mistapproach commited on
Commit
3487762
1 Parent(s): 6b9365b

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -137.27 +/- 63.13
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f711b55e160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f711b55e1f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f711b55e280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f711b55e310>", "_build": "<function ActorCriticPolicy._build at 0x7f711b55e3a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f711b55e430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f711b55e4c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f711b55e550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f711b55e5e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f711b55e670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f711b55e700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f711b559630>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670420241113887027, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACs/BT8id4U+adyEP9Kgrb+XwBm/mMN1vgAAAAAAAAAAzepcvN4vrD+v6o6+nm0gv7Aqnjz4xM49AAAAAAAAAADAOYW997wGPwp1Ib7cd5q/DE3lPZtH+D0AAAAAAAAAAJrq1738X8c/VjICv5LSMT5AIHM942WGvAAAAAAAAAAAM1ybPA2wvj+hwwQ+iUJwOuZSfr2lsRm+AAAAAAAAAAAzo3S7itWxP6Wjf72T43q+gIEgvJGtpL0AAAAAAAAAABoUwj3Ogaw/bqcuP7wGor7lw+G9whYtvgAAAAAAAAAAANTcO66opz91+749BlAhvyFJcbzISaW9AAAAAAAAAACGXkM+jkA2P5BNiz4J43a/WxUTPmagBz4AAAAAAAAAAPPohL0IabM/+tKXvm2HSr5seUK5Yl5DvAAAAAAAAAAAmrsHvWotlD/sw4I+FcVLv0AtQ7+w1La+AAAAAAAAAACNiae+GGfZPtYH8b7HWZu/tKe2vrJS170AAAAAAAAAAM0StLyxzrY/UuS9vaz0pL1EIj+9BRfuvQAAAAAAAAAAzalFvaIEhz7b8DM96lSuv//wB78Hd4G+AAAAAAAAAABIsqu+e6rmvA4ne72Rd6O9cMsMPpo6qj4AAIA/AACAP005nb3Rhp89QjWvvkNCs7/Wjl0/GghVPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.6384000000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoKTAApjAX8CUhpRSlIwBbJRLeIwBdJRHQEMUCfYjB2x1fZQoaAZoCWgPQwiSzsDIS+J4wJSGlFKUaBVLXmgWR0BDGwfhddE9dX2UKGgGaAloD0MIwt7EkBykYsCUhpRSlGgVS0RoFkdAQx1pXZGrj3V9lChoBmgJaA9DCNycSgYA23DAlIaUUpRoFUtwaBZHQEMd3N9ph4N1fZQoaAZoCWgPQwgKLev+sf9kwJSGlFKUaBVLcmgWR0BDH9bX6InCdX2UKGgGaAloD0MI1ESfj7L9c8CUhpRSlGgVS1poFkdAQyI3DNyHVXV9lChoBmgJaA9DCIsZ4e3BVXTAlIaUUpRoFUtoaBZHQEMnjEvTPSl1fZQoaAZoCWgPQwh6xr5kY49lwJSGlFKUaBVLfGgWR0BDKRNZeRgadX2UKGgGaAloD0MIOx3Iemo2XsCUhpRSlGgVS0NoFkdAQypIre67NHV9lChoBmgJaA9DCGfSpuoe6mjAlIaUUpRoFUs7aBZHQEMrqHoHLRt1fZQoaAZoCWgPQwht5SX/k0tewJSGlFKUaBVLZmgWR0BDLTySV4X5dX2UKGgGaAloD0MIcXFUbiJnacCUhpRSlGgVS1toFkdAQzR+pfhMrXV9lChoBmgJaA9DCC1A22pWuX/AlIaUUpRoFUtnaBZHQEM2KziS7oV1fZQoaAZoCWgPQwh/2xMkthFgwJSGlFKUaBVLUmgWR0BDNp8v24/edX2UKGgGaAloD0MIEXLe/8f5c8CUhpRSlGgVS3poFkdAQzn18LKFI3V9lChoBmgJaA9DCDVG66hq+mDAlIaUUpRoFUtaaBZHQEM64kNWluZ1fZQoaAZoCWgPQwgvNq0UQqlywJSGlFKUaBVLU2gWR0BDPqy4Wk8BdX2UKGgGaAloD0MIXKrSFtfvVcCUhpRSlGgVS29oFkdAQz7JOnEVFnV9lChoBmgJaA9DCNBGrptStjDAlIaUUpRoFUtTaBZHQENA6ErXlKd1fZQoaAZoCWgPQwjJ5qp5jgtewJSGlFKUaBVLYmgWR0BDR5sTFl06dX2UKGgGaAloD0MIFytqMM0RdsCUhpRSlGgVS2BoFkdAQ0i+Yc/+sHV9lChoBmgJaA9DCPwXCALkNmHAlIaUUpRoFUtSaBZHQENKdmQKa5R1fZQoaAZoCWgPQwgMVwdA3KZXwJSGlFKUaBVLSWgWR0BDTD6nBLwndX2UKGgGaAloD0MIza0QVmO9WMCUhpRSlGgVS1ZoFkdAQ03LFGXoknV9lChoBmgJaA9DCEZ9kjvs0m3AlIaUUpRoFUtYaBZHQENQC4Bmwq11fZQoaAZoCWgPQwgQBTOmIFN7wJSGlFKUaBVLWGgWR0BDUXEqDsdDdX2UKGgGaAloD0MIotCy7h+tUcCUhpRSlGgVS0loFkdAQ1QKneizs3V9lChoBmgJaA9DCHpW0opvr1fAlIaUUpRoFUs7aBZHQENYR3/xUed1fZQoaAZoCWgPQwi8I2O1+QBWwJSGlFKUaBVLgmgWR0BDWmozeoDQdX2UKGgGaAloD0MIoSsRqP6eaMCUhpRSlGgVS1xoFkdAQ13YjB2wFHV9lChoBmgJaA9DCIUGYtnMcUrAlIaUUpRoFUtRaBZHQENiLLIPsiV1fZQoaAZoCWgPQwjDmsqisKNKwJSGlFKUaBVLZ2gWR0BDY8Udq+JxdX2UKGgGaAloD0MITHDqA0kLdsCUhpRSlGgVS2poFkdAQ2lcB2fTTnV9lChoBmgJaA9DCDgR/dp6J23AlIaUUpRoFUteaBZHQENqlC1JDmd1fZQoaAZoCWgPQwgBv0aSIIVbwJSGlFKUaBVLTmgWR0BDapa7mMfjdX2UKGgGaAloD0MIkloomZxKXMCUhpRSlGgVS1VoFkdAQ26QPqcEvHV9lChoBmgJaA9DCEZfQZoxs2bAlIaUUpRoFUtTaBZHQENvbM5fdAR1fZQoaAZoCWgPQwjItDaNrdlzwJSGlFKUaBVLemgWR0BDb2VeKKpDdX2UKGgGaAloD0MILj2a6sntWcCUhpRSlGgVS1hoFkdAQ3MauOjqOnV9lChoBmgJaA9DCOc1donqLVjAlIaUUpRoFUtPaBZHQEN0J+DvmYB1fZQoaAZoCWgPQwg9K2nFN0JOwJSGlFKUaBVLRGgWR0BDeEeyRjjJdX2UKGgGaAloD0MI7Zv7q0eCbcCUhpRSlGgVS2xoFkdAQ30tyxRl6XV9lChoBmgJaA9DCEmFsYUgxXLAlIaUUpRoFUtdaBZHQEN8s0YTCch1fZQoaAZoCWgPQwjPukbLAUllwJSGlFKUaBVLX2gWR0BDgbZezD4ydX2UKGgGaAloD0MIhEiGHNt6YcCUhpRSlGgVS3JoFkdAQ4G8XenAI3V9lChoBmgJaA9DCEfH1ciuEl/AlIaUUpRoFUtJaBZHQEOC4cWCVbB1fZQoaAZoCWgPQwg1QdR9ANxWwJSGlFKUaBVLOWgWR0BDjQmu1WsBdX2UKGgGaAloD0MI5YBdTZ5WXcCUhpRSlGgVS2toFkdAQ40Lc9GI9HV9lChoBmgJaA9DCCHn/X+c9VvAlIaUUpRoFUtnaBZHQEOPVf/m1Y11fZQoaAZoCWgPQwhSRlwAGrtfwJSGlFKUaBVLTGgWR0BDkHrpqynldX2UKGgGaAloD0MIILb0aKraYsCUhpRSlGgVS1NoFkdAQ5LV4HHFP3V9lChoBmgJaA9DCO1ESUikZl/AlIaUUpRoFUs/aBZHQEOUU8FINEx1fZQoaAZoCWgPQwg5YcJoVnhkwJSGlFKUaBVLZ2gWR0BDl++mFajfdX2UKGgGaAloD0MIfAvrxruJX8CUhpRSlGgVS2NoFkdAQ5sxM36yjnV9lChoBmgJaA9DCJFfP8SG+nTAlIaUUpRoFUtyaBZHQEOcrK/20zF1fZQoaAZoCWgPQwi4I5wWvC5YwJSGlFKUaBVLQWgWR0BDnyDAaef7dX2UKGgGaAloD0MItHdGW5UHc8CUhpRSlGgVS2ZoFkdAQ6BfrrxAjnV9lChoBmgJaA9DCIGyKVf4FmvAlIaUUpRoFUthaBZHQEOoO6unuRd1fZQoaAZoCWgPQwidEDroEkhSwJSGlFKUaBVLV2gWR0BDqSWZ7XxwdX2UKGgGaAloD0MIQPz89+ACXcCUhpRSlGgVS2hoFkdAQ6v1tfoicHV9lChoBmgJaA9DCMpuZvQjImvAlIaUUpRoFUtIaBZHQEOtxQSBbwB1fZQoaAZoCWgPQwjVITfDjQpxwJSGlFKUaBVLRWgWR0BDrr0Bfa6CdX2UKGgGaAloD0MI+BkXDoTVaMCUhpRSlGgVS0FoFkdAQ7CIrOJLunV9lChoBmgJaA9DCAEwnkHDqm/AlIaUUpRoFUtiaBZHQEOvxG2Culp1fZQoaAZoCWgPQwgwndZtUD1WwJSGlFKUaBVLW2gWR0BDtm/N7jT8dX2UKGgGaAloD0MI598u+3W0b8CUhpRSlGgVS05oFkdAQ7fFUADJVHV9lChoBmgJaA9DCOVFJuAXPnLAlIaUUpRoFUtfaBZHQEO7nvlU6xR1fZQoaAZoCWgPQwjgg9cu7cppwJSGlFKUaBVLWWgWR0BDxb1ZkkKNdX2UKGgGaAloD0MItybdlkgWacCUhpRSlGgVS1hoFkdAQ8lg8bJfY3V9lChoBmgJaA9DCOC593DJGVXAlIaUUpRoFUtCaBZHQEPLFb3XZoR1fZQoaAZoCWgPQwjQs1n1+ZlzwJSGlFKUaBVLUGgWR0BDzitA9mpVdX2UKGgGaAloD0MIeLRxxFo+UcCUhpRSlGgVS0VoFkdAQ8+mtQsPKHV9lChoBmgJaA9DCC8012mkNU/AlIaUUpRoFUtJaBZHQEPQnHeaa1F1fZQoaAZoCWgPQwheTDPda+FgwJSGlFKUaBVLRWgWR0BD0Knm7rcCdX2UKGgGaAloD0MIh1Pm5hu4YMCUhpRSlGgVS3ZoFkdAQ9KC8OCoTHV9lChoBmgJaA9DCDY+k/3zi2HAlIaUUpRoFUt3aBZHQEPXPP9kz411fZQoaAZoCWgPQwg6B8+EJqFXwJSGlFKUaBVLRWgWR0BD19UKiO/+dX2UKGgGaAloD0MIRX9o5kkZbMCUhpRSlGgVS4poFkdAQ9ip71Iy03V9lChoBmgJaA9DCGHGFKyxanLAlIaUUpRoFUtsaBZHQEPdJ5mh/RV1fZQoaAZoCWgPQwjh7xezpSpwwJSGlFKUaBVLb2gWR0BD53LNfPX1dX2UKGgGaAloD0MIg9xFmCL0YMCUhpRSlGgVS1xoFkdAQ+sC1Z1V53V9lChoBmgJaA9DCHDtRElIMVXAlIaUUpRoFUtIaBZHQEPu7FsHjZN1fZQoaAZoCWgPQwjohNBBl0BwwJSGlFKUaBVLgmgWR0BD+wRGtp22dX2UKGgGaAloD0MIB9LFppXuW8CUhpRSlGgVS1VoFkdARABoysS00HV9lChoBmgJaA9DCL3kf/J331zAlIaUUpRoFUtbaBZHQEQBsmfGuLd1fZQoaAZoCWgPQwhS1QRR14+CwJSGlFKUaBVLcmgWR0BEApKzzErHdX2UKGgGaAloD0MISghW1cuWb8CUhpRSlGgVS2BoFkdARAN+9alk6XV9lChoBmgJaA9DCAPMfAc/0WDAlIaUUpRoFUt9aBZHQEQOWNWEK3N1fZQoaAZoCWgPQwjv4ZLjTiplwJSGlFKUaBVLP2gWR0BEDboB7u2JdX2UKGgGaAloD0MIueLiqNwHXsCUhpRSlGgVS3loFkdARA+rS3LFGXV9lChoBmgJaA9DCAoQBTOm9lnAlIaUUpRoFUtwaBZHQEQUkPczqKR1fZQoaAZoCWgPQwh2ptB5zfV4wJSGlFKUaBVLfGgWR0BEE7mU4aP0dX2UKGgGaAloD0MI6q7sgsHKZMCUhpRSlGgVS4hoFkdARCKL4vexfXV9lChoBmgJaA9DCHE8nwF1ZHjAlIaUUpRoFUtvaBZHQEQj3B55Z8t1fZQoaAZoCWgPQwj8xWzJqrNSwJSGlFKUaBVLRWgWR0BEJX1anrIHdX2UKGgGaAloD0MIfgBSm7gXYcCUhpRSlGgVS4NoFkdARCTWwu/UOXV9lChoBmgJaA9DCMeb/BYdrWLAlIaUUpRoFUuSaBZHQEQnRkVeruJ1fZQoaAZoCWgPQwjRsBh17ft0wJSGlFKUaBVLbWgWR0BEKjmCAc1gdX2UKGgGaAloD0MI32xzY/owZcCUhpRSlGgVS1BoFkdARCxujynUD3V9lChoBmgJaA9DCMe9+Q0ToFrAlIaUUpRoFUtMaBZHQEQsEM9bHIZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4233120a1fb45b4c9d3c70bc935aabb35db02ab0049182cfe8621627c1e099b6
3
+ size 147014
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f711b55e160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f711b55e1f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f711b55e280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f711b55e310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f711b55e3a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f711b55e430>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f711b55e4c0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f711b55e550>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f711b55e5e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f711b55e670>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f711b55e700>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f711b559630>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 16384,
46
+ "_total_timesteps": 10000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670420241113887027,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACs/BT8id4U+adyEP9Kgrb+XwBm/mMN1vgAAAAAAAAAAzepcvN4vrD+v6o6+nm0gv7Aqnjz4xM49AAAAAAAAAADAOYW997wGPwp1Ib7cd5q/DE3lPZtH+D0AAAAAAAAAAJrq1738X8c/VjICv5LSMT5AIHM942WGvAAAAAAAAAAAM1ybPA2wvj+hwwQ+iUJwOuZSfr2lsRm+AAAAAAAAAAAzo3S7itWxP6Wjf72T43q+gIEgvJGtpL0AAAAAAAAAABoUwj3Ogaw/bqcuP7wGor7lw+G9whYtvgAAAAAAAAAAANTcO66opz91+749BlAhvyFJcbzISaW9AAAAAAAAAACGXkM+jkA2P5BNiz4J43a/WxUTPmagBz4AAAAAAAAAAPPohL0IabM/+tKXvm2HSr5seUK5Yl5DvAAAAAAAAAAAmrsHvWotlD/sw4I+FcVLv0AtQ7+w1La+AAAAAAAAAACNiae+GGfZPtYH8b7HWZu/tKe2vrJS170AAAAAAAAAAM0StLyxzrY/UuS9vaz0pL1EIj+9BRfuvQAAAAAAAAAAzalFvaIEhz7b8DM96lSuv//wB78Hd4G+AAAAAAAAAABIsqu+e6rmvA4ne72Rd6O9cMsMPpo6qj4AAIA/AACAP005nb3Rhp89QjWvvkNCs7/Wjl0/GghVPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.6384000000000001,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoKTAApjAX8CUhpRSlIwBbJRLeIwBdJRHQEMUCfYjB2x1fZQoaAZoCWgPQwiSzsDIS+J4wJSGlFKUaBVLXmgWR0BDGwfhddE9dX2UKGgGaAloD0MIwt7EkBykYsCUhpRSlGgVS0RoFkdAQx1pXZGrj3V9lChoBmgJaA9DCNycSgYA23DAlIaUUpRoFUtwaBZHQEMd3N9ph4N1fZQoaAZoCWgPQwgKLev+sf9kwJSGlFKUaBVLcmgWR0BDH9bX6InCdX2UKGgGaAloD0MI1ESfj7L9c8CUhpRSlGgVS1poFkdAQyI3DNyHVXV9lChoBmgJaA9DCIsZ4e3BVXTAlIaUUpRoFUtoaBZHQEMnjEvTPSl1fZQoaAZoCWgPQwh6xr5kY49lwJSGlFKUaBVLfGgWR0BDKRNZeRgadX2UKGgGaAloD0MIOx3Iemo2XsCUhpRSlGgVS0NoFkdAQypIre67NHV9lChoBmgJaA9DCGfSpuoe6mjAlIaUUpRoFUs7aBZHQEMrqHoHLRt1fZQoaAZoCWgPQwht5SX/k0tewJSGlFKUaBVLZmgWR0BDLTySV4X5dX2UKGgGaAloD0MIcXFUbiJnacCUhpRSlGgVS1toFkdAQzR+pfhMrXV9lChoBmgJaA9DCC1A22pWuX/AlIaUUpRoFUtnaBZHQEM2KziS7oV1fZQoaAZoCWgPQwh/2xMkthFgwJSGlFKUaBVLUmgWR0BDNp8v24/edX2UKGgGaAloD0MIEXLe/8f5c8CUhpRSlGgVS3poFkdAQzn18LKFI3V9lChoBmgJaA9DCDVG66hq+mDAlIaUUpRoFUtaaBZHQEM64kNWluZ1fZQoaAZoCWgPQwgvNq0UQqlywJSGlFKUaBVLU2gWR0BDPqy4Wk8BdX2UKGgGaAloD0MIXKrSFtfvVcCUhpRSlGgVS29oFkdAQz7JOnEVFnV9lChoBmgJaA9DCNBGrptStjDAlIaUUpRoFUtTaBZHQENA6ErXlKd1fZQoaAZoCWgPQwjJ5qp5jgtewJSGlFKUaBVLYmgWR0BDR5sTFl06dX2UKGgGaAloD0MIFytqMM0RdsCUhpRSlGgVS2BoFkdAQ0i+Yc/+sHV9lChoBmgJaA9DCPwXCALkNmHAlIaUUpRoFUtSaBZHQENKdmQKa5R1fZQoaAZoCWgPQwgMVwdA3KZXwJSGlFKUaBVLSWgWR0BDTD6nBLwndX2UKGgGaAloD0MIza0QVmO9WMCUhpRSlGgVS1ZoFkdAQ03LFGXoknV9lChoBmgJaA9DCEZ9kjvs0m3AlIaUUpRoFUtYaBZHQENQC4Bmwq11fZQoaAZoCWgPQwgQBTOmIFN7wJSGlFKUaBVLWGgWR0BDUXEqDsdDdX2UKGgGaAloD0MIotCy7h+tUcCUhpRSlGgVS0loFkdAQ1QKneizs3V9lChoBmgJaA9DCHpW0opvr1fAlIaUUpRoFUs7aBZHQENYR3/xUed1fZQoaAZoCWgPQwi8I2O1+QBWwJSGlFKUaBVLgmgWR0BDWmozeoDQdX2UKGgGaAloD0MIoSsRqP6eaMCUhpRSlGgVS1xoFkdAQ13YjB2wFHV9lChoBmgJaA9DCIUGYtnMcUrAlIaUUpRoFUtRaBZHQENiLLIPsiV1fZQoaAZoCWgPQwjDmsqisKNKwJSGlFKUaBVLZ2gWR0BDY8Udq+JxdX2UKGgGaAloD0MITHDqA0kLdsCUhpRSlGgVS2poFkdAQ2lcB2fTTnV9lChoBmgJaA9DCDgR/dp6J23AlIaUUpRoFUteaBZHQENqlC1JDmd1fZQoaAZoCWgPQwgBv0aSIIVbwJSGlFKUaBVLTmgWR0BDapa7mMfjdX2UKGgGaAloD0MIkloomZxKXMCUhpRSlGgVS1VoFkdAQ26QPqcEvHV9lChoBmgJaA9DCEZfQZoxs2bAlIaUUpRoFUtTaBZHQENvbM5fdAR1fZQoaAZoCWgPQwjItDaNrdlzwJSGlFKUaBVLemgWR0BDb2VeKKpDdX2UKGgGaAloD0MILj2a6sntWcCUhpRSlGgVS1hoFkdAQ3MauOjqOnV9lChoBmgJaA9DCOc1donqLVjAlIaUUpRoFUtPaBZHQEN0J+DvmYB1fZQoaAZoCWgPQwg9K2nFN0JOwJSGlFKUaBVLRGgWR0BDeEeyRjjJdX2UKGgGaAloD0MI7Zv7q0eCbcCUhpRSlGgVS2xoFkdAQ30tyxRl6XV9lChoBmgJaA9DCEmFsYUgxXLAlIaUUpRoFUtdaBZHQEN8s0YTCch1fZQoaAZoCWgPQwjPukbLAUllwJSGlFKUaBVLX2gWR0BDgbZezD4ydX2UKGgGaAloD0MIhEiGHNt6YcCUhpRSlGgVS3JoFkdAQ4G8XenAI3V9lChoBmgJaA9DCEfH1ciuEl/AlIaUUpRoFUtJaBZHQEOC4cWCVbB1fZQoaAZoCWgPQwg1QdR9ANxWwJSGlFKUaBVLOWgWR0BDjQmu1WsBdX2UKGgGaAloD0MI5YBdTZ5WXcCUhpRSlGgVS2toFkdAQ40Lc9GI9HV9lChoBmgJaA9DCCHn/X+c9VvAlIaUUpRoFUtnaBZHQEOPVf/m1Y11fZQoaAZoCWgPQwhSRlwAGrtfwJSGlFKUaBVLTGgWR0BDkHrpqynldX2UKGgGaAloD0MIILb0aKraYsCUhpRSlGgVS1NoFkdAQ5LV4HHFP3V9lChoBmgJaA9DCO1ESUikZl/AlIaUUpRoFUs/aBZHQEOUU8FINEx1fZQoaAZoCWgPQwg5YcJoVnhkwJSGlFKUaBVLZ2gWR0BDl++mFajfdX2UKGgGaAloD0MIfAvrxruJX8CUhpRSlGgVS2NoFkdAQ5sxM36yjnV9lChoBmgJaA9DCJFfP8SG+nTAlIaUUpRoFUtyaBZHQEOcrK/20zF1fZQoaAZoCWgPQwi4I5wWvC5YwJSGlFKUaBVLQWgWR0BDnyDAaef7dX2UKGgGaAloD0MItHdGW5UHc8CUhpRSlGgVS2ZoFkdAQ6BfrrxAjnV9lChoBmgJaA9DCIGyKVf4FmvAlIaUUpRoFUthaBZHQEOoO6unuRd1fZQoaAZoCWgPQwidEDroEkhSwJSGlFKUaBVLV2gWR0BDqSWZ7XxwdX2UKGgGaAloD0MIQPz89+ACXcCUhpRSlGgVS2hoFkdAQ6v1tfoicHV9lChoBmgJaA9DCMpuZvQjImvAlIaUUpRoFUtIaBZHQEOtxQSBbwB1fZQoaAZoCWgPQwjVITfDjQpxwJSGlFKUaBVLRWgWR0BDrr0Bfa6CdX2UKGgGaAloD0MI+BkXDoTVaMCUhpRSlGgVS0FoFkdAQ7CIrOJLunV9lChoBmgJaA9DCAEwnkHDqm/AlIaUUpRoFUtiaBZHQEOvxG2Culp1fZQoaAZoCWgPQwgwndZtUD1WwJSGlFKUaBVLW2gWR0BDtm/N7jT8dX2UKGgGaAloD0MI598u+3W0b8CUhpRSlGgVS05oFkdAQ7fFUADJVHV9lChoBmgJaA9DCOVFJuAXPnLAlIaUUpRoFUtfaBZHQEO7nvlU6xR1fZQoaAZoCWgPQwjgg9cu7cppwJSGlFKUaBVLWWgWR0BDxb1ZkkKNdX2UKGgGaAloD0MItybdlkgWacCUhpRSlGgVS1hoFkdAQ8lg8bJfY3V9lChoBmgJaA9DCOC593DJGVXAlIaUUpRoFUtCaBZHQEPLFb3XZoR1fZQoaAZoCWgPQwjQs1n1+ZlzwJSGlFKUaBVLUGgWR0BDzitA9mpVdX2UKGgGaAloD0MIeLRxxFo+UcCUhpRSlGgVS0VoFkdAQ8+mtQsPKHV9lChoBmgJaA9DCC8012mkNU/AlIaUUpRoFUtJaBZHQEPQnHeaa1F1fZQoaAZoCWgPQwheTDPda+FgwJSGlFKUaBVLRWgWR0BD0Knm7rcCdX2UKGgGaAloD0MIh1Pm5hu4YMCUhpRSlGgVS3ZoFkdAQ9KC8OCoTHV9lChoBmgJaA9DCDY+k/3zi2HAlIaUUpRoFUt3aBZHQEPXPP9kz411fZQoaAZoCWgPQwg6B8+EJqFXwJSGlFKUaBVLRWgWR0BD19UKiO/+dX2UKGgGaAloD0MIRX9o5kkZbMCUhpRSlGgVS4poFkdAQ9ip71Iy03V9lChoBmgJaA9DCGHGFKyxanLAlIaUUpRoFUtsaBZHQEPdJ5mh/RV1fZQoaAZoCWgPQwjh7xezpSpwwJSGlFKUaBVLb2gWR0BD53LNfPX1dX2UKGgGaAloD0MIg9xFmCL0YMCUhpRSlGgVS1xoFkdAQ+sC1Z1V53V9lChoBmgJaA9DCHDtRElIMVXAlIaUUpRoFUtIaBZHQEPu7FsHjZN1fZQoaAZoCWgPQwjohNBBl0BwwJSGlFKUaBVLgmgWR0BD+wRGtp22dX2UKGgGaAloD0MIB9LFppXuW8CUhpRSlGgVS1VoFkdARABoysS00HV9lChoBmgJaA9DCL3kf/J331zAlIaUUpRoFUtbaBZHQEQBsmfGuLd1fZQoaAZoCWgPQwhS1QRR14+CwJSGlFKUaBVLcmgWR0BEApKzzErHdX2UKGgGaAloD0MISghW1cuWb8CUhpRSlGgVS2BoFkdARAN+9alk6XV9lChoBmgJaA9DCAPMfAc/0WDAlIaUUpRoFUt9aBZHQEQOWNWEK3N1fZQoaAZoCWgPQwjv4ZLjTiplwJSGlFKUaBVLP2gWR0BEDboB7u2JdX2UKGgGaAloD0MIueLiqNwHXsCUhpRSlGgVS3loFkdARA+rS3LFGXV9lChoBmgJaA9DCAoQBTOm9lnAlIaUUpRoFUtwaBZHQEQUkPczqKR1fZQoaAZoCWgPQwh2ptB5zfV4wJSGlFKUaBVLfGgWR0BEE7mU4aP0dX2UKGgGaAloD0MI6q7sgsHKZMCUhpRSlGgVS4hoFkdARCKL4vexfXV9lChoBmgJaA9DCHE8nwF1ZHjAlIaUUpRoFUtvaBZHQEQj3B55Z8t1fZQoaAZoCWgPQwj8xWzJqrNSwJSGlFKUaBVLRWgWR0BEJX1anrIHdX2UKGgGaAloD0MIfgBSm7gXYcCUhpRSlGgVS4NoFkdARCTWwu/UOXV9lChoBmgJaA9DCMeb/BYdrWLAlIaUUpRoFUuSaBZHQEQnRkVeruJ1fZQoaAZoCWgPQwjRsBh17ft0wJSGlFKUaBVLbWgWR0BEKjmCAc1gdX2UKGgGaAloD0MI32xzY/owZcCUhpRSlGgVS1BoFkdARCxujynUD3V9lChoBmgJaA9DCMe9+Q0ToFrAlIaUUpRoFUtMaBZHQEQsEM9bHIZ1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 4,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4834ccb79dc2b0902565361d03dd1767aabd151614dda626b0d23b93f3670c6
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ede23470c0e6484ead05246990d964f5f6061de54e1daa905b49cc46f7a9b01a
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (247 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -137.26750015551224, "std_reward": 63.12628345813939, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-07T13:43:12.779016"}