cjy2003 commited on
Commit
385dc6b
1 Parent(s): 91f26ad

Upload 5 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ assets/dc_ae_demo.gif filter=lfs diff=lfs merge=lfs -text
37
+ assets/dc_ae_diffusion_demo.gif filter=lfs diff=lfs merge=lfs -text
38
+ assets/Sana-0.6B-laptop.gif filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,198 +1,113 @@
1
- ---
2
- library_name: diffusers
3
- ---
4
 
5
- # Model Card for Model ID
6
 
7
- <!-- Provide a quick summary of what the model is/does. -->
 
 
 
8
 
9
-
10
-
11
- ## Model Details
12
-
13
- ### Model Description
14
-
15
- <!-- Provide a longer summary of what this model is. -->
16
-
17
- This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated.
18
-
19
- - **Developed by:** [More Information Needed]
20
- - **Funded by [optional]:** [More Information Needed]
21
- - **Shared by [optional]:** [More Information Needed]
22
- - **Model type:** [More Information Needed]
23
- - **Language(s) (NLP):** [More Information Needed]
24
- - **License:** [More Information Needed]
25
- - **Finetuned from model [optional]:** [More Information Needed]
26
-
27
- ### Model Sources [optional]
28
-
29
- <!-- Provide the basic links for the model. -->
30
-
31
- - **Repository:** [More Information Needed]
32
- - **Paper [optional]:** [More Information Needed]
33
- - **Demo [optional]:** [More Information Needed]
34
-
35
- ## Uses
36
-
37
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
-
39
- ### Direct Use
40
-
41
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
-
43
- [More Information Needed]
44
-
45
- ### Downstream Use [optional]
46
-
47
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
-
49
- [More Information Needed]
50
-
51
- ### Out-of-Scope Use
52
-
53
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
-
55
- [More Information Needed]
56
-
57
- ## Bias, Risks, and Limitations
58
-
59
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
-
61
- [More Information Needed]
62
-
63
- ### Recommendations
64
-
65
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
-
67
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
-
69
- ## How to Get Started with the Model
70
-
71
- Use the code below to get started with the model.
72
-
73
- [More Information Needed]
74
-
75
- ## Training Details
76
-
77
- ### Training Data
78
-
79
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
-
81
- [More Information Needed]
82
-
83
- ### Training Procedure
84
-
85
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
-
87
- #### Preprocessing [optional]
88
-
89
- [More Information Needed]
90
-
91
-
92
- #### Training Hyperparameters
93
-
94
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
-
96
- #### Speeds, Sizes, Times [optional]
97
-
98
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
-
100
- [More Information Needed]
101
-
102
- ## Evaluation
103
-
104
- <!-- This section describes the evaluation protocols and provides the results. -->
105
-
106
- ### Testing Data, Factors & Metrics
107
-
108
- #### Testing Data
109
-
110
- <!-- This should link to a Dataset Card if possible. -->
111
-
112
- [More Information Needed]
113
-
114
- #### Factors
115
-
116
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Metrics
121
-
122
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
-
124
- [More Information Needed]
125
-
126
- ### Results
127
-
128
- [More Information Needed]
129
-
130
- #### Summary
131
-
132
-
133
-
134
- ## Model Examination [optional]
135
-
136
- <!-- Relevant interpretability work for the model goes here -->
137
-
138
- [More Information Needed]
139
-
140
- ## Environmental Impact
141
-
142
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
-
144
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
-
146
- - **Hardware Type:** [More Information Needed]
147
- - **Hours used:** [More Information Needed]
148
- - **Cloud Provider:** [More Information Needed]
149
- - **Compute Region:** [More Information Needed]
150
- - **Carbon Emitted:** [More Information Needed]
151
-
152
- ## Technical Specifications [optional]
153
-
154
- ### Model Architecture and Objective
155
-
156
- [More Information Needed]
157
-
158
- ### Compute Infrastructure
159
-
160
- [More Information Needed]
161
-
162
- #### Hardware
163
-
164
- [More Information Needed]
165
-
166
- #### Software
167
-
168
- [More Information Needed]
169
-
170
- ## Citation [optional]
171
-
172
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
-
174
- **BibTeX:**
175
-
176
- [More Information Needed]
177
-
178
- **APA:**
179
-
180
- [More Information Needed]
181
-
182
- ## Glossary [optional]
183
-
184
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
-
186
- [More Information Needed]
187
-
188
- ## More Information [optional]
189
-
190
- [More Information Needed]
191
-
192
- ## Model Card Authors [optional]
193
-
194
- [More Information Needed]
195
-
196
- ## Model Card Contact
197
-
198
- [More Information Needed]
 
1
+ # Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models
 
 
2
 
3
+ [[paper](https://arxiv.org/abs/2410.10733)] [[GitHub](https://github.com/mit-han-lab/efficientvit)]
4
 
5
+ ![demo](assets/dc_ae_demo.gif)
6
+ <p align="center">
7
+ <b> Figure 1: We address the reconstruction accuracy drop of high spatial-compression autoencoders.
8
+ </p>
9
 
10
+ ![demo](assets/dc_ae_diffusion_demo.gif)
11
+ <p align="center">
12
+ <b> Figure 2: DC-AE delivers significant training and inference speedup without performance drop.
13
+ </p>
14
+
15
+ ![demo](assets/Sana-0.6B-laptop.gif)
16
+
17
+ <p align="center">
18
+ <img src="assets/dc_ae_sana.jpg" width="1200">
19
+ </p>
20
+
21
+ <p align="center">
22
+ <b> Figure 3: DC-AE enables efficient text-to-image generation on the laptop.
23
+ </p>
24
+
25
+ ## Abstract
26
+
27
+ We present Deep Compression Autoencoder (DC-AE), a new family of autoencoder models for accelerating high-resolution diffusion models. Existing autoencoder models have demonstrated impressive results at a moderate spatial compression ratio (e.g., 8x), but fail to maintain satisfactory reconstruction accuracy for high spatial compression ratios (e.g., 64x). We address this challenge by introducing two key techniques: (1) Residual Autoencoding, where we design our models to learn residuals based on the space-to-channel transformed features to alleviate the optimization difficulty of high spatial-compression autoencoders; (2) Decoupled High-Resolution Adaptation, an efficient decoupled three-phases training strategy for mitigating the generalization penalty of high spatial-compression autoencoders. With these designs, we improve the autoencoder's spatial compression ratio up to 128 while maintaining the reconstruction quality. Applying our DC-AE to latent diffusion models, we achieve significant speedup without accuracy drop. For example, on ImageNet 512x512, our DC-AE provides 19.1x inference speedup and 17.9x training speedup on H100 GPU for UViT-H while achieving a better FID, compared with the widely used SD-VAE-f8 autoencoder.
28
+
29
+ ## Usage
30
+
31
+ ### Deep Compression Autoencoder
32
+
33
+ ```python
34
+ # build DC-AE models
35
+ # full DC-AE model list: https://huggingface.co/collections/mit-han-lab/dc-ae-670085b9400ad7197bb1009b
36
+ from efficientvit.ae_model_zoo import DCAE_HF
37
+
38
+ dc_ae = DCAE_HF.from_pretrained(f"mit-han-lab/dc-ae-f64c128-in-1.0")
39
+
40
+ # encode
41
+ from PIL import Image
42
+ import torch
43
+ import torchvision.transforms as transforms
44
+ from torchvision.utils import save_image
45
+ from efficientvit.apps.utils.image import DMCrop
46
+
47
+ device = torch.device("cuda")
48
+ dc_ae = dc_ae.to(device).eval()
49
+
50
+ transform = transforms.Compose([
51
+ DMCrop(512), # resolution
52
+ transforms.ToTensor(),
53
+ transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
54
+ ])
55
+ image = Image.open("assets/fig/girl.png")
56
+ x = transform(image)[None].to(device)
57
+ latent = dc_ae.encode(x)
58
+ print(latent.shape)
59
+
60
+ # decode
61
+ y = dc_ae.decode(latent)
62
+ save_image(y * 0.5 + 0.5, "demo_dc_ae.png")
63
+ ```
64
+
65
+ ### Efficient Diffusion Models with DC-AE
66
+
67
+ ```python
68
+ # build DC-AE-Diffusion models
69
+ # full DC-AE-Diffusion model list: https://huggingface.co/collections/mit-han-lab/dc-ae-diffusion-670dbb8d6b6914cf24c1a49d
70
+ from efficientvit.diffusion_model_zoo import DCAE_Diffusion_HF
71
+
72
+ dc_ae_diffusion = DCAE_Diffusion_HF.from_pretrained(f"mit-han-lab/dc-ae-f64c128-in-1.0-uvit-h-in-512px-train2000k")
73
+
74
+ # denoising on the latent space
75
+ import torch
76
+ import numpy as np
77
+ from torchvision.utils import save_image
78
+
79
+ torch.set_grad_enabled(False)
80
+ device = torch.device("cuda")
81
+ dc_ae_diffusion = dc_ae_diffusion.to(device).eval()
82
+
83
+ seed = 0
84
+ torch.manual_seed(seed)
85
+ torch.cuda.manual_seed_all(seed)
86
+ eval_generator = torch.Generator(device=device)
87
+ eval_generator.manual_seed(seed)
88
+
89
+ prompts = torch.tensor(
90
+ [279, 333, 979, 936, 933, 145, 497, 1, 248, 360, 793, 12, 387, 437, 938, 978], dtype=torch.int, device=device
91
+ )
92
+ num_samples = prompts.shape[0]
93
+ prompts_null = 1000 * torch.ones((num_samples,), dtype=torch.int, device=device)
94
+ latent_samples = dc_ae_diffusion.diffusion_model.generate(prompts, prompts_null, 6.0, eval_generator)
95
+ latent_samples = latent_samples / dc_ae_diffusion.scaling_factor
96
+
97
+ # decode
98
+ image_samples = dc_ae_diffusion.autoencoder.decode(latent_samples)
99
+ save_image(image_samples * 0.5 + 0.5, "demo_dc_ae_diffusion.png", nrow=int(np.sqrt(num_samples)))
100
+ ```
101
+
102
+ ## Reference
103
+
104
+ If DC-AE is useful or relevant to your research, please kindly recognize our contributions by citing our papers:
105
+
106
+ ```
107
+ @article{chen2024deep,
108
+ title={Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models},
109
+ author={Chen, Junyu and Cai, Han and Chen, Junsong and Xie, Enze and Yang, Shang and Tang, Haotian and Li, Muyang and Lu, Yao and Han, Song},
110
+ journal={arXiv preprint arXiv:2410.10733},
111
+ year={2024}
112
+ }
113
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
assets/Sana-0.6B-laptop.gif ADDED

Git LFS Details

  • SHA256: e1ae2defa971a773cc1028d4a9aaa7110046bd72bc407ae57cfdabd0c01a0c23
  • Pointer size: 133 Bytes
  • Size of remote file: 36 MB
assets/dc_ae_demo.gif ADDED

Git LFS Details

  • SHA256: 514a8b660d19d583ca031efcab51bb15f3e12822ca737b729da00a1cea257a9a
  • Pointer size: 132 Bytes
  • Size of remote file: 3.74 MB
assets/dc_ae_diffusion_demo.gif ADDED

Git LFS Details

  • SHA256: 5b3860b826dd126845fb2406e91bad3d122aee3b4e54550b75b9ea11fbf31e3a
  • Pointer size: 132 Bytes
  • Size of remote file: 2.63 MB
assets/dc_ae_sana.jpg ADDED