mlburnham commited on
Commit
55ec647
1 Parent(s): 6e01687

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -4
README.md CHANGED
@@ -17,6 +17,9 @@ tags:
17
  # Model Details
18
  Political DEBATE (DeBERTa Algorithm for Textual Entailment) is an NLI classifier trained for zero-shot and few-shot classification of political documents.
19
 
 
 
 
20
  The model was trained using [Moritz Laurer's](https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v2.0-c) zero shot model as the foundation, and then trained further using the [PolNLI dataset.](https://huggingface.co/datasets/mlburnham/Pol_NLI) The model was trained for four classification categories:
21
  1. Stance detection (i.e. opinion mining).
22
  2. Hatespeech detection.
@@ -27,10 +30,10 @@ The PolNLI dataset contains documents from social media, news outlets, congressi
27
 
28
  If you use this model or the PolNLI data set please cite:
29
  ```
30
- @article{burnham2024debate,
31
  title={Political DEBATE: Efficient Zero-shot and Few-shot Classifiers for Political Text},
32
- author={Burnham, Michael, Kayla Kahn, Rachel Peng, Ryan Wang},
33
- journal={working manuscript},
34
  year={2024}
35
  }
36
  ```
@@ -62,7 +65,7 @@ Evaluation is primarily conducted on the PolNLI test set. No hypotheses in the P
62
  <img src="https://cdn-uploads.huggingface.co/production/uploads/64d0341901931c60161f2a06/-sQhURg-zeacZAUNEVUpc.png" width="750" height="500" />
63
 
64
  ### Performance on the PolNLI test set by task:
65
- <img src="https://cdn-uploads.huggingface.co/production/uploads/64d0341901931c60161f2a06/66BOUiVt7Fdl0UhYxmjQB.png" width="750" height="500" />
66
 
67
  ### Few-shot performance on open-text survey answers vs. Llama 3.1 8B (unquantized):
68
  <img src="https://cdn-uploads.huggingface.co/production/uploads/64d0341901931c60161f2a06/kDZXC-OsZtmTCxq0HsJMg.png" width="750" height="500" />
 
17
  # Model Details
18
  Political DEBATE (DeBERTa Algorithm for Textual Entailment) is an NLI classifier trained for zero-shot and few-shot classification of political documents.
19
 
20
+ [Zero-shot tutorial](https://colab.research.google.com/drive/1zi-8pMx_x-vo0m8XVmYVtw0Dhdw7vfFD#scrollTo=T4bo1aEjB9iG)
21
+ [Few-shot tutorial](https://colab.research.google.com/drive/1Sv82jqRSwiIyuvEIDrhTiqF8_ClQaL0r#scrollTo=Uuaw8-qpn8S6)
22
+
23
  The model was trained using [Moritz Laurer's](https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v2.0-c) zero shot model as the foundation, and then trained further using the [PolNLI dataset.](https://huggingface.co/datasets/mlburnham/Pol_NLI) The model was trained for four classification categories:
24
  1. Stance detection (i.e. opinion mining).
25
  2. Hatespeech detection.
 
30
 
31
  If you use this model or the PolNLI data set please cite:
32
  ```
33
+ @article{burnham2024political,
34
  title={Political DEBATE: Efficient Zero-shot and Few-shot Classifiers for Political Text},
35
+ author={Burnham, Michael and Kahn, Kayla and Wang, Ryan Yank and Peng, Rachel X},
36
+ journal={arXiv preprint arXiv:2409.02078},
37
  year={2024}
38
  }
39
  ```
 
65
  <img src="https://cdn-uploads.huggingface.co/production/uploads/64d0341901931c60161f2a06/-sQhURg-zeacZAUNEVUpc.png" width="750" height="500" />
66
 
67
  ### Performance on the PolNLI test set by task:
68
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/64d0341901931c60161f2a06/ss6cN8ujGl40SZ5WxjiDH.png" width="750" height="500" />
69
 
70
  ### Few-shot performance on open-text survey answers vs. Llama 3.1 8B (unquantized):
71
  <img src="https://cdn-uploads.huggingface.co/production/uploads/64d0341901931c60161f2a06/kDZXC-OsZtmTCxq0HsJMg.png" width="750" height="500" />