркомании Елена Слатвицкая рассказала журналистам, что в Заполярье настал период, когда ухудшается психо– эмоциональное состояние населения. Это происходит на входе в полярную ночь и на выходе из нее. Осень является кризисным моментом. Сейчас на телефоне доверия работают 15 специалистов. Каждый — под своим псевдонимом. Тему беседы определяет звонящий. Это могут быть наркомания и алкоголизм, ВИЧ–инфекция и прочие заболевания и зависимости, кризисы семейных отношений и многое другое. Сотрудники службы отмет��ли, что больше стало звонков по поводу суицидальных намерений. Наибольшее количество обращений по суицидам пришлось на октябрь — ноябрь. Много звонков как от мужчин, так и от женщин с вопросами об одиночестве. Лидерами по количеству обращений пока остаются женщины. В сентябре в Норильске обнаружили тело девятиклассницы. По версии следствия, девочка сбросилась с крыши. В январе подросток нанес себе порезы стеклом от разбитой бутылки, пытаясь покончить с собой. Мальчик поссорился с матерью и в ходе ссоры нанес себе несколько порезов. Проводится расследование."""
|
93 |
+
|
94 |
+
input_embeds = create_embeddings([s.text for s in sentenize(text)], emb_tokenizer, emb_model).unsqueeze(0)
|
95 |
+
outputs = model(inputs_embeds=input_embeds)
|
96 |
+
|
97 |
+
logits = outputs.logits.cpu()
|
98 |
+
preds = logits.argmax(axis=2).tolist()[0] # [0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0]
|
99 |
+
|
100 |
+
# true_labels = [0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0]
|
101 |
+
```
|
102 |
+
|
103 |
+
## Training data
|
104 |
+
|
105 |
+
Model trained on mlenjoyneer/RuTextSegNews and mlenjoyneer/RuTextSegWiki datasets.
|
106 |
+
|
107 |
+
## Evaluation results
|
108 |
+
|
109 |
+
| Train Dataset | Test Dataset | F1_total | F1_1 | Pk | Pk_5 | WinDiff | WinDiff_5 |
|
110 |
+
|:-------------:|:------------:|:--------:|:-----:|:----:|:----:|:-------:|:---------:|
|
111 |
+
| News+Wiki | News | 0.88 | 0.80 | 0.16 | 0.11 | 0.20 | 0.35 |
|
112 |
+
| News+Wiki | Wiki | 0.89 | 0.80 | 0.18 | 0.16 | 0.09 | 0.19 |
|
113 |
+
|
114 |
+
|
115 |
+
### Citation info
|
116 |
+
|
117 |
+
```bibtex
|
118 |
+
In progress
|
119 |
+
```
|
config.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./sbert_large_nlu_ru",
|
3 |
+
"architectures": [
|
4 |
+
"BertForTextSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"directionality": "bidi",
|
9 |
+
"gradient_checkpointing": false,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"id2label": {
|
14 |
+
"0": 0,
|
15 |
+
"1": 1
|
16 |
+
},
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 4096,
|
19 |
+
"label2id": {
|
20 |
+
"0": 0,
|
21 |
+
"1": 1
|
22 |
+
},
|
23 |
+
"layer_norm_eps": 1e-12,
|
24 |
+
"max_position_embeddings": 128,
|
25 |
+
"model_type": "bert",
|
26 |
+
"num_attention_heads": 16,
|
27 |
+
"num_hidden_layers": 4,
|
28 |
+
"pad_token_id": 0,
|
29 |
+
"pooler_fc_size": 768,
|
30 |
+
"pooler_num_attention_heads": 12,
|
31 |
+
"pooler_num_fc_layers": 3,
|
32 |
+
"pooler_size_per_head": 128,
|
33 |
+
"pooler_type": "first_token_transform",
|
34 |
+
"position_embedding_type": "absolute",
|
35 |
+
"torch_dtype": "float32",
|
36 |
+
"transformers_version": "4.31.0",
|
37 |
+
"type_vocab_size": 2,
|
38 |
+
"use_cache": true,
|
39 |
+
"vocab_size": 120138
|
40 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb543e3e6b3dc7ff92be64f3c88be1f85e0a29144cfdffbe4d91162087958e4b
|
3 |
+
size 202103424
|