juliuslipp commited on
Commit
acfe001
1 Parent(s): 4dc2fec

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -0
README.md CHANGED
@@ -2691,6 +2691,31 @@ similarities = cos_sim(embeddings[0], embeddings[1:])
2691
  print('similarities:', similarities)
2692
  ```
2693
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2694
  ### Using API
2695
 
2696
  You’ll be able to use the models through our API as well. The API is coming soon and will have some exciting features. Stay tuned!
 
2691
  print('similarities:', similarities)
2692
  ```
2693
 
2694
+ ### Transformers.js
2695
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
2696
+ ```bash
2697
+ npm i @xenova/transformers
2698
+ ```
2699
+ You can then use the model to compute embeddings as follows:
2700
+ ```js
2701
+ import { pipeline, cos_sim } from '@xenova/transformers';
2702
+ // Create a feature-extraction pipeline
2703
+ const extractor = await pipeline('feature-extraction', 'mixedbread-ai/mxbai-embed-2d-large-v1', {
2704
+ quantized: false, // (Optional) remove this line to use the 8-bit quantized model
2705
+ });
2706
+
2707
+ // Compute sentence embeddings (with `cls` pooling)
2708
+ const sentences = ['Who is german and likes bread?', 'Everybody in Germany.' ];
2709
+ const output = await extractor(sentences, { pooling: 'cls' });
2710
+
2711
+ // Set embedding size and truncate embeddings
2712
+ const new_embedding_size = 768;
2713
+ const truncated = output.slice(null, [0, new_embedding_size]);
2714
+
2715
+ // Compute cosine similarity
2716
+ console.log(cos_sim(truncated[0].data, truncated[1].data)); // 0.6979532021425204
2717
+ ```
2718
+
2719
  ### Using API
2720
 
2721
  You’ll be able to use the models through our API as well. The API is coming soon and will have some exciting features. Stay tuned!