Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +506 -0
- config.json +27 -0
- config_sentence_transformers.json +14 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +62 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 1024,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
tags:
|
| 6 |
+
- sentence-transformers
|
| 7 |
+
- sentence-similarity
|
| 8 |
+
- feature-extraction
|
| 9 |
+
- dense
|
| 10 |
+
- generated_from_trainer
|
| 11 |
+
- dataset_size:801402
|
| 12 |
+
- loss:GISTEmbedLoss
|
| 13 |
+
base_model: heydariAI/persian-embeddings
|
| 14 |
+
widget:
|
| 15 |
+
- source_sentence: پروژکتور خیابانی 100 وات
|
| 16 |
+
sentences:
|
| 17 |
+
- پروژکتور پارکی 100 وات ضد آب
|
| 18 |
+
- آیفون مینی
|
| 19 |
+
- لامپ خیابانی 100 وات LED
|
| 20 |
+
- source_sentence: اسپری ابرسان بیواکوا
|
| 21 |
+
sentences:
|
| 22 |
+
- اسپری آبرسان صورت بیواکوا
|
| 23 |
+
- چراغ نفتی آشپزخانه سولان
|
| 24 |
+
- کرم مرطوب کننده بیواکوا
|
| 25 |
+
- source_sentence: شلوار بگ آبی
|
| 26 |
+
sentences:
|
| 27 |
+
- شلوار راحتی مردانه بگو
|
| 28 |
+
- پیراهن بگ آبی مردانه
|
| 29 |
+
- شلوار جین بگ آبی مردانه
|
| 30 |
+
- source_sentence: ورزشی mma
|
| 31 |
+
sentences:
|
| 32 |
+
- کاسه داخلی زودپز
|
| 33 |
+
- لباس ورزشی دوچرخه سواری
|
| 34 |
+
- دستکش بوکس و اماما
|
| 35 |
+
- source_sentence: پنکه رومیزی
|
| 36 |
+
sentences:
|
| 37 |
+
- چراغ رومیزی
|
| 38 |
+
- میله یو یوگا
|
| 39 |
+
- پنکه رومیزی کوچک
|
| 40 |
+
pipeline_tag: sentence-similarity
|
| 41 |
+
library_name: sentence-transformers
|
| 42 |
+
metrics:
|
| 43 |
+
- cosine_accuracy
|
| 44 |
+
model-index:
|
| 45 |
+
- name: xml-base base trained on Query triplets
|
| 46 |
+
results:
|
| 47 |
+
- task:
|
| 48 |
+
type: triplet
|
| 49 |
+
name: Triplet
|
| 50 |
+
dataset:
|
| 51 |
+
name: query dev
|
| 52 |
+
type: query-dev
|
| 53 |
+
metrics:
|
| 54 |
+
- type: cosine_accuracy
|
| 55 |
+
value: 0.9675767421722412
|
| 56 |
+
name: Cosine Accuracy
|
| 57 |
+
- task:
|
| 58 |
+
type: triplet
|
| 59 |
+
name: Triplet
|
| 60 |
+
dataset:
|
| 61 |
+
name: query test
|
| 62 |
+
type: query-test
|
| 63 |
+
metrics:
|
| 64 |
+
- type: cosine_accuracy
|
| 65 |
+
value: 0.9668284058570862
|
| 66 |
+
name: Cosine Accuracy
|
| 67 |
+
---
|
| 68 |
+
|
| 69 |
+
# xml-base base trained on Query triplets
|
| 70 |
+
|
| 71 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [heydariAI/persian-embeddings](https://huggingface.co/heydariAI/persian-embeddings) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 72 |
+
|
| 73 |
+
## Model Details
|
| 74 |
+
|
| 75 |
+
### Model Description
|
| 76 |
+
- **Model Type:** Sentence Transformer
|
| 77 |
+
- **Base model:** [heydariAI/persian-embeddings](https://huggingface.co/heydariAI/persian-embeddings) <!-- at revision 0c487ec2e3838e4b348ffac7281dc1f6e5fa2453 -->
|
| 78 |
+
- **Maximum Sequence Length:** 128 tokens
|
| 79 |
+
- **Output Dimensionality:** 1024 dimensions
|
| 80 |
+
- **Similarity Function:** Cosine Similarity
|
| 81 |
+
- **Training Dataset:**
|
| 82 |
+
- json
|
| 83 |
+
- **Language:** en
|
| 84 |
+
- **License:** apache-2.0
|
| 85 |
+
|
| 86 |
+
### Model Sources
|
| 87 |
+
|
| 88 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 89 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 90 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 91 |
+
|
| 92 |
+
### Full Model Architecture
|
| 93 |
+
|
| 94 |
+
```
|
| 95 |
+
SentenceTransformer(
|
| 96 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
|
| 97 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 98 |
+
)
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
## Usage
|
| 102 |
+
|
| 103 |
+
### Direct Usage (Sentence Transformers)
|
| 104 |
+
|
| 105 |
+
First install the Sentence Transformers library:
|
| 106 |
+
|
| 107 |
+
```bash
|
| 108 |
+
pip install -U sentence-transformers
|
| 109 |
+
```
|
| 110 |
+
|
| 111 |
+
Then you can load this model and run inference.
|
| 112 |
+
```python
|
| 113 |
+
from sentence_transformers import SentenceTransformer
|
| 114 |
+
|
| 115 |
+
# Download from the 🤗 Hub
|
| 116 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
| 117 |
+
# Run inference
|
| 118 |
+
sentences = [
|
| 119 |
+
'پنکه رومیزی',
|
| 120 |
+
'پنکه رومیزی کوچک',
|
| 121 |
+
'چراغ رومیزی',
|
| 122 |
+
]
|
| 123 |
+
embeddings = model.encode(sentences)
|
| 124 |
+
print(embeddings.shape)
|
| 125 |
+
# [3, 1024]
|
| 126 |
+
|
| 127 |
+
# Get the similarity scores for the embeddings
|
| 128 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 129 |
+
print(similarities)
|
| 130 |
+
# tensor([[1.0000, 0.8511, 0.2971],
|
| 131 |
+
# [0.8511, 1.0000, 0.2242],
|
| 132 |
+
# [0.2971, 0.2242, 1.0000]])
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
<!--
|
| 136 |
+
### Direct Usage (Transformers)
|
| 137 |
+
|
| 138 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 139 |
+
|
| 140 |
+
</details>
|
| 141 |
+
-->
|
| 142 |
+
|
| 143 |
+
<!--
|
| 144 |
+
### Downstream Usage (Sentence Transformers)
|
| 145 |
+
|
| 146 |
+
You can finetune this model on your own dataset.
|
| 147 |
+
|
| 148 |
+
<details><summary>Click to expand</summary>
|
| 149 |
+
|
| 150 |
+
</details>
|
| 151 |
+
-->
|
| 152 |
+
|
| 153 |
+
<!--
|
| 154 |
+
### Out-of-Scope Use
|
| 155 |
+
|
| 156 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 157 |
+
-->
|
| 158 |
+
|
| 159 |
+
## Evaluation
|
| 160 |
+
|
| 161 |
+
### Metrics
|
| 162 |
+
|
| 163 |
+
#### Triplet
|
| 164 |
+
|
| 165 |
+
* Datasets: `query-dev` and `query-test`
|
| 166 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
| 167 |
+
|
| 168 |
+
| Metric | query-dev | query-test |
|
| 169 |
+
|:--------------------|:-----------|:-----------|
|
| 170 |
+
| **cosine_accuracy** | **0.9676** | **0.9668** |
|
| 171 |
+
|
| 172 |
+
<!--
|
| 173 |
+
## Bias, Risks and Limitations
|
| 174 |
+
|
| 175 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 176 |
+
-->
|
| 177 |
+
|
| 178 |
+
<!--
|
| 179 |
+
### Recommendations
|
| 180 |
+
|
| 181 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 182 |
+
-->
|
| 183 |
+
|
| 184 |
+
## Training Details
|
| 185 |
+
|
| 186 |
+
### Training Dataset
|
| 187 |
+
|
| 188 |
+
#### json
|
| 189 |
+
|
| 190 |
+
* Dataset: json
|
| 191 |
+
* Size: 801,402 training samples
|
| 192 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
| 193 |
+
* Approximate statistics based on the first 1000 samples:
|
| 194 |
+
| | anchor | positive | negative |
|
| 195 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 196 |
+
| type | string | string | string |
|
| 197 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 7.99 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.86 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.13 tokens</li><li>max: 16 tokens</li></ul> |
|
| 198 |
+
* Samples:
|
| 199 |
+
| anchor | positive | negative |
|
| 200 |
+
|:------------------------------------|:----------------------------------------------|:--------------------------------------|
|
| 201 |
+
| <code>حراجی لباس بچه</code> | <code>لباس بچگانه حراجی</code> | <code>حراجی کفش زنانه</code> |
|
| 202 |
+
| <code>گوشواره طلا دو حلقه اس</code> | <code>گوشواره طلا زنانه دو حلقه</code> | <code>انگشتر طلا زنانه دو بندی</code> |
|
| 203 |
+
| <code>redmy a3قاب گوشی</code> | <code>قاب گوشی مناسب برای گوشی ردمی A3</code> | <code>شارژر گوشی ردمی A3</code> |
|
| 204 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 205 |
+
```json
|
| 206 |
+
{
|
| 207 |
+
"guide": "SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')",
|
| 208 |
+
"temperature": 0.0493,
|
| 209 |
+
"margin_strategy": "relative",
|
| 210 |
+
"margin": 0.0516,
|
| 211 |
+
"contrast_anchors": true,
|
| 212 |
+
"contrast_positives": true,
|
| 213 |
+
"gather_across_devices": false
|
| 214 |
+
}
|
| 215 |
+
```
|
| 216 |
+
|
| 217 |
+
### Evaluation Dataset
|
| 218 |
+
|
| 219 |
+
#### json
|
| 220 |
+
|
| 221 |
+
* Dataset: json
|
| 222 |
+
* Size: 100,175 evaluation samples
|
| 223 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
| 224 |
+
* Approximate statistics based on the first 1000 samples:
|
| 225 |
+
| | anchor | positive | negative |
|
| 226 |
+
|:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 227 |
+
| type | string | string | string |
|
| 228 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 7.8 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.86 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.09 tokens</li><li>max: 16 tokens</li></ul> |
|
| 229 |
+
* Samples:
|
| 230 |
+
| anchor | positive | negative |
|
| 231 |
+
|:-------------------------------------------|:---------------------------------------------------|:------------------------------------------|
|
| 232 |
+
| <code>کراپ تیشرت زنانه ورزشی</code> | <code>تیشرت کراپ زنانه ورزشی</code> | <code>شلوار ورزشی زنانه</code> |
|
| 233 |
+
| <code>فیشیال دستگاه</code> | <code>دستگاه بخور صورت برای فیشیال</code> | <code>دستگاه تصفیه هوای خانگی</code> |
|
| 234 |
+
| <code>پیراهن مشکی مردانه یقه خرگوشی</code> | <code>پیراهن مردانه مشکی یقه دار طرح خرگوشی</code> | <code>شلوار مشکی مردانه یقه خرگوشی</code> |
|
| 235 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 236 |
+
```json
|
| 237 |
+
{
|
| 238 |
+
"guide": "SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')",
|
| 239 |
+
"temperature": 0.0493,
|
| 240 |
+
"margin_strategy": "relative",
|
| 241 |
+
"margin": 0.0516,
|
| 242 |
+
"contrast_anchors": true,
|
| 243 |
+
"contrast_positives": true,
|
| 244 |
+
"gather_across_devices": false
|
| 245 |
+
}
|
| 246 |
+
```
|
| 247 |
+
|
| 248 |
+
### Training Hyperparameters
|
| 249 |
+
#### Non-Default Hyperparameters
|
| 250 |
+
|
| 251 |
+
- `eval_strategy`: steps
|
| 252 |
+
- `per_device_train_batch_size`: 16
|
| 253 |
+
- `per_device_eval_batch_size`: 16
|
| 254 |
+
- `learning_rate`: 1.1701480000238433e-05
|
| 255 |
+
- `num_train_epochs`: 5
|
| 256 |
+
- `warmup_ratio`: 0.15873389962653162
|
| 257 |
+
- `fp16`: True
|
| 258 |
+
- `batch_sampler`: no_duplicates
|
| 259 |
+
|
| 260 |
+
#### All Hyperparameters
|
| 261 |
+
<details><summary>Click to expand</summary>
|
| 262 |
+
|
| 263 |
+
- `overwrite_output_dir`: False
|
| 264 |
+
- `do_predict`: False
|
| 265 |
+
- `eval_strategy`: steps
|
| 266 |
+
- `prediction_loss_only`: True
|
| 267 |
+
- `per_device_train_batch_size`: 16
|
| 268 |
+
- `per_device_eval_batch_size`: 16
|
| 269 |
+
- `per_gpu_train_batch_size`: None
|
| 270 |
+
- `per_gpu_eval_batch_size`: None
|
| 271 |
+
- `gradient_accumulation_steps`: 1
|
| 272 |
+
- `eval_accumulation_steps`: None
|
| 273 |
+
- `torch_empty_cache_steps`: None
|
| 274 |
+
- `learning_rate`: 1.1701480000238433e-05
|
| 275 |
+
- `weight_decay`: 0.0
|
| 276 |
+
- `adam_beta1`: 0.9
|
| 277 |
+
- `adam_beta2`: 0.999
|
| 278 |
+
- `adam_epsilon`: 1e-08
|
| 279 |
+
- `max_grad_norm`: 1.0
|
| 280 |
+
- `num_train_epochs`: 5
|
| 281 |
+
- `max_steps`: -1
|
| 282 |
+
- `lr_scheduler_type`: linear
|
| 283 |
+
- `lr_scheduler_kwargs`: {}
|
| 284 |
+
- `warmup_ratio`: 0.15873389962653162
|
| 285 |
+
- `warmup_steps`: 0
|
| 286 |
+
- `log_level`: passive
|
| 287 |
+
- `log_level_replica`: warning
|
| 288 |
+
- `log_on_each_node`: True
|
| 289 |
+
- `logging_nan_inf_filter`: True
|
| 290 |
+
- `save_safetensors`: True
|
| 291 |
+
- `save_on_each_node`: False
|
| 292 |
+
- `save_only_model`: False
|
| 293 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 294 |
+
- `no_cuda`: False
|
| 295 |
+
- `use_cpu`: False
|
| 296 |
+
- `use_mps_device`: False
|
| 297 |
+
- `seed`: 42
|
| 298 |
+
- `data_seed`: None
|
| 299 |
+
- `jit_mode_eval`: False
|
| 300 |
+
- `use_ipex`: False
|
| 301 |
+
- `bf16`: False
|
| 302 |
+
- `fp16`: True
|
| 303 |
+
- `fp16_opt_level`: O1
|
| 304 |
+
- `half_precision_backend`: auto
|
| 305 |
+
- `bf16_full_eval`: False
|
| 306 |
+
- `fp16_full_eval`: False
|
| 307 |
+
- `tf32`: None
|
| 308 |
+
- `local_rank`: 3
|
| 309 |
+
- `ddp_backend`: None
|
| 310 |
+
- `tpu_num_cores`: None
|
| 311 |
+
- `tpu_metrics_debug`: False
|
| 312 |
+
- `debug`: []
|
| 313 |
+
- `dataloader_drop_last`: True
|
| 314 |
+
- `dataloader_num_workers`: 0
|
| 315 |
+
- `dataloader_prefetch_factor`: None
|
| 316 |
+
- `past_index`: -1
|
| 317 |
+
- `disable_tqdm`: False
|
| 318 |
+
- `remove_unused_columns`: True
|
| 319 |
+
- `label_names`: None
|
| 320 |
+
- `load_best_model_at_end`: False
|
| 321 |
+
- `ignore_data_skip`: False
|
| 322 |
+
- `fsdp`: []
|
| 323 |
+
- `fsdp_min_num_params`: 0
|
| 324 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 325 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 326 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 327 |
+
- `deepspeed`: None
|
| 328 |
+
- `label_smoothing_factor`: 0.0
|
| 329 |
+
- `optim`: adamw_torch
|
| 330 |
+
- `optim_args`: None
|
| 331 |
+
- `adafactor`: False
|
| 332 |
+
- `group_by_length`: False
|
| 333 |
+
- `length_column_name`: length
|
| 334 |
+
- `ddp_find_unused_parameters`: None
|
| 335 |
+
- `ddp_bucket_cap_mb`: None
|
| 336 |
+
- `ddp_broadcast_buffers`: False
|
| 337 |
+
- `dataloader_pin_memory`: True
|
| 338 |
+
- `dataloader_persistent_workers`: False
|
| 339 |
+
- `skip_memory_metrics`: True
|
| 340 |
+
- `use_legacy_prediction_loop`: False
|
| 341 |
+
- `push_to_hub`: False
|
| 342 |
+
- `resume_from_checkpoint`: None
|
| 343 |
+
- `hub_model_id`: None
|
| 344 |
+
- `hub_strategy`: every_save
|
| 345 |
+
- `hub_private_repo`: None
|
| 346 |
+
- `hub_always_push`: False
|
| 347 |
+
- `hub_revision`: None
|
| 348 |
+
- `gradient_checkpointing`: False
|
| 349 |
+
- `gradient_checkpointing_kwargs`: None
|
| 350 |
+
- `include_inputs_for_metrics`: False
|
| 351 |
+
- `include_for_metrics`: []
|
| 352 |
+
- `eval_do_concat_batches`: True
|
| 353 |
+
- `fp16_backend`: auto
|
| 354 |
+
- `push_to_hub_model_id`: None
|
| 355 |
+
- `push_to_hub_organization`: None
|
| 356 |
+
- `mp_parameters`:
|
| 357 |
+
- `auto_find_batch_size`: False
|
| 358 |
+
- `full_determinism`: False
|
| 359 |
+
- `torchdynamo`: None
|
| 360 |
+
- `ray_scope`: last
|
| 361 |
+
- `ddp_timeout`: 1800
|
| 362 |
+
- `torch_compile`: False
|
| 363 |
+
- `torch_compile_backend`: None
|
| 364 |
+
- `torch_compile_mode`: None
|
| 365 |
+
- `include_tokens_per_second`: False
|
| 366 |
+
- `include_num_input_tokens_seen`: False
|
| 367 |
+
- `neftune_noise_alpha`: None
|
| 368 |
+
- `optim_target_modules`: None
|
| 369 |
+
- `batch_eval_metrics`: False
|
| 370 |
+
- `eval_on_start`: False
|
| 371 |
+
- `use_liger_kernel`: False
|
| 372 |
+
- `liger_kernel_config`: None
|
| 373 |
+
- `eval_use_gather_object`: False
|
| 374 |
+
- `average_tokens_across_devices`: True
|
| 375 |
+
- `prompts`: None
|
| 376 |
+
- `batch_sampler`: no_duplicates
|
| 377 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 378 |
+
- `router_mapping`: {}
|
| 379 |
+
- `learning_rate_mapping`: {}
|
| 380 |
+
|
| 381 |
+
</details>
|
| 382 |
+
|
| 383 |
+
### Training Logs
|
| 384 |
+
| Epoch | Step | Training Loss | Validation Loss | query-dev_cosine_accuracy | query-test_cosine_accuracy |
|
| 385 |
+
|:------:|:-----:|:-------------:|:---------------:|:-------------------------:|:--------------------------:|
|
| 386 |
+
| -1 | -1 | - | - | 0.8824 | - |
|
| 387 |
+
| 0.0799 | 1000 | 0.2209 | 0.1147 | 0.9180 | - |
|
| 388 |
+
| 0.1597 | 2000 | 0.1248 | 0.0842 | 0.9316 | - |
|
| 389 |
+
| 0.2396 | 3000 | 0.0962 | 0.0693 | 0.9370 | - |
|
| 390 |
+
| 0.3195 | 4000 | 0.0842 | 0.0611 | 0.9426 | - |
|
| 391 |
+
| 0.3993 | 5000 | 0.0742 | 0.0555 | 0.9458 | - |
|
| 392 |
+
| 0.4792 | 6000 | 0.0681 | 0.0538 | 0.9490 | - |
|
| 393 |
+
| 0.5591 | 7000 | 0.0661 | 0.0498 | 0.9488 | - |
|
| 394 |
+
| 0.6389 | 8000 | 0.0637 | 0.0471 | 0.9525 | - |
|
| 395 |
+
| 0.7188 | 9000 | 0.0609 | 0.0461 | 0.9528 | - |
|
| 396 |
+
| 0.7987 | 10000 | 0.0573 | 0.0452 | 0.9525 | - |
|
| 397 |
+
| 0.8785 | 11000 | 0.055 | 0.0449 | 0.9550 | - |
|
| 398 |
+
| 0.9584 | 12000 | 0.0541 | 0.0431 | 0.9556 | - |
|
| 399 |
+
| 1.0383 | 13000 | 0.0553 | 0.0427 | 0.9547 | - |
|
| 400 |
+
| 1.1181 | 14000 | 0.053 | 0.0402 | 0.9586 | - |
|
| 401 |
+
| 1.1980 | 15000 | 0.0464 | 0.0401 | 0.9583 | - |
|
| 402 |
+
| 1.2779 | 16000 | 0.0437 | 0.0380 | 0.9586 | - |
|
| 403 |
+
| 1.3577 | 17000 | 0.0426 | 0.0373 | 0.9599 | - |
|
| 404 |
+
| 1.4376 | 18000 | 0.038 | 0.0376 | 0.9593 | - |
|
| 405 |
+
| 1.5175 | 19000 | 0.037 | 0.0361 | 0.9605 | - |
|
| 406 |
+
| 1.5973 | 20000 | 0.0348 | 0.0364 | 0.9607 | - |
|
| 407 |
+
| 1.6772 | 21000 | 0.033 | 0.0349 | 0.9621 | - |
|
| 408 |
+
| 1.7570 | 22000 | 0.029 | 0.0347 | 0.9609 | - |
|
| 409 |
+
| 1.8369 | 23000 | 0.0278 | 0.0345 | 0.9617 | - |
|
| 410 |
+
| 1.9168 | 24000 | 0.0261 | 0.0346 | 0.9620 | - |
|
| 411 |
+
| 1.9966 | 25000 | 0.0269 | 0.0334 | 0.9626 | - |
|
| 412 |
+
| 2.0765 | 26000 | 0.0267 | 0.0335 | 0.9632 | - |
|
| 413 |
+
| 2.1564 | 27000 | 0.0246 | 0.0333 | 0.9643 | - |
|
| 414 |
+
| 2.2362 | 28000 | 0.0227 | 0.0330 | 0.9629 | - |
|
| 415 |
+
| 2.3161 | 29000 | 0.0224 | 0.0327 | 0.9642 | - |
|
| 416 |
+
| 2.3960 | 30000 | 0.0209 | 0.0325 | 0.9642 | - |
|
| 417 |
+
| 2.4758 | 31000 | 0.0195 | 0.0330 | 0.9648 | - |
|
| 418 |
+
| 2.5557 | 32000 | 0.0191 | 0.0327 | 0.9652 | - |
|
| 419 |
+
| 2.6356 | 33000 | 0.0189 | 0.0316 | 0.9643 | - |
|
| 420 |
+
| 2.7154 | 34000 | 0.0165 | 0.0324 | 0.9645 | - |
|
| 421 |
+
| 2.7953 | 35000 | 0.015 | 0.0309 | 0.9644 | - |
|
| 422 |
+
| 2.8752 | 36000 | 0.0142 | 0.0323 | 0.9654 | - |
|
| 423 |
+
| 2.9550 | 37000 | 0.0139 | 0.0316 | 0.9646 | - |
|
| 424 |
+
| 3.0349 | 38000 | 0.0151 | 0.0303 | 0.9650 | - |
|
| 425 |
+
| 3.1148 | 39000 | 0.0145 | 0.0307 | 0.9664 | - |
|
| 426 |
+
| 3.1946 | 40000 | 0.0128 | 0.0303 | 0.9656 | - |
|
| 427 |
+
| 3.2745 | 41000 | 0.0127 | 0.0300 | 0.9659 | - |
|
| 428 |
+
| 3.3544 | 42000 | 0.0125 | 0.0305 | 0.9663 | - |
|
| 429 |
+
| 3.4342 | 43000 | 0.0106 | 0.0305 | 0.9661 | - |
|
| 430 |
+
| 3.5141 | 44000 | 0.011 | 0.0308 | 0.9670 | - |
|
| 431 |
+
| 3.5940 | 45000 | 0.0105 | 0.0295 | 0.9665 | - |
|
| 432 |
+
| 3.6738 | 46000 | 0.0101 | 0.0297 | 0.9666 | - |
|
| 433 |
+
| 3.7537 | 47000 | 0.0091 | 0.0299 | 0.9667 | - |
|
| 434 |
+
| 3.8336 | 48000 | 0.009 | 0.0297 | 0.9666 | - |
|
| 435 |
+
| 3.9134 | 49000 | 0.0082 | 0.0298 | 0.9662 | - |
|
| 436 |
+
| 3.9933 | 50000 | 0.0086 | 0.0301 | 0.9668 | - |
|
| 437 |
+
| 4.0732 | 51000 | 0.0087 | 0.0290 | 0.9674 | - |
|
| 438 |
+
| 4.1530 | 52000 | 0.0084 | 0.0287 | 0.9678 | - |
|
| 439 |
+
| 4.2329 | 53000 | 0.0078 | 0.0288 | 0.9667 | - |
|
| 440 |
+
| 4.3128 | 54000 | 0.008 | 0.0287 | 0.9669 | - |
|
| 441 |
+
| 4.3926 | 55000 | 0.0074 | 0.0287 | 0.9669 | - |
|
| 442 |
+
| 4.4725 | 56000 | 0.007 | 0.0288 | 0.9677 | - |
|
| 443 |
+
| 4.5524 | 57000 | 0.0068 | 0.0288 | 0.9674 | - |
|
| 444 |
+
| 4.6322 | 58000 | 0.007 | 0.0282 | 0.9677 | - |
|
| 445 |
+
| 4.7121 | 59000 | 0.0064 | 0.0286 | 0.9678 | - |
|
| 446 |
+
| 4.7919 | 60000 | 0.006 | 0.0283 | 0.9675 | - |
|
| 447 |
+
| 4.8718 | 61000 | 0.0059 | 0.0284 | 0.9675 | - |
|
| 448 |
+
| 4.9517 | 62000 | 0.0057 | 0.0284 | 0.9676 | - |
|
| 449 |
+
| -1 | -1 | - | - | 0.9676 | 0.9668 |
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
### Framework Versions
|
| 453 |
+
- Python: 3.12.11
|
| 454 |
+
- Sentence Transformers: 5.1.0
|
| 455 |
+
- Transformers: 4.55.0
|
| 456 |
+
- PyTorch: 2.7.1+cu126
|
| 457 |
+
- Accelerate: 1.10.0
|
| 458 |
+
- Datasets: 4.0.0
|
| 459 |
+
- Tokenizers: 0.21.4
|
| 460 |
+
|
| 461 |
+
## Citation
|
| 462 |
+
|
| 463 |
+
### BibTeX
|
| 464 |
+
|
| 465 |
+
#### Sentence Transformers
|
| 466 |
+
```bibtex
|
| 467 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 468 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 469 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 470 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 471 |
+
month = "11",
|
| 472 |
+
year = "2019",
|
| 473 |
+
publisher = "Association for Computational Linguistics",
|
| 474 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 475 |
+
}
|
| 476 |
+
```
|
| 477 |
+
|
| 478 |
+
#### GISTEmbedLoss
|
| 479 |
+
```bibtex
|
| 480 |
+
@misc{solatorio2024gistembed,
|
| 481 |
+
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
|
| 482 |
+
author={Aivin V. Solatorio},
|
| 483 |
+
year={2024},
|
| 484 |
+
eprint={2402.16829},
|
| 485 |
+
archivePrefix={arXiv},
|
| 486 |
+
primaryClass={cs.LG}
|
| 487 |
+
}
|
| 488 |
+
```
|
| 489 |
+
|
| 490 |
+
<!--
|
| 491 |
+
## Glossary
|
| 492 |
+
|
| 493 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 494 |
+
-->
|
| 495 |
+
|
| 496 |
+
<!--
|
| 497 |
+
## Model Card Authors
|
| 498 |
+
|
| 499 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 500 |
+
-->
|
| 501 |
+
|
| 502 |
+
<!--
|
| 503 |
+
## Model Card Contact
|
| 504 |
+
|
| 505 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 506 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"XLMRobertaModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"bos_token_id": 0,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"eos_token_id": 2,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 1024,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 4096,
|
| 14 |
+
"layer_norm_eps": 1e-05,
|
| 15 |
+
"max_position_embeddings": 514,
|
| 16 |
+
"model_type": "xlm-roberta",
|
| 17 |
+
"num_attention_heads": 16,
|
| 18 |
+
"num_hidden_layers": 24,
|
| 19 |
+
"output_past": true,
|
| 20 |
+
"pad_token_id": 1,
|
| 21 |
+
"position_embedding_type": "absolute",
|
| 22 |
+
"torch_dtype": "float32",
|
| 23 |
+
"transformers_version": "4.55.0",
|
| 24 |
+
"type_vocab_size": 1,
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"vocab_size": 250002
|
| 27 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "SentenceTransformer",
|
| 3 |
+
"__version__": {
|
| 4 |
+
"sentence_transformers": "5.1.0",
|
| 5 |
+
"transformers": "4.55.0",
|
| 6 |
+
"pytorch": "2.7.1+cu126"
|
| 7 |
+
},
|
| 8 |
+
"prompts": {
|
| 9 |
+
"query": "",
|
| 10 |
+
"document": ""
|
| 11 |
+
},
|
| 12 |
+
"default_prompt_name": null,
|
| 13 |
+
"similarity_fn_name": "cosine"
|
| 14 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c1fffb78289e413ff179e56d60180780dd12cb19e066b276b61cc78a498333dd
|
| 3 |
+
size 2239607176
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 128,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
|
| 3 |
+
size 17082987
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": true,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"eos_token": "</s>",
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "<mask>",
|
| 50 |
+
"max_length": 512,
|
| 51 |
+
"model_max_length": 512,
|
| 52 |
+
"pad_to_multiple_of": null,
|
| 53 |
+
"pad_token": "<pad>",
|
| 54 |
+
"pad_token_type_id": 0,
|
| 55 |
+
"padding_side": "right",
|
| 56 |
+
"sep_token": "</s>",
|
| 57 |
+
"stride": 0,
|
| 58 |
+
"tokenizer_class": "XLMRobertaTokenizerFast",
|
| 59 |
+
"truncation_side": "right",
|
| 60 |
+
"truncation_strategy": "longest_first",
|
| 61 |
+
"unk_token": "<unk>"
|
| 62 |
+
}
|