Maxime Kuntz commited on
Commit
6a1a930
1 Parent(s): 2fc0b35

Second training

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.08 +/- 0.53
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d97286ac2a8e5242d68c1dbfc51c5a461f940c5431eb98d724bcf8c2ac5c4b9
3
+ size 108011
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff778e898b0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7ff778f05480>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1200000,
45
+ "_total_timesteps": 1200000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1677445929863463164,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjfzNPlA2tLx6SAI/jfzNPlA2tLx6SAI/jfzNPlA2tLx6SAI/jfzNPlA2tLx6SAI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkDh7vQs8Hz4uc78/+W6Xv2eiiL8bj9q/h+aSP6oixT9V36a/kHmFv6wZbD9Avw0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACN/M0+UDa0vHpIAj+q2Dc84bNtOkU68DqN/M0+UDa0vHpIAj+q2Dc84bNtOkU68DqN/M0+UDa0vHpIAj+q2Dc84bNtOkU68DqN/M0+UDa0vHpIAj+q2Dc84bNtOkU68DqUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.40231743 -0.02199855 0.5089184 ]\n [ 0.40231743 -0.02199855 0.5089184 ]\n [ 0.40231743 -0.02199855 0.5089184 ]\n [ 0.40231743 -0.02199855 0.5089184 ]]",
60
+ "desired_goal": "[[-0.06133324 0.15550248 1.4957025 ]\n [-1.1830741 -1.0674561 -1.7074922 ]\n [ 1.1476601 1.5401204 -1.3036906 ]\n [-1.0427723 0.9222667 0.5536995 ]]",
61
+ "observation": "[[ 0.40231743 -0.02199855 0.5089184 0.01122109 0.00090676 0.00183279]\n [ 0.40231743 -0.02199855 0.5089184 0.01122109 0.00090676 0.00183279]\n [ 0.40231743 -0.02199855 0.5089184 0.01122109 0.00090676 0.00183279]\n [ 0.40231743 -0.02199855 0.5089184 0.01122109 0.00090676 0.00183279]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADbP5PaWgvzzbdok+kXILO8nFrT06Eaw9aN7FPatejD37HB8+cvC9PSXYRD2Dkgk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[0.12192354 0.02339203 0.26848492]\n [0.0021278 0.0848499 0.08401723]\n [0.09661561 0.06853994 0.15538399]\n [0.09274377 0.04805769 0.03358699]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQuxMofMa67+UhpRSlIwBbJRLMowBdJRHQK1WVM0P6Kt1fZQoaAZoCWgPQwgFFOrpI3D0v5SGlFKUaBVLMmgWR0CtVgtorWiDdX2UKGgGaAloD0MIg8KgTKNJ5r+UhpRSlGgVSzJoFkdArVW2gUUO/nV9lChoBmgJaA9DCLBZLhud8+K/lIaUUpRoFUsyaBZHQK1VXollbvB1fZQoaAZoCWgPQwhG7unqjsXcv5SGlFKUaBVLMmgWR0CtV/fVy3kQdX2UKGgGaAloD0MIGZEotKz75b+UhpRSlGgVSzJoFkdArVevfXPJJXV9lChoBmgJaA9DCKcgPxu5buW/lIaUUpRoFUsyaBZHQK1XW1Gb1AZ1fZQoaAZoCWgPQwj7srRTcznhv5SGlFKUaBVLMmgWR0CtVwQ9q1w6dX2UKGgGaAloD0MIPE88ZwsI6r+UhpRSlGgVSzJoFkdArVpIVO9FnnV9lChoBmgJaA9DCGOYE7TJYe+/lIaUUpRoFUsyaBZHQK1aAfukUK11fZQoaAZoCWgPQwgVrHE2HYHov5SGlFKUaBVLMmgWR0CtWa4ekpI+dX2UKGgGaAloD0MI94+F6BC46r+UhpRSlGgVSzJoFkdArVlXG6wt8XV9lChoBmgJaA9DCJOOcjCbAO+/lIaUUpRoFUsyaBZHQK1cXr2QGOd1fZQoaAZoCWgPQwhrRZvj3Cbrv5SGlFKUaBVLMmgWR0CtXBaP0Zm7dX2UKGgGaAloD0MI1EM0uoNY57+UhpRSlGgVSzJoFkdArVvCnNxEOXV9lChoBmgJaA9DCFh1VgvsMdq/lIaUUpRoFUsyaBZHQK1ba9ytFKF1fZQoaAZoCWgPQwgcmUf+YGDrv5SGlFKUaBVLMmgWR0CtXurf1pTNdX2UKGgGaAloD0MIlfCEXn8S77+UhpRSlGgVSzJoFkdArV6kPMB6r3V9lChoBmgJaA9DCLpKd9fZEOW/lIaUUpRoFUsyaBZHQK1eUVPepGZ1fZQoaAZoCWgPQwhkIToEjoTgv5SGlFKUaBVLMmgWR0CtXfphWo3rdX2UKGgGaAloD0MIdQDEXb0K8b+UhpRSlGgVSzJoFkdArWCtLpRoAXV9lChoBmgJaA9DCI+M1eb/Vee/lIaUUpRoFUsyaBZHQK1gY9+PRzB1fZQoaAZoCWgPQwhv8fCeA8vuv5SGlFKUaBVLMmgWR0CtYA7FCLMtdX2UKGgGaAloD0MIeqcC7nn++L+UhpRSlGgVSzJoFkdArV+21MM7VHV9lChoBmgJaA9DCHjxftx++ee/lIaUUpRoFUsyaBZHQK1h1u3trsV1fZQoaAZoCWgPQwjk84qnHmnnv5SGlFKUaBVLMmgWR0CtYY2pZOi4dX2UKGgGaAloD0MIHqSnyCHi6L+UhpRSlGgVSzJoFkdArWE4oLG7z3V9lChoBmgJaA9DCMMN+Pwwwuu/lIaUUpRoFUsyaBZHQK1g4MAFPi11fZQoaAZoCWgPQwi+Ed2zrtHnv5SGlFKUaBVLMmgWR0CtYwgCfYjCdX2UKGgGaAloD0MIiQrVzcXf4b+UhpRSlGgVSzJoFkdArWK+r+5vtXV9lChoBmgJaA9DCJwYkpOJW+K/lIaUUpRoFUsyaBZHQK1iaXoC+111fZQoaAZoCWgPQwgcJa/OMaDgv5SGlFKUaBVLMmgWR0CtYhFqi48VdX2UKGgGaAloD0MIrIxGPq/47L+UhpRSlGgVSzJoFkdArWRd8ohIOHV9lChoBmgJaA9DCMLdWbvtQuW/lIaUUpRoFUsyaBZHQK1kFJHy3Ct1fZQoaAZoCWgPQwjjjGFO0Kbov5SGlFKUaBVLMmgWR0CtY7+6RQrMdX2UKGgGaAloD0MIfy+FB83u9L+UhpRSlGgVSzJoFkdArWNnv+fh/HV9lChoBmgJaA9DCMAlAP+UquS/lIaUUpRoFUsyaBZHQK1ljBO58Sh1fZQoaAZoCWgPQwgzbf/KShPhv5SGlFKUaBVLMmgWR0CtZULW7OE/dX2UKGgGaAloD0MI0sjnFU897L+UhpRSlGgVSzJoFkdArWTt41P3z3V9lChoBmgJaA9DCAAC1qpdU/C/lIaUUpRoFUsyaBZHQK1klc6eXiR1fZQoaAZoCWgPQwiKj0/Iztvsv5SGlFKUaBVLMmgWR0CtZuNTDO1OdX2UKGgGaAloD0MIeSCySBPv6L+UhpRSlGgVSzJoFkdArWaa1stTUHV9lChoBmgJaA9DCFaeQNgpVuS/lIaUUpRoFUsyaBZHQK1mRdyDIzZ1fZQoaAZoCWgPQwgzpIriVVbhv5SGlFKUaBVLMmgWR0CtZe3RG+bmdX2UKGgGaAloD0MIEEHV6NUA7b+UhpRSlGgVSzJoFkdArWgaIcinpHV9lChoBmgJaA9DCPZCAdvBiOW/lIaUUpRoFUsyaBZHQK1n0M4LkS51fZQoaAZoCWgPQwiiJY+n5Qfev5SGlFKUaBVLMmgWR0CtZ3vkili0dX2UKGgGaAloD0MI6PS8GwuK67+UhpRSlGgVSzJoFkdArWckCA+Y+nV9lChoBmgJaA9DCAFPWrisQvK/lIaUUpRoFUsyaBZHQK1pS4ACGN91fZQoaAZoCWgPQwindLD+z2Htv5SGlFKUaBVLMmgWR0CtaQIf0VafdX2UKGgGaAloD0MIGvz9YrZk5b+UhpRSlGgVSzJoFkdArWitRiw0O3V9lChoBmgJaA9DCFUS2QdZFtq/lIaUUpRoFUsyaBZHQK1oVVhkRSR1fZQoaAZoCWgPQwiZZrrXSX3nv5SGlFKUaBVLMmgWR0CtanrgOz6adX2UKGgGaAloD0MIm/9XHTlS67+UhpRSlGgVSzJoFkdArWoxbOeJ53V9lChoBmgJaA9DCHlZEwt8ReS/lIaUUpRoFUsyaBZHQK1p3I9TxXp1fZQoaAZoCWgPQwiSWFLuPkf1v5SGlFKUaBVLMmgWR0CtaYSrgflqdX2UKGgGaAloD0MIzoqoiT4f+L+UhpRSlGgVSzJoFkdArWumP3i71HV9lChoBmgJaA9DCFZ/hGHAkvC/lIaUUpRoFUsyaBZHQK1rXQ4S6Dp1fZQoaAZoCWgPQwgwD5nyIWjzv5SGlFKUaBVLMmgWR0CtawgfdRBNdX2UKGgGaAloD0MI/DcvTnx187+UhpRSlGgVSzJoFkdArWqwJ5VwP3V9lChoBmgJaA9DCJ/m5EUm4P6/lIaUUpRoFUsyaBZHQK1s3siSq2l1fZQoaAZoCWgPQwgEVaNXA5T2v5SGlFKUaBVLMmgWR0CtbJV8kUsWdX2UKGgGaAloD0MIGlBvRs1X5r+UhpRSlGgVSzJoFkdArWxAdZJTVHV9lChoBmgJaA9DCEjBU8iVuvC/lIaUUpRoFUsyaBZHQK1r6G/N7jV1fZQoaAZoCWgPQwiFeY8zTVjqv5SGlFKUaBVLMmgWR0Ctbgx3/xUedX2UKGgGaAloD0MIkgN2NXnK87+UhpRSlGgVSzJoFkdArW3DN2TxG3V9lChoBmgJaA9DCLAEUmLX9vm/lIaUUpRoFUsyaBZHQK1tbkOI68x1fZQoaAZoCWgPQwhMUpliDoLuv5SGlFKUaBVLMmgWR0CtbRZN47iidX2UKGgGaAloD0MIkwGgihs34L+UhpRSlGgVSzJoFkdArW8/5xiobXV9lChoBmgJaA9DCMyWrIpwk+m/lIaUUpRoFUsyaBZHQK1u9rjYI0J1fZQoaAZoCWgPQwgHeNLCZRXnv5SGlFKUaBVLMmgWR0CtbqHk1dgOdX2UKGgGaAloD0MIJxO3CmIg6L+UhpRSlGgVSzJoFkdArW5KExqO93V9lChoBmgJaA9DCDrP2JdsPOK/lIaUUpRoFUsyaBZHQK1wd5FgDzR1fZQoaAZoCWgPQwiKPEm6ZnLkv5SGlFKUaBVLMmgWR0CtcC5Oi35OdX2UKGgGaAloD0MIwD+lSpS95r+UhpRSlGgVSzJoFkdArW/ZSeiBXnV9lChoBmgJaA9DCAFr1a4Jaeu/lIaUUpRoFUsyaBZHQK1vgV1Oj7B1fZQoaAZoCWgPQwjytWeWBCjhv5SGlFKUaBVLMmgWR0CtcaI/7iyZdX2UKGgGaAloD0MInx7bMuCs5r+UhpRSlGgVSzJoFkdArXFZAjY7JXV9lChoBmgJaA9DCPC+Khcqv/C/lIaUUpRoFUsyaBZHQK1xBAqur6t1fZQoaAZoCWgPQwjBbti2KLPyv5SGlFKUaBVLMmgWR0CtcKwdCE6DdX2UKGgGaAloD0MIJm4VxEDX1r+UhpRSlGgVSzJoFkdArXLRXXAdn3V9lChoBmgJaA9DCIW1MXbCi/y/lIaUUpRoFUsyaBZHQK1yiB6KLsN1fZQoaAZoCWgPQwiRm+EGfH70v5SGlFKUaBVLMmgWR0CtcjMmOU+tdX2UKGgGaAloD0MI6YGPwYpT47+UhpRSlGgVSzJoFkdArXHbUExIrnV9lChoBmgJaA9DCBtMw/ARseu/lIaUUpRoFUsyaBZHQK1z+NsFdLR1fZQoaAZoCWgPQwhDBBxClVryv5SGlFKUaBVLMmgWR0Ctc6+GXXyzdX2UKGgGaAloD0MILLZJRWNt7b+UhpRSlGgVSzJoFkdArXNaaiKziXV9lChoBmgJaA9DCDGXVG03wdm/lIaUUpRoFUsyaBZHQK1zAmjTKDF1fZQoaAZoCWgPQwitF0M50a7nv5SGlFKUaBVLMmgWR0Ctdbq0MPSVdX2UKGgGaAloD0MIgUBn0qZq4r+UhpRSlGgVSzJoFkdArXVyLl3hXXV9lChoBmgJaA9DCAHbwYh9AvK/lIaUUpRoFUsyaBZHQK11Hnlnyup1fZQoaAZoCWgPQwh/arx0kxjfv5SGlFKUaBVLMmgWR0CtdMdlVcUudX2UKGgGaAloD0MIoGtfQC9c67+UhpRSlGgVSzJoFkdArXe5guyu6nV9lChoBmgJaA9DCCIAOPbsueW/lIaUUpRoFUsyaBZHQK13cU1yeZp1fZQoaAZoCWgPQwiLU62FWejuv5SGlFKUaBVLMmgWR0Ctdx070WdmdX2UKGgGaAloD0MIUTI5tTNM5r+UhpRSlGgVSzJoFkdArXbGRV6u4nV9lChoBmgJaA9DCFb0h2ae3O2/lIaUUpRoFUsyaBZHQK16TPrOZ9d1fZQoaAZoCWgPQwj/7EeKyDDqv5SGlFKUaBVLMmgWR0CtegSjxkNGdX2UKGgGaAloD0MIAFZHjnQG6L+UhpRSlGgVSzJoFkdArXmyVv/BFnV9lChoBmgJaA9DCJWZ0vpbAui/lIaUUpRoFUsyaBZHQK15XUdaMaV1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 60000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbf74a371de381e3395ff40fb59f42648c4c1c4ec97db4dcd8a60d7181dc1d3b
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13f57f7146fa6bae6a8484f9e9baa6756f0e2fa0d497b049af968d0cf35e0172
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff778e898b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff778f05480>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1200000, "_total_timesteps": 1200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677445929863463164, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjfzNPlA2tLx6SAI/jfzNPlA2tLx6SAI/jfzNPlA2tLx6SAI/jfzNPlA2tLx6SAI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkDh7vQs8Hz4uc78/+W6Xv2eiiL8bj9q/h+aSP6oixT9V36a/kHmFv6wZbD9Avw0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACN/M0+UDa0vHpIAj+q2Dc84bNtOkU68DqN/M0+UDa0vHpIAj+q2Dc84bNtOkU68DqN/M0+UDa0vHpIAj+q2Dc84bNtOkU68DqN/M0+UDa0vHpIAj+q2Dc84bNtOkU68DqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40231743 -0.02199855 0.5089184 ]\n [ 0.40231743 -0.02199855 0.5089184 ]\n [ 0.40231743 -0.02199855 0.5089184 ]\n [ 0.40231743 -0.02199855 0.5089184 ]]", "desired_goal": "[[-0.06133324 0.15550248 1.4957025 ]\n [-1.1830741 -1.0674561 -1.7074922 ]\n [ 1.1476601 1.5401204 -1.3036906 ]\n [-1.0427723 0.9222667 0.5536995 ]]", "observation": "[[ 0.40231743 -0.02199855 0.5089184 0.01122109 0.00090676 0.00183279]\n [ 0.40231743 -0.02199855 0.5089184 0.01122109 0.00090676 0.00183279]\n [ 0.40231743 -0.02199855 0.5089184 0.01122109 0.00090676 0.00183279]\n [ 0.40231743 -0.02199855 0.5089184 0.01122109 0.00090676 0.00183279]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADbP5PaWgvzzbdok+kXILO8nFrT06Eaw9aN7FPatejD37HB8+cvC9PSXYRD2Dkgk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[0.12192354 0.02339203 0.26848492]\n [0.0021278 0.0848499 0.08401723]\n [0.09661561 0.06853994 0.15538399]\n [0.09274377 0.04805769 0.03358699]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQuxMofMa67+UhpRSlIwBbJRLMowBdJRHQK1WVM0P6Kt1fZQoaAZoCWgPQwgFFOrpI3D0v5SGlFKUaBVLMmgWR0CtVgtorWiDdX2UKGgGaAloD0MIg8KgTKNJ5r+UhpRSlGgVSzJoFkdArVW2gUUO/nV9lChoBmgJaA9DCLBZLhud8+K/lIaUUpRoFUsyaBZHQK1VXollbvB1fZQoaAZoCWgPQwhG7unqjsXcv5SGlFKUaBVLMmgWR0CtV/fVy3kQdX2UKGgGaAloD0MIGZEotKz75b+UhpRSlGgVSzJoFkdArVevfXPJJXV9lChoBmgJaA9DCKcgPxu5buW/lIaUUpRoFUsyaBZHQK1XW1Gb1AZ1fZQoaAZoCWgPQwj7srRTcznhv5SGlFKUaBVLMmgWR0CtVwQ9q1w6dX2UKGgGaAloD0MIPE88ZwsI6r+UhpRSlGgVSzJoFkdArVpIVO9FnnV9lChoBmgJaA9DCGOYE7TJYe+/lIaUUpRoFUsyaBZHQK1aAfukUK11fZQoaAZoCWgPQwgVrHE2HYHov5SGlFKUaBVLMmgWR0CtWa4ekpI+dX2UKGgGaAloD0MI94+F6BC46r+UhpRSlGgVSzJoFkdArVlXG6wt8XV9lChoBmgJaA9DCJOOcjCbAO+/lIaUUpRoFUsyaBZHQK1cXr2QGOd1fZQoaAZoCWgPQwhrRZvj3Cbrv5SGlFKUaBVLMmgWR0CtXBaP0Zm7dX2UKGgGaAloD0MI1EM0uoNY57+UhpRSlGgVSzJoFkdArVvCnNxEOXV9lChoBmgJaA9DCFh1VgvsMdq/lIaUUpRoFUsyaBZHQK1ba9ytFKF1fZQoaAZoCWgPQwgcmUf+YGDrv5SGlFKUaBVLMmgWR0CtXurf1pTNdX2UKGgGaAloD0MIlfCEXn8S77+UhpRSlGgVSzJoFkdArV6kPMB6r3V9lChoBmgJaA9DCLpKd9fZEOW/lIaUUpRoFUsyaBZHQK1eUVPepGZ1fZQoaAZoCWgPQwhkIToEjoTgv5SGlFKUaBVLMmgWR0CtXfphWo3rdX2UKGgGaAloD0MIdQDEXb0K8b+UhpRSlGgVSzJoFkdArWCtLpRoAXV9lChoBmgJaA9DCI+M1eb/Vee/lIaUUpRoFUsyaBZHQK1gY9+PRzB1fZQoaAZoCWgPQwhv8fCeA8vuv5SGlFKUaBVLMmgWR0CtYA7FCLMtdX2UKGgGaAloD0MIeqcC7nn++L+UhpRSlGgVSzJoFkdArV+21MM7VHV9lChoBmgJaA9DCHjxftx++ee/lIaUUpRoFUsyaBZHQK1h1u3trsV1fZQoaAZoCWgPQwjk84qnHmnnv5SGlFKUaBVLMmgWR0CtYY2pZOi4dX2UKGgGaAloD0MIHqSnyCHi6L+UhpRSlGgVSzJoFkdArWE4oLG7z3V9lChoBmgJaA9DCMMN+Pwwwuu/lIaUUpRoFUsyaBZHQK1g4MAFPi11fZQoaAZoCWgPQwi+Ed2zrtHnv5SGlFKUaBVLMmgWR0CtYwgCfYjCdX2UKGgGaAloD0MIiQrVzcXf4b+UhpRSlGgVSzJoFkdArWK+r+5vtXV9lChoBmgJaA9DCJwYkpOJW+K/lIaUUpRoFUsyaBZHQK1iaXoC+111fZQoaAZoCWgPQwgcJa/OMaDgv5SGlFKUaBVLMmgWR0CtYhFqi48VdX2UKGgGaAloD0MIrIxGPq/47L+UhpRSlGgVSzJoFkdArWRd8ohIOHV9lChoBmgJaA9DCMLdWbvtQuW/lIaUUpRoFUsyaBZHQK1kFJHy3Ct1fZQoaAZoCWgPQwjjjGFO0Kbov5SGlFKUaBVLMmgWR0CtY7+6RQrMdX2UKGgGaAloD0MIfy+FB83u9L+UhpRSlGgVSzJoFkdArWNnv+fh/HV9lChoBmgJaA9DCMAlAP+UquS/lIaUUpRoFUsyaBZHQK1ljBO58Sh1fZQoaAZoCWgPQwgzbf/KShPhv5SGlFKUaBVLMmgWR0CtZULW7OE/dX2UKGgGaAloD0MI0sjnFU897L+UhpRSlGgVSzJoFkdArWTt41P3z3V9lChoBmgJaA9DCAAC1qpdU/C/lIaUUpRoFUsyaBZHQK1klc6eXiR1fZQoaAZoCWgPQwiKj0/Iztvsv5SGlFKUaBVLMmgWR0CtZuNTDO1OdX2UKGgGaAloD0MIeSCySBPv6L+UhpRSlGgVSzJoFkdArWaa1stTUHV9lChoBmgJaA9DCFaeQNgpVuS/lIaUUpRoFUsyaBZHQK1mRdyDIzZ1fZQoaAZoCWgPQwgzpIriVVbhv5SGlFKUaBVLMmgWR0CtZe3RG+bmdX2UKGgGaAloD0MIEEHV6NUA7b+UhpRSlGgVSzJoFkdArWgaIcinpHV9lChoBmgJaA9DCPZCAdvBiOW/lIaUUpRoFUsyaBZHQK1n0M4LkS51fZQoaAZoCWgPQwiiJY+n5Qfev5SGlFKUaBVLMmgWR0CtZ3vkili0dX2UKGgGaAloD0MI6PS8GwuK67+UhpRSlGgVSzJoFkdArWckCA+Y+nV9lChoBmgJaA9DCAFPWrisQvK/lIaUUpRoFUsyaBZHQK1pS4ACGN91fZQoaAZoCWgPQwindLD+z2Htv5SGlFKUaBVLMmgWR0CtaQIf0VafdX2UKGgGaAloD0MIGvz9YrZk5b+UhpRSlGgVSzJoFkdArWitRiw0O3V9lChoBmgJaA9DCFUS2QdZFtq/lIaUUpRoFUsyaBZHQK1oVVhkRSR1fZQoaAZoCWgPQwiZZrrXSX3nv5SGlFKUaBVLMmgWR0CtanrgOz6adX2UKGgGaAloD0MIm/9XHTlS67+UhpRSlGgVSzJoFkdArWoxbOeJ53V9lChoBmgJaA9DCHlZEwt8ReS/lIaUUpRoFUsyaBZHQK1p3I9TxXp1fZQoaAZoCWgPQwiSWFLuPkf1v5SGlFKUaBVLMmgWR0CtaYSrgflqdX2UKGgGaAloD0MIzoqoiT4f+L+UhpRSlGgVSzJoFkdArWumP3i71HV9lChoBmgJaA9DCFZ/hGHAkvC/lIaUUpRoFUsyaBZHQK1rXQ4S6Dp1fZQoaAZoCWgPQwgwD5nyIWjzv5SGlFKUaBVLMmgWR0CtawgfdRBNdX2UKGgGaAloD0MI/DcvTnx187+UhpRSlGgVSzJoFkdArWqwJ5VwP3V9lChoBmgJaA9DCJ/m5EUm4P6/lIaUUpRoFUsyaBZHQK1s3siSq2l1fZQoaAZoCWgPQwgEVaNXA5T2v5SGlFKUaBVLMmgWR0CtbJV8kUsWdX2UKGgGaAloD0MIGlBvRs1X5r+UhpRSlGgVSzJoFkdArWxAdZJTVHV9lChoBmgJaA9DCEjBU8iVuvC/lIaUUpRoFUsyaBZHQK1r6G/N7jV1fZQoaAZoCWgPQwiFeY8zTVjqv5SGlFKUaBVLMmgWR0Ctbgx3/xUedX2UKGgGaAloD0MIkgN2NXnK87+UhpRSlGgVSzJoFkdArW3DN2TxG3V9lChoBmgJaA9DCLAEUmLX9vm/lIaUUpRoFUsyaBZHQK1tbkOI68x1fZQoaAZoCWgPQwhMUpliDoLuv5SGlFKUaBVLMmgWR0CtbRZN47iidX2UKGgGaAloD0MIkwGgihs34L+UhpRSlGgVSzJoFkdArW8/5xiobXV9lChoBmgJaA9DCMyWrIpwk+m/lIaUUpRoFUsyaBZHQK1u9rjYI0J1fZQoaAZoCWgPQwgHeNLCZRXnv5SGlFKUaBVLMmgWR0CtbqHk1dgOdX2UKGgGaAloD0MIJxO3CmIg6L+UhpRSlGgVSzJoFkdArW5KExqO93V9lChoBmgJaA9DCDrP2JdsPOK/lIaUUpRoFUsyaBZHQK1wd5FgDzR1fZQoaAZoCWgPQwiKPEm6ZnLkv5SGlFKUaBVLMmgWR0CtcC5Oi35OdX2UKGgGaAloD0MIwD+lSpS95r+UhpRSlGgVSzJoFkdArW/ZSeiBXnV9lChoBmgJaA9DCAFr1a4Jaeu/lIaUUpRoFUsyaBZHQK1vgV1Oj7B1fZQoaAZoCWgPQwjytWeWBCjhv5SGlFKUaBVLMmgWR0CtcaI/7iyZdX2UKGgGaAloD0MInx7bMuCs5r+UhpRSlGgVSzJoFkdArXFZAjY7JXV9lChoBmgJaA9DCPC+Khcqv/C/lIaUUpRoFUsyaBZHQK1xBAqur6t1fZQoaAZoCWgPQwjBbti2KLPyv5SGlFKUaBVLMmgWR0CtcKwdCE6DdX2UKGgGaAloD0MIJm4VxEDX1r+UhpRSlGgVSzJoFkdArXLRXXAdn3V9lChoBmgJaA9DCIW1MXbCi/y/lIaUUpRoFUsyaBZHQK1yiB6KLsN1fZQoaAZoCWgPQwiRm+EGfH70v5SGlFKUaBVLMmgWR0CtcjMmOU+tdX2UKGgGaAloD0MI6YGPwYpT47+UhpRSlGgVSzJoFkdArXHbUExIrnV9lChoBmgJaA9DCBtMw/ARseu/lIaUUpRoFUsyaBZHQK1z+NsFdLR1fZQoaAZoCWgPQwhDBBxClVryv5SGlFKUaBVLMmgWR0Ctc6+GXXyzdX2UKGgGaAloD0MILLZJRWNt7b+UhpRSlGgVSzJoFkdArXNaaiKziXV9lChoBmgJaA9DCDGXVG03wdm/lIaUUpRoFUsyaBZHQK1zAmjTKDF1fZQoaAZoCWgPQwitF0M50a7nv5SGlFKUaBVLMmgWR0Ctdbq0MPSVdX2UKGgGaAloD0MIgUBn0qZq4r+UhpRSlGgVSzJoFkdArXVyLl3hXXV9lChoBmgJaA9DCAHbwYh9AvK/lIaUUpRoFUsyaBZHQK11Hnlnyup1fZQoaAZoCWgPQwh/arx0kxjfv5SGlFKUaBVLMmgWR0CtdMdlVcUudX2UKGgGaAloD0MIoGtfQC9c67+UhpRSlGgVSzJoFkdArXe5guyu6nV9lChoBmgJaA9DCCIAOPbsueW/lIaUUpRoFUsyaBZHQK13cU1yeZp1fZQoaAZoCWgPQwiLU62FWejuv5SGlFKUaBVLMmgWR0Ctdx070WdmdX2UKGgGaAloD0MIUTI5tTNM5r+UhpRSlGgVSzJoFkdArXbGRV6u4nV9lChoBmgJaA9DCFb0h2ae3O2/lIaUUpRoFUsyaBZHQK16TPrOZ9d1fZQoaAZoCWgPQwj/7EeKyDDqv5SGlFKUaBVLMmgWR0CtegSjxkNGdX2UKGgGaAloD0MIAFZHjnQG6L+UhpRSlGgVSzJoFkdArXmyVv/BFnV9lChoBmgJaA9DCJWZ0vpbAui/lIaUUpRoFUsyaBZHQK15XUdaMaV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 60000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (361 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.0801521447021514, "std_reward": 0.529147232264188, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-26T22:15:29.280509"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6efe79b023b013ab7fc44ac3307069a3fd20e8d2fd96c32801f782a2c5d6c0a9
3
+ size 3056