Upload 5 files
Browse files- .gitattributes +3 -0
- README.md +113 -9
- assets/Sana-0.6B-laptop.gif +3 -0
- assets/dc_ae_demo.gif +3 -0
- assets/dc_ae_diffusion_demo.gif +3 -0
- assets/dc_ae_sana.jpg +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
assets/dc_ae_demo.gif filter=lfs diff=lfs merge=lfs -text
|
37 |
+
assets/dc_ae_diffusion_demo.gif filter=lfs diff=lfs merge=lfs -text
|
38 |
+
assets/Sana-0.6B-laptop.gif filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,9 +1,113 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models
|
2 |
+
|
3 |
+
[[paper](https://arxiv.org/abs/2410.10733)] [[GitHub](https://github.com/mit-han-lab/efficientvit)]
|
4 |
+
|
5 |
+
![demo](assets/dc_ae_demo.gif)
|
6 |
+
<p align="center">
|
7 |
+
<b> Figure 1: We address the reconstruction accuracy drop of high spatial-compression autoencoders.
|
8 |
+
</p>
|
9 |
+
|
10 |
+
![demo](assets/dc_ae_diffusion_demo.gif)
|
11 |
+
<p align="center">
|
12 |
+
<b> Figure 2: DC-AE delivers significant training and inference speedup without performance drop.
|
13 |
+
</p>
|
14 |
+
|
15 |
+
![demo](assets/Sana-0.6B-laptop.gif)
|
16 |
+
|
17 |
+
<p align="center">
|
18 |
+
<img src="assets/dc_ae_sana.jpg" width="1200">
|
19 |
+
</p>
|
20 |
+
|
21 |
+
<p align="center">
|
22 |
+
<b> Figure 3: DC-AE enables efficient text-to-image generation on the laptop.
|
23 |
+
</p>
|
24 |
+
|
25 |
+
## Abstract
|
26 |
+
|
27 |
+
We present Deep Compression Autoencoder (DC-AE), a new family of autoencoder models for accelerating high-resolution diffusion models. Existing autoencoder models have demonstrated impressive results at a moderate spatial compression ratio (e.g., 8x), but fail to maintain satisfactory reconstruction accuracy for high spatial compression ratios (e.g., 64x). We address this challenge by introducing two key techniques: (1) Residual Autoencoding, where we design our models to learn residuals based on the space-to-channel transformed features to alleviate the optimization difficulty of high spatial-compression autoencoders; (2) Decoupled High-Resolution Adaptation, an efficient decoupled three-phases training strategy for mitigating the generalization penalty of high spatial-compression autoencoders. With these designs, we improve the autoencoder's spatial compression ratio up to 128 while maintaining the reconstruction quality. Applying our DC-AE to latent diffusion models, we achieve significant speedup without accuracy drop. For example, on ImageNet 512x512, our DC-AE provides 19.1x inference speedup and 17.9x training speedup on H100 GPU for UViT-H while achieving a better FID, compared with the widely used SD-VAE-f8 autoencoder.
|
28 |
+
|
29 |
+
## Usage
|
30 |
+
|
31 |
+
### Deep Compression Autoencoder
|
32 |
+
|
33 |
+
```python
|
34 |
+
# build DC-AE models
|
35 |
+
# full DC-AE model list: https://huggingface.co/collections/mit-han-lab/dc-ae-670085b9400ad7197bb1009b
|
36 |
+
from efficientvit.ae_model_zoo import DCAE_HF
|
37 |
+
|
38 |
+
dc_ae = DCAE_HF.from_pretrained(f"mit-han-lab/dc-ae-f64c128-in-1.0")
|
39 |
+
|
40 |
+
# encode
|
41 |
+
from PIL import Image
|
42 |
+
import torch
|
43 |
+
import torchvision.transforms as transforms
|
44 |
+
from torchvision.utils import save_image
|
45 |
+
from efficientvit.apps.utils.image import DMCrop
|
46 |
+
|
47 |
+
device = torch.device("cuda")
|
48 |
+
dc_ae = dc_ae.to(device).eval()
|
49 |
+
|
50 |
+
transform = transforms.Compose([
|
51 |
+
DMCrop(512), # resolution
|
52 |
+
transforms.ToTensor(),
|
53 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
54 |
+
])
|
55 |
+
image = Image.open("assets/fig/girl.png")
|
56 |
+
x = transform(image)[None].to(device)
|
57 |
+
latent = dc_ae.encode(x)
|
58 |
+
print(latent.shape)
|
59 |
+
|
60 |
+
# decode
|
61 |
+
y = dc_ae.decode(latent)
|
62 |
+
save_image(y * 0.5 + 0.5, "demo_dc_ae.png")
|
63 |
+
```
|
64 |
+
|
65 |
+
### Efficient Diffusion Models with DC-AE
|
66 |
+
|
67 |
+
```python
|
68 |
+
# build DC-AE-Diffusion models
|
69 |
+
# full DC-AE-Diffusion model list: https://huggingface.co/collections/mit-han-lab/dc-ae-diffusion-670dbb8d6b6914cf24c1a49d
|
70 |
+
from efficientvit.diffusion_model_zoo import DCAE_Diffusion_HF
|
71 |
+
|
72 |
+
dc_ae_diffusion = DCAE_Diffusion_HF.from_pretrained(f"mit-han-lab/dc-ae-f64c128-in-1.0-uvit-h-in-512px-train2000k")
|
73 |
+
|
74 |
+
# denoising on the latent space
|
75 |
+
import torch
|
76 |
+
import numpy as np
|
77 |
+
from torchvision.utils import save_image
|
78 |
+
|
79 |
+
torch.set_grad_enabled(False)
|
80 |
+
device = torch.device("cuda")
|
81 |
+
dc_ae_diffusion = dc_ae_diffusion.to(device).eval()
|
82 |
+
|
83 |
+
seed = 0
|
84 |
+
torch.manual_seed(seed)
|
85 |
+
torch.cuda.manual_seed_all(seed)
|
86 |
+
eval_generator = torch.Generator(device=device)
|
87 |
+
eval_generator.manual_seed(seed)
|
88 |
+
|
89 |
+
prompts = torch.tensor(
|
90 |
+
[279, 333, 979, 936, 933, 145, 497, 1, 248, 360, 793, 12, 387, 437, 938, 978], dtype=torch.int, device=device
|
91 |
+
)
|
92 |
+
num_samples = prompts.shape[0]
|
93 |
+
prompts_null = 1000 * torch.ones((num_samples,), dtype=torch.int, device=device)
|
94 |
+
latent_samples = dc_ae_diffusion.diffusion_model.generate(prompts, prompts_null, 6.0, eval_generator)
|
95 |
+
latent_samples = latent_samples / dc_ae_diffusion.scaling_factor
|
96 |
+
|
97 |
+
# decode
|
98 |
+
image_samples = dc_ae_diffusion.autoencoder.decode(latent_samples)
|
99 |
+
save_image(image_samples * 0.5 + 0.5, "demo_dc_ae_diffusion.png", nrow=int(np.sqrt(num_samples)))
|
100 |
+
```
|
101 |
+
|
102 |
+
## Reference
|
103 |
+
|
104 |
+
If DC-AE is useful or relevant to your research, please kindly recognize our contributions by citing our papers:
|
105 |
+
|
106 |
+
```
|
107 |
+
@article{chen2024deep,
|
108 |
+
title={Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models},
|
109 |
+
author={Chen, Junyu and Cai, Han and Chen, Junsong and Xie, Enze and Yang, Shang and Tang, Haotian and Li, Muyang and Lu, Yao and Han, Song},
|
110 |
+
journal={arXiv preprint arXiv:2410.10733},
|
111 |
+
year={2024}
|
112 |
+
}
|
113 |
+
```
|
assets/Sana-0.6B-laptop.gif
ADDED
Git LFS Details
|
assets/dc_ae_demo.gif
ADDED
Git LFS Details
|
assets/dc_ae_diffusion_demo.gif
ADDED
Git LFS Details
|
assets/dc_ae_sana.jpg
ADDED