mjwong commited on
Commit
9a1ca53
1 Parent(s): 7040239

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +134 -3
README.md CHANGED
@@ -1,3 +1,134 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - multilingual
4
+ - en
5
+ - ar
6
+ - bg
7
+ - de
8
+ - el
9
+ - es
10
+ - fr
11
+ - hi
12
+ - ru
13
+ - sw
14
+ - th
15
+ - tr
16
+ - ur
17
+ - vi
18
+ - zh
19
+ license: mit
20
+ datasets:
21
+ - xnli
22
+ pipeline_tag: zero-shot-classification
23
+ widget:
24
+ - text: Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU
25
+ candidate_labels: politics, economy, entertainment, environment
26
+ base_model: intfloat/multilingual-e5-large-instruct
27
+ model-index:
28
+ - name: multilingual-e5-large-instruct-xnli
29
+ results: []
30
+ ---
31
+
32
+ # multilingual-e5-large-instruct-xnli
33
+
34
+ This model is a fine-tuned version of [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the XNLI dataset.
35
+
36
+ ## Model description
37
+
38
+ [Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf).
39
+ Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022
40
+
41
+ ## How to use the model
42
+
43
+ ### With the zero-shot classification pipeline
44
+
45
+ The model can be loaded with the `zero-shot-classification` pipeline like so:
46
+
47
+ ```python
48
+ from transformers import pipeline
49
+ classifier = pipeline("zero-shot-classification",
50
+ model="mjwong/multilingual-e5-large-instruct-xnli")
51
+ ```
52
+
53
+ You can then use this pipeline to classify sequences into any of the class names you specify.
54
+
55
+ ```python
56
+ sequence_to_classify = "Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU"
57
+ candidate_labels = ["politics", "economy", "entertainment", "environment"]
58
+ classifier(sequence_to_classify, candidate_labels)
59
+ ```
60
+
61
+ If more than one candidate label can be correct, pass `multi_class=True` to calculate each class independently:
62
+
63
+ ```python
64
+ candidate_labels = ["politics", "economy", "entertainment", "environment"]
65
+ classifier(sequence_to_classify, candidate_labels, multi_label=True)
66
+ ```
67
+
68
+ ### With manual PyTorch
69
+
70
+ The model can also be applied on NLI tasks like so:
71
+
72
+ ```python
73
+ import torch
74
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
75
+
76
+ # device = "cuda:0" or "cpu"
77
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
78
+
79
+ model_name = "mjwong/multilingual-e5-large-instruct-xnli"
80
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
81
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
82
+
83
+ premise = "But I thought you'd sworn off coffee."
84
+ hypothesis = "I thought that you vowed to drink more coffee."
85
+
86
+ input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
87
+ output = model(input["input_ids"].to(device))
88
+ prediction = torch.softmax(output["logits"][0], -1).tolist()
89
+ label_names = ["entailment", "neutral", "contradiction"]
90
+ prediction = {name: round(float(pred) * 100, 2) for pred, name in zip(prediction, label_names)}
91
+ print(prediction)
92
+ ```
93
+
94
+ ### Eval results
95
+ The model was evaluated using the XNLI test sets on 15 languages: English (en), Arabic (ar), Bulgarian (bg), German (de), Greek (el), Spanish (es), French (fr), Hindi (hi), Russian (ru), Swahili (sw), Thai (th), Turkish (tr), Urdu (ur), Vietnam (vi) and Chinese (zh). The metric used is accuracy.
96
+
97
+ |Datasets|en|ar|bg|de|el|es|fr|hi|ru|sw|th|tr|ur|vi|zh|
98
+ | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
99
+ |[multilingual-e5-base-xnli](https://huggingface.co/mjwong/multilingual-e5-base-xnli)|0.849|0.768|0.803|0.800|0.792|0.809|0.805|0.738|0.782|0.728|0.756|0.766|0.713|0.787|0.785|
100
+ |[multilingual-e5-base-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-base-xnli-anli)|0.811|0.711|0.751|0.759|0.746|0.778|0.765|0.685|0.728|0.662|0.705|0.716|0.683|0.736|0.740|
101
+ |[multilingual-e5-large-xnli](https://huggingface.co/mjwong/multilingual-e5-large-xnli)|0.867|0.791|0.832|0.825|0.823|0.837|0.824|0.778|0.806|0.749|0.787|0.793|0.738|0.813|0.808|
102
+ |[multilingual-e5-large-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-large-xnli-anli)|0.865|0.765|0.811|0.811|0.795|0.823|0.816|0.743|0.785|0.713|0.765|0.774|0.706|0.788|0.787|
103
+ |[multilingual-e5-large-instruct-xnli](https://huggingface.co/mjwong/multilingual-e5-large-instruct-xnli)|0.864|0.793|0.839|0.821|0.824|0.837|0.823|0.770|0.810|0.744|0.784|0.791|0.716|0.807|0.807|
104
+ |[multilingual-e5-large-instruct-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-large-instruct-xnli-anli)|0.861|0.780|0.816|0.808|0.806|0.825|0.816|0.758|0.799|0.727|0.775|0.780|0.721|0.787|0.795|
105
+
106
+ The model was also evaluated using the dev sets for MultiNLI and test sets for ANLI. The metric used is accuracy.
107
+
108
+ |Datasets|mnli_dev_m|mnli_dev_mm|anli_test_r1|anli_test_r2|anli_test_r3|
109
+ | :---: | :---: | :---: | :---: | :---: | :---: |
110
+ |[multilingual-e5-base-xnli](https://huggingface.co/mjwong/multilingual-e5-base-xnli)|0.835|0.837|0.287|0.276|0.301|
111
+ |[multilingual-e5-base-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-base-xnli-anli)|0.814|0.811|0.588|0.437|0.439|
112
+ |[multilingual-e5-large-xnli](https://huggingface.co/mjwong/multilingual-e5-large-xnli)|0.865|0.865|0.312|0.316|0.300|
113
+ |[multilingual-e5-large-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-large-xnli-anli)|0.863|0.863|0.623|0.456|0.455|
114
+ |[multilingual-e5-large-instruct-xnli](https://huggingface.co/mjwong/multilingual-e5-large-instruct-xnli)|0.867|0.866|0.341|0.330|0.323|
115
+ |[multilingual-e5-large-instruct-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-large-instruct-xnli-anli)|0.862|0.862|0.615|0.459|0.462|
116
+
117
+ ### Training hyperparameters
118
+
119
+ The following hyperparameters were used during training:
120
+
121
+ - learning_rate: 2e-05
122
+ - train_batch_size: 16
123
+ - eval_batch_size: 16
124
+ - seed: 42
125
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
126
+ - lr_scheduler_type: linear
127
+ - lr_scheduler_warmup_ratio: 0.1
128
+ - num_epochs: 1
129
+
130
+ ### Framework versions
131
+ - Transformers 4.28.1
132
+ - Pytorch 1.12.1+cu116
133
+ - Datasets 2.19.2
134
+ - Tokenizers 0.12.1