Commit
•
b4f2635
1
Parent(s):
b85038e
Upload ONNX weights + add transformers.js code/tags (#2)
Browse files- Upload ONNX weights (7a055cbd36c0b250e778017460b956afe6a15c83)
- Add transformers.js sample code + tags (affc1c96c21894a0ebf5ad0d68aa0544d0e02943)
- Update README.md (38287a9818172d5ebac83a92cd611b2252beea6b)
Co-authored-by: Joshua <Xenova@users.noreply.huggingface.co>
- README.md +34 -0
- onnx/model.onnx +3 -0
- onnx/model_quantized.onnx +3 -0
README.md
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
---
|
2 |
tags:
|
3 |
- mteb
|
|
|
4 |
model-index:
|
5 |
- name: mxbai-angle-large-v1
|
6 |
results:
|
@@ -2703,6 +2704,39 @@ similarities = cos_sim(embeddings[0], embeddings[1:])
|
|
2703 |
print('similarities:', similarities)
|
2704 |
```
|
2705 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2706 |
### Using API
|
2707 |
|
2708 |
You’ll be able to use the models through our API as well. The API is coming soon and will have some exciting features. Stay tuned!
|
|
|
1 |
---
|
2 |
tags:
|
3 |
- mteb
|
4 |
+
- transformers.js
|
5 |
model-index:
|
6 |
- name: mxbai-angle-large-v1
|
7 |
results:
|
|
|
2704 |
print('similarities:', similarities)
|
2705 |
```
|
2706 |
|
2707 |
+
### Transformers.js
|
2708 |
+
|
2709 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
|
2710 |
+
```bash
|
2711 |
+
npm i @xenova/transformers
|
2712 |
+
```
|
2713 |
+
|
2714 |
+
You can then use the model to compute embeddings like this:
|
2715 |
+
|
2716 |
+
```js
|
2717 |
+
import { pipeline, cos_sim } from '@xenova/transformers';
|
2718 |
+
|
2719 |
+
// Create a feature extraction pipeline
|
2720 |
+
const extractor = await pipeline('feature-extraction', 'mixedbread-ai/mxbai-embed-large-v1', {
|
2721 |
+
quantized: false, // Comment out this line to use the quantized version
|
2722 |
+
});
|
2723 |
+
|
2724 |
+
// Generate sentence embeddings
|
2725 |
+
const docs = [
|
2726 |
+
'Represent this sentence for searching relevant passages: A man is eating a piece of bread',
|
2727 |
+
'A man is eating food.',
|
2728 |
+
'A man is eating pasta.',
|
2729 |
+
'The girl is carrying a baby.',
|
2730 |
+
'A man is riding a horse.',
|
2731 |
+
]
|
2732 |
+
const output = await extractor(docs, { pooling: 'cls' });
|
2733 |
+
|
2734 |
+
// Compute similarity scores
|
2735 |
+
const [source_embeddings, ...document_embeddings ] = output.tolist();
|
2736 |
+
const similarities = document_embeddings.map(x => cos_sim(source_embeddings, x));
|
2737 |
+
console.log(similarities); // [0.7919578577247139, 0.6369278664248345, 0.16512018371357193, 0.3620778366720027]
|
2738 |
+
```
|
2739 |
+
|
2740 |
### Using API
|
2741 |
|
2742 |
You’ll be able to use the models through our API as well. The API is coming soon and will have some exciting features. Stay tuned!
|
onnx/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:adb53ed475faa339bfad3bd2bdb7e6a30b4f47280ade9811f81bef7953f9ab77
|
3 |
+
size 1336854282
|
onnx/model_quantized.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11bda26d2ee754b20d46c90d0fae7eb5a71e0f947e74261afd6ad640ebbcfa7f
|
3 |
+
size 336983163
|