mjaliz commited on
Commit
6979b41
·
verified ·
1 Parent(s): 877b2ee

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,506 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - dense
10
+ - generated_from_trainer
11
+ - dataset_size:801402
12
+ - loss:GISTEmbedLoss
13
+ base_model: heydariAI/persian-embeddings
14
+ widget:
15
+ - source_sentence: پروژکتور خیابانی 100 وات
16
+ sentences:
17
+ - پروژکتور پارکی 100 وات ضد آب
18
+ - آیفون مینی
19
+ - لامپ خیابانی 100 وات LED
20
+ - source_sentence: اسپری ابرسان بیواکوا
21
+ sentences:
22
+ - اسپری آبرسان صورت بیواکوا
23
+ - چراغ نفتی آشپزخانه سولان
24
+ - کرم مرطوب کننده بیواکوا
25
+ - source_sentence: شلوار بگ آبی
26
+ sentences:
27
+ - شلوار راحتی مردانه بگو
28
+ - پیراهن بگ آبی مردانه
29
+ - شلوار جین بگ آبی مردانه
30
+ - source_sentence: ورزشی mma
31
+ sentences:
32
+ - کاسه داخلی زودپز
33
+ - لباس ورزشی دوچرخه سواری
34
+ - دستکش بوکس و ام‌ام‌ا
35
+ - source_sentence: پنکه رومیزی
36
+ sentences:
37
+ - چراغ رومیزی
38
+ - میله یو یوگا
39
+ - پنکه رومیزی کوچک
40
+ pipeline_tag: sentence-similarity
41
+ library_name: sentence-transformers
42
+ metrics:
43
+ - cosine_accuracy
44
+ model-index:
45
+ - name: xml-base base trained on Query triplets
46
+ results:
47
+ - task:
48
+ type: triplet
49
+ name: Triplet
50
+ dataset:
51
+ name: query dev
52
+ type: query-dev
53
+ metrics:
54
+ - type: cosine_accuracy
55
+ value: 0.9675767421722412
56
+ name: Cosine Accuracy
57
+ - task:
58
+ type: triplet
59
+ name: Triplet
60
+ dataset:
61
+ name: query test
62
+ type: query-test
63
+ metrics:
64
+ - type: cosine_accuracy
65
+ value: 0.9668284058570862
66
+ name: Cosine Accuracy
67
+ ---
68
+
69
+ # xml-base base trained on Query triplets
70
+
71
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [heydariAI/persian-embeddings](https://huggingface.co/heydariAI/persian-embeddings) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
72
+
73
+ ## Model Details
74
+
75
+ ### Model Description
76
+ - **Model Type:** Sentence Transformer
77
+ - **Base model:** [heydariAI/persian-embeddings](https://huggingface.co/heydariAI/persian-embeddings) <!-- at revision 0c487ec2e3838e4b348ffac7281dc1f6e5fa2453 -->
78
+ - **Maximum Sequence Length:** 128 tokens
79
+ - **Output Dimensionality:** 1024 dimensions
80
+ - **Similarity Function:** Cosine Similarity
81
+ - **Training Dataset:**
82
+ - json
83
+ - **Language:** en
84
+ - **License:** apache-2.0
85
+
86
+ ### Model Sources
87
+
88
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
89
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
90
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
91
+
92
+ ### Full Model Architecture
93
+
94
+ ```
95
+ SentenceTransformer(
96
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
97
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
98
+ )
99
+ ```
100
+
101
+ ## Usage
102
+
103
+ ### Direct Usage (Sentence Transformers)
104
+
105
+ First install the Sentence Transformers library:
106
+
107
+ ```bash
108
+ pip install -U sentence-transformers
109
+ ```
110
+
111
+ Then you can load this model and run inference.
112
+ ```python
113
+ from sentence_transformers import SentenceTransformer
114
+
115
+ # Download from the 🤗 Hub
116
+ model = SentenceTransformer("sentence_transformers_model_id")
117
+ # Run inference
118
+ sentences = [
119
+ 'پنکه رومیزی',
120
+ 'پنکه رومیزی کوچک',
121
+ 'چراغ رومیزی',
122
+ ]
123
+ embeddings = model.encode(sentences)
124
+ print(embeddings.shape)
125
+ # [3, 1024]
126
+
127
+ # Get the similarity scores for the embeddings
128
+ similarities = model.similarity(embeddings, embeddings)
129
+ print(similarities)
130
+ # tensor([[1.0000, 0.8511, 0.2971],
131
+ # [0.8511, 1.0000, 0.2242],
132
+ # [0.2971, 0.2242, 1.0000]])
133
+ ```
134
+
135
+ <!--
136
+ ### Direct Usage (Transformers)
137
+
138
+ <details><summary>Click to see the direct usage in Transformers</summary>
139
+
140
+ </details>
141
+ -->
142
+
143
+ <!--
144
+ ### Downstream Usage (Sentence Transformers)
145
+
146
+ You can finetune this model on your own dataset.
147
+
148
+ <details><summary>Click to expand</summary>
149
+
150
+ </details>
151
+ -->
152
+
153
+ <!--
154
+ ### Out-of-Scope Use
155
+
156
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
157
+ -->
158
+
159
+ ## Evaluation
160
+
161
+ ### Metrics
162
+
163
+ #### Triplet
164
+
165
+ * Datasets: `query-dev` and `query-test`
166
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
167
+
168
+ | Metric | query-dev | query-test |
169
+ |:--------------------|:-----------|:-----------|
170
+ | **cosine_accuracy** | **0.9676** | **0.9668** |
171
+
172
+ <!--
173
+ ## Bias, Risks and Limitations
174
+
175
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
176
+ -->
177
+
178
+ <!--
179
+ ### Recommendations
180
+
181
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
182
+ -->
183
+
184
+ ## Training Details
185
+
186
+ ### Training Dataset
187
+
188
+ #### json
189
+
190
+ * Dataset: json
191
+ * Size: 801,402 training samples
192
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
193
+ * Approximate statistics based on the first 1000 samples:
194
+ | | anchor | positive | negative |
195
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
196
+ | type | string | string | string |
197
+ | details | <ul><li>min: 3 tokens</li><li>mean: 7.99 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.86 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.13 tokens</li><li>max: 16 tokens</li></ul> |
198
+ * Samples:
199
+ | anchor | positive | negative |
200
+ |:------------------------------------|:----------------------------------------------|:--------------------------------------|
201
+ | <code>حراجی لباس بچه</code> | <code>لباس بچگانه حراجی</code> | <code>حراجی کفش زنانه</code> |
202
+ | <code>گوشواره طلا دو حلقه اس</code> | <code>گوشواره طلا زنانه دو حلقه</code> | <code>انگشتر طلا زنانه دو بندی</code> |
203
+ | <code>redmy a3قاب گوشی</code> | <code>قاب گوشی مناسب برای گوشی ردمی A3</code> | <code>شارژر گوشی ردمی A3</code> |
204
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
205
+ ```json
206
+ {
207
+ "guide": "SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')",
208
+ "temperature": 0.0493,
209
+ "margin_strategy": "relative",
210
+ "margin": 0.0516,
211
+ "contrast_anchors": true,
212
+ "contrast_positives": true,
213
+ "gather_across_devices": false
214
+ }
215
+ ```
216
+
217
+ ### Evaluation Dataset
218
+
219
+ #### json
220
+
221
+ * Dataset: json
222
+ * Size: 100,175 evaluation samples
223
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
224
+ * Approximate statistics based on the first 1000 samples:
225
+ | | anchor | positive | negative |
226
+ |:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
227
+ | type | string | string | string |
228
+ | details | <ul><li>min: 3 tokens</li><li>mean: 7.8 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.86 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.09 tokens</li><li>max: 16 tokens</li></ul> |
229
+ * Samples:
230
+ | anchor | positive | negative |
231
+ |:-------------------------------------------|:---------------------------------------------------|:------------------------------------------|
232
+ | <code>کراپ تیشرت زنانه ورزشی</code> | <code>تیشرت کراپ زنانه ورزشی</code> | <code>شلوار ورزشی زنانه</code> |
233
+ | <code>فیشیال دستگاه</code> | <code>دستگاه بخور صورت برای فیشیال</code> | <code>دستگاه تصفیه هوای خانگی</code> |
234
+ | <code>پیراهن مشکی مردانه یقه خرگوشی</code> | <code>پیراهن مردانه مشکی یقه دار طرح خرگوشی</code> | <code>شلوار مشکی مردانه یقه خرگوشی</code> |
235
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
236
+ ```json
237
+ {
238
+ "guide": "SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')",
239
+ "temperature": 0.0493,
240
+ "margin_strategy": "relative",
241
+ "margin": 0.0516,
242
+ "contrast_anchors": true,
243
+ "contrast_positives": true,
244
+ "gather_across_devices": false
245
+ }
246
+ ```
247
+
248
+ ### Training Hyperparameters
249
+ #### Non-Default Hyperparameters
250
+
251
+ - `eval_strategy`: steps
252
+ - `per_device_train_batch_size`: 16
253
+ - `per_device_eval_batch_size`: 16
254
+ - `learning_rate`: 1.1701480000238433e-05
255
+ - `num_train_epochs`: 5
256
+ - `warmup_ratio`: 0.15873389962653162
257
+ - `fp16`: True
258
+ - `batch_sampler`: no_duplicates
259
+
260
+ #### All Hyperparameters
261
+ <details><summary>Click to expand</summary>
262
+
263
+ - `overwrite_output_dir`: False
264
+ - `do_predict`: False
265
+ - `eval_strategy`: steps
266
+ - `prediction_loss_only`: True
267
+ - `per_device_train_batch_size`: 16
268
+ - `per_device_eval_batch_size`: 16
269
+ - `per_gpu_train_batch_size`: None
270
+ - `per_gpu_eval_batch_size`: None
271
+ - `gradient_accumulation_steps`: 1
272
+ - `eval_accumulation_steps`: None
273
+ - `torch_empty_cache_steps`: None
274
+ - `learning_rate`: 1.1701480000238433e-05
275
+ - `weight_decay`: 0.0
276
+ - `adam_beta1`: 0.9
277
+ - `adam_beta2`: 0.999
278
+ - `adam_epsilon`: 1e-08
279
+ - `max_grad_norm`: 1.0
280
+ - `num_train_epochs`: 5
281
+ - `max_steps`: -1
282
+ - `lr_scheduler_type`: linear
283
+ - `lr_scheduler_kwargs`: {}
284
+ - `warmup_ratio`: 0.15873389962653162
285
+ - `warmup_steps`: 0
286
+ - `log_level`: passive
287
+ - `log_level_replica`: warning
288
+ - `log_on_each_node`: True
289
+ - `logging_nan_inf_filter`: True
290
+ - `save_safetensors`: True
291
+ - `save_on_each_node`: False
292
+ - `save_only_model`: False
293
+ - `restore_callback_states_from_checkpoint`: False
294
+ - `no_cuda`: False
295
+ - `use_cpu`: False
296
+ - `use_mps_device`: False
297
+ - `seed`: 42
298
+ - `data_seed`: None
299
+ - `jit_mode_eval`: False
300
+ - `use_ipex`: False
301
+ - `bf16`: False
302
+ - `fp16`: True
303
+ - `fp16_opt_level`: O1
304
+ - `half_precision_backend`: auto
305
+ - `bf16_full_eval`: False
306
+ - `fp16_full_eval`: False
307
+ - `tf32`: None
308
+ - `local_rank`: 3
309
+ - `ddp_backend`: None
310
+ - `tpu_num_cores`: None
311
+ - `tpu_metrics_debug`: False
312
+ - `debug`: []
313
+ - `dataloader_drop_last`: True
314
+ - `dataloader_num_workers`: 0
315
+ - `dataloader_prefetch_factor`: None
316
+ - `past_index`: -1
317
+ - `disable_tqdm`: False
318
+ - `remove_unused_columns`: True
319
+ - `label_names`: None
320
+ - `load_best_model_at_end`: False
321
+ - `ignore_data_skip`: False
322
+ - `fsdp`: []
323
+ - `fsdp_min_num_params`: 0
324
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
325
+ - `fsdp_transformer_layer_cls_to_wrap`: None
326
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
327
+ - `deepspeed`: None
328
+ - `label_smoothing_factor`: 0.0
329
+ - `optim`: adamw_torch
330
+ - `optim_args`: None
331
+ - `adafactor`: False
332
+ - `group_by_length`: False
333
+ - `length_column_name`: length
334
+ - `ddp_find_unused_parameters`: None
335
+ - `ddp_bucket_cap_mb`: None
336
+ - `ddp_broadcast_buffers`: False
337
+ - `dataloader_pin_memory`: True
338
+ - `dataloader_persistent_workers`: False
339
+ - `skip_memory_metrics`: True
340
+ - `use_legacy_prediction_loop`: False
341
+ - `push_to_hub`: False
342
+ - `resume_from_checkpoint`: None
343
+ - `hub_model_id`: None
344
+ - `hub_strategy`: every_save
345
+ - `hub_private_repo`: None
346
+ - `hub_always_push`: False
347
+ - `hub_revision`: None
348
+ - `gradient_checkpointing`: False
349
+ - `gradient_checkpointing_kwargs`: None
350
+ - `include_inputs_for_metrics`: False
351
+ - `include_for_metrics`: []
352
+ - `eval_do_concat_batches`: True
353
+ - `fp16_backend`: auto
354
+ - `push_to_hub_model_id`: None
355
+ - `push_to_hub_organization`: None
356
+ - `mp_parameters`:
357
+ - `auto_find_batch_size`: False
358
+ - `full_determinism`: False
359
+ - `torchdynamo`: None
360
+ - `ray_scope`: last
361
+ - `ddp_timeout`: 1800
362
+ - `torch_compile`: False
363
+ - `torch_compile_backend`: None
364
+ - `torch_compile_mode`: None
365
+ - `include_tokens_per_second`: False
366
+ - `include_num_input_tokens_seen`: False
367
+ - `neftune_noise_alpha`: None
368
+ - `optim_target_modules`: None
369
+ - `batch_eval_metrics`: False
370
+ - `eval_on_start`: False
371
+ - `use_liger_kernel`: False
372
+ - `liger_kernel_config`: None
373
+ - `eval_use_gather_object`: False
374
+ - `average_tokens_across_devices`: True
375
+ - `prompts`: None
376
+ - `batch_sampler`: no_duplicates
377
+ - `multi_dataset_batch_sampler`: proportional
378
+ - `router_mapping`: {}
379
+ - `learning_rate_mapping`: {}
380
+
381
+ </details>
382
+
383
+ ### Training Logs
384
+ | Epoch | Step | Training Loss | Validation Loss | query-dev_cosine_accuracy | query-test_cosine_accuracy |
385
+ |:------:|:-----:|:-------------:|:---------------:|:-------------------------:|:--------------------------:|
386
+ | -1 | -1 | - | - | 0.8824 | - |
387
+ | 0.0799 | 1000 | 0.2209 | 0.1147 | 0.9180 | - |
388
+ | 0.1597 | 2000 | 0.1248 | 0.0842 | 0.9316 | - |
389
+ | 0.2396 | 3000 | 0.0962 | 0.0693 | 0.9370 | - |
390
+ | 0.3195 | 4000 | 0.0842 | 0.0611 | 0.9426 | - |
391
+ | 0.3993 | 5000 | 0.0742 | 0.0555 | 0.9458 | - |
392
+ | 0.4792 | 6000 | 0.0681 | 0.0538 | 0.9490 | - |
393
+ | 0.5591 | 7000 | 0.0661 | 0.0498 | 0.9488 | - |
394
+ | 0.6389 | 8000 | 0.0637 | 0.0471 | 0.9525 | - |
395
+ | 0.7188 | 9000 | 0.0609 | 0.0461 | 0.9528 | - |
396
+ | 0.7987 | 10000 | 0.0573 | 0.0452 | 0.9525 | - |
397
+ | 0.8785 | 11000 | 0.055 | 0.0449 | 0.9550 | - |
398
+ | 0.9584 | 12000 | 0.0541 | 0.0431 | 0.9556 | - |
399
+ | 1.0383 | 13000 | 0.0553 | 0.0427 | 0.9547 | - |
400
+ | 1.1181 | 14000 | 0.053 | 0.0402 | 0.9586 | - |
401
+ | 1.1980 | 15000 | 0.0464 | 0.0401 | 0.9583 | - |
402
+ | 1.2779 | 16000 | 0.0437 | 0.0380 | 0.9586 | - |
403
+ | 1.3577 | 17000 | 0.0426 | 0.0373 | 0.9599 | - |
404
+ | 1.4376 | 18000 | 0.038 | 0.0376 | 0.9593 | - |
405
+ | 1.5175 | 19000 | 0.037 | 0.0361 | 0.9605 | - |
406
+ | 1.5973 | 20000 | 0.0348 | 0.0364 | 0.9607 | - |
407
+ | 1.6772 | 21000 | 0.033 | 0.0349 | 0.9621 | - |
408
+ | 1.7570 | 22000 | 0.029 | 0.0347 | 0.9609 | - |
409
+ | 1.8369 | 23000 | 0.0278 | 0.0345 | 0.9617 | - |
410
+ | 1.9168 | 24000 | 0.0261 | 0.0346 | 0.9620 | - |
411
+ | 1.9966 | 25000 | 0.0269 | 0.0334 | 0.9626 | - |
412
+ | 2.0765 | 26000 | 0.0267 | 0.0335 | 0.9632 | - |
413
+ | 2.1564 | 27000 | 0.0246 | 0.0333 | 0.9643 | - |
414
+ | 2.2362 | 28000 | 0.0227 | 0.0330 | 0.9629 | - |
415
+ | 2.3161 | 29000 | 0.0224 | 0.0327 | 0.9642 | - |
416
+ | 2.3960 | 30000 | 0.0209 | 0.0325 | 0.9642 | - |
417
+ | 2.4758 | 31000 | 0.0195 | 0.0330 | 0.9648 | - |
418
+ | 2.5557 | 32000 | 0.0191 | 0.0327 | 0.9652 | - |
419
+ | 2.6356 | 33000 | 0.0189 | 0.0316 | 0.9643 | - |
420
+ | 2.7154 | 34000 | 0.0165 | 0.0324 | 0.9645 | - |
421
+ | 2.7953 | 35000 | 0.015 | 0.0309 | 0.9644 | - |
422
+ | 2.8752 | 36000 | 0.0142 | 0.0323 | 0.9654 | - |
423
+ | 2.9550 | 37000 | 0.0139 | 0.0316 | 0.9646 | - |
424
+ | 3.0349 | 38000 | 0.0151 | 0.0303 | 0.9650 | - |
425
+ | 3.1148 | 39000 | 0.0145 | 0.0307 | 0.9664 | - |
426
+ | 3.1946 | 40000 | 0.0128 | 0.0303 | 0.9656 | - |
427
+ | 3.2745 | 41000 | 0.0127 | 0.0300 | 0.9659 | - |
428
+ | 3.3544 | 42000 | 0.0125 | 0.0305 | 0.9663 | - |
429
+ | 3.4342 | 43000 | 0.0106 | 0.0305 | 0.9661 | - |
430
+ | 3.5141 | 44000 | 0.011 | 0.0308 | 0.9670 | - |
431
+ | 3.5940 | 45000 | 0.0105 | 0.0295 | 0.9665 | - |
432
+ | 3.6738 | 46000 | 0.0101 | 0.0297 | 0.9666 | - |
433
+ | 3.7537 | 47000 | 0.0091 | 0.0299 | 0.9667 | - |
434
+ | 3.8336 | 48000 | 0.009 | 0.0297 | 0.9666 | - |
435
+ | 3.9134 | 49000 | 0.0082 | 0.0298 | 0.9662 | - |
436
+ | 3.9933 | 50000 | 0.0086 | 0.0301 | 0.9668 | - |
437
+ | 4.0732 | 51000 | 0.0087 | 0.0290 | 0.9674 | - |
438
+ | 4.1530 | 52000 | 0.0084 | 0.0287 | 0.9678 | - |
439
+ | 4.2329 | 53000 | 0.0078 | 0.0288 | 0.9667 | - |
440
+ | 4.3128 | 54000 | 0.008 | 0.0287 | 0.9669 | - |
441
+ | 4.3926 | 55000 | 0.0074 | 0.0287 | 0.9669 | - |
442
+ | 4.4725 | 56000 | 0.007 | 0.0288 | 0.9677 | - |
443
+ | 4.5524 | 57000 | 0.0068 | 0.0288 | 0.9674 | - |
444
+ | 4.6322 | 58000 | 0.007 | 0.0282 | 0.9677 | - |
445
+ | 4.7121 | 59000 | 0.0064 | 0.0286 | 0.9678 | - |
446
+ | 4.7919 | 60000 | 0.006 | 0.0283 | 0.9675 | - |
447
+ | 4.8718 | 61000 | 0.0059 | 0.0284 | 0.9675 | - |
448
+ | 4.9517 | 62000 | 0.0057 | 0.0284 | 0.9676 | - |
449
+ | -1 | -1 | - | - | 0.9676 | 0.9668 |
450
+
451
+
452
+ ### Framework Versions
453
+ - Python: 3.12.11
454
+ - Sentence Transformers: 5.1.0
455
+ - Transformers: 4.55.0
456
+ - PyTorch: 2.7.1+cu126
457
+ - Accelerate: 1.10.0
458
+ - Datasets: 4.0.0
459
+ - Tokenizers: 0.21.4
460
+
461
+ ## Citation
462
+
463
+ ### BibTeX
464
+
465
+ #### Sentence Transformers
466
+ ```bibtex
467
+ @inproceedings{reimers-2019-sentence-bert,
468
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
469
+ author = "Reimers, Nils and Gurevych, Iryna",
470
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
471
+ month = "11",
472
+ year = "2019",
473
+ publisher = "Association for Computational Linguistics",
474
+ url = "https://arxiv.org/abs/1908.10084",
475
+ }
476
+ ```
477
+
478
+ #### GISTEmbedLoss
479
+ ```bibtex
480
+ @misc{solatorio2024gistembed,
481
+ title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
482
+ author={Aivin V. Solatorio},
483
+ year={2024},
484
+ eprint={2402.16829},
485
+ archivePrefix={arXiv},
486
+ primaryClass={cs.LG}
487
+ }
488
+ ```
489
+
490
+ <!--
491
+ ## Glossary
492
+
493
+ *Clearly define terms in order to be accessible across audiences.*
494
+ -->
495
+
496
+ <!--
497
+ ## Model Card Authors
498
+
499
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
500
+ -->
501
+
502
+ <!--
503
+ ## Model Card Contact
504
+
505
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
506
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "XLMRobertaModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": null,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "xlm-roberta",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "output_past": true,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.55.0",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 250002
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SentenceTransformer",
3
+ "__version__": {
4
+ "sentence_transformers": "5.1.0",
5
+ "transformers": "4.55.0",
6
+ "pytorch": "2.7.1+cu126"
7
+ },
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1fffb78289e413ff179e56d60180780dd12cb19e066b276b61cc78a498333dd
3
+ size 2239607176
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 512,
51
+ "model_max_length": 512,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizerFast",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }