mistapproach
commited on
Commit
•
3487762
1
Parent(s):
6b9365b
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -137.27 +/- 63.13
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f711b55e160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f711b55e1f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f711b55e280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f711b55e310>", "_build": "<function ActorCriticPolicy._build at 0x7f711b55e3a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f711b55e430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f711b55e4c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f711b55e550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f711b55e5e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f711b55e670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f711b55e700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f711b559630>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670420241113887027, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACs/BT8id4U+adyEP9Kgrb+XwBm/mMN1vgAAAAAAAAAAzepcvN4vrD+v6o6+nm0gv7Aqnjz4xM49AAAAAAAAAADAOYW997wGPwp1Ib7cd5q/DE3lPZtH+D0AAAAAAAAAAJrq1738X8c/VjICv5LSMT5AIHM942WGvAAAAAAAAAAAM1ybPA2wvj+hwwQ+iUJwOuZSfr2lsRm+AAAAAAAAAAAzo3S7itWxP6Wjf72T43q+gIEgvJGtpL0AAAAAAAAAABoUwj3Ogaw/bqcuP7wGor7lw+G9whYtvgAAAAAAAAAAANTcO66opz91+749BlAhvyFJcbzISaW9AAAAAAAAAACGXkM+jkA2P5BNiz4J43a/WxUTPmagBz4AAAAAAAAAAPPohL0IabM/+tKXvm2HSr5seUK5Yl5DvAAAAAAAAAAAmrsHvWotlD/sw4I+FcVLv0AtQ7+w1La+AAAAAAAAAACNiae+GGfZPtYH8b7HWZu/tKe2vrJS170AAAAAAAAAAM0StLyxzrY/UuS9vaz0pL1EIj+9BRfuvQAAAAAAAAAAzalFvaIEhz7b8DM96lSuv//wB78Hd4G+AAAAAAAAAABIsqu+e6rmvA4ne72Rd6O9cMsMPpo6qj4AAIA/AACAP005nb3Rhp89QjWvvkNCs7/Wjl0/GghVPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.6384000000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoKTAApjAX8CUhpRSlIwBbJRLeIwBdJRHQEMUCfYjB2x1fZQoaAZoCWgPQwiSzsDIS+J4wJSGlFKUaBVLXmgWR0BDGwfhddE9dX2UKGgGaAloD0MIwt7EkBykYsCUhpRSlGgVS0RoFkdAQx1pXZGrj3V9lChoBmgJaA9DCNycSgYA23DAlIaUUpRoFUtwaBZHQEMd3N9ph4N1fZQoaAZoCWgPQwgKLev+sf9kwJSGlFKUaBVLcmgWR0BDH9bX6InCdX2UKGgGaAloD0MI1ESfj7L9c8CUhpRSlGgVS1poFkdAQyI3DNyHVXV9lChoBmgJaA9DCIsZ4e3BVXTAlIaUUpRoFUtoaBZHQEMnjEvTPSl1fZQoaAZoCWgPQwh6xr5kY49lwJSGlFKUaBVLfGgWR0BDKRNZeRgadX2UKGgGaAloD0MIOx3Iemo2XsCUhpRSlGgVS0NoFkdAQypIre67NHV9lChoBmgJaA9DCGfSpuoe6mjAlIaUUpRoFUs7aBZHQEMrqHoHLRt1fZQoaAZoCWgPQwht5SX/k0tewJSGlFKUaBVLZmgWR0BDLTySV4X5dX2UKGgGaAloD0MIcXFUbiJnacCUhpRSlGgVS1toFkdAQzR+pfhMrXV9lChoBmgJaA9DCC1A22pWuX/AlIaUUpRoFUtnaBZHQEM2KziS7oV1fZQoaAZoCWgPQwh/2xMkthFgwJSGlFKUaBVLUmgWR0BDNp8v24/edX2UKGgGaAloD0MIEXLe/8f5c8CUhpRSlGgVS3poFkdAQzn18LKFI3V9lChoBmgJaA9DCDVG66hq+mDAlIaUUpRoFUtaaBZHQEM64kNWluZ1fZQoaAZoCWgPQwgvNq0UQqlywJSGlFKUaBVLU2gWR0BDPqy4Wk8BdX2UKGgGaAloD0MIXKrSFtfvVcCUhpRSlGgVS29oFkdAQz7JOnEVFnV9lChoBmgJaA9DCNBGrptStjDAlIaUUpRoFUtTaBZHQENA6ErXlKd1fZQoaAZoCWgPQwjJ5qp5jgtewJSGlFKUaBVLYmgWR0BDR5sTFl06dX2UKGgGaAloD0MIFytqMM0RdsCUhpRSlGgVS2BoFkdAQ0i+Yc/+sHV9lChoBmgJaA9DCPwXCALkNmHAlIaUUpRoFUtSaBZHQENKdmQKa5R1fZQoaAZoCWgPQwgMVwdA3KZXwJSGlFKUaBVLSWgWR0BDTD6nBLwndX2UKGgGaAloD0MIza0QVmO9WMCUhpRSlGgVS1ZoFkdAQ03LFGXoknV9lChoBmgJaA9DCEZ9kjvs0m3AlIaUUpRoFUtYaBZHQENQC4Bmwq11fZQoaAZoCWgPQwgQBTOmIFN7wJSGlFKUaBVLWGgWR0BDUXEqDsdDdX2UKGgGaAloD0MIotCy7h+tUcCUhpRSlGgVS0loFkdAQ1QKneizs3V9lChoBmgJaA9DCHpW0opvr1fAlIaUUpRoFUs7aBZHQENYR3/xUed1fZQoaAZoCWgPQwi8I2O1+QBWwJSGlFKUaBVLgmgWR0BDWmozeoDQdX2UKGgGaAloD0MIoSsRqP6eaMCUhpRSlGgVS1xoFkdAQ13YjB2wFHV9lChoBmgJaA9DCIUGYtnMcUrAlIaUUpRoFUtRaBZHQENiLLIPsiV1fZQoaAZoCWgPQwjDmsqisKNKwJSGlFKUaBVLZ2gWR0BDY8Udq+JxdX2UKGgGaAloD0MITHDqA0kLdsCUhpRSlGgVS2poFkdAQ2lcB2fTTnV9lChoBmgJaA9DCDgR/dp6J23AlIaUUpRoFUteaBZHQENqlC1JDmd1fZQoaAZoCWgPQwgBv0aSIIVbwJSGlFKUaBVLTmgWR0BDapa7mMfjdX2UKGgGaAloD0MIkloomZxKXMCUhpRSlGgVS1VoFkdAQ26QPqcEvHV9lChoBmgJaA9DCEZfQZoxs2bAlIaUUpRoFUtTaBZHQENvbM5fdAR1fZQoaAZoCWgPQwjItDaNrdlzwJSGlFKUaBVLemgWR0BDb2VeKKpDdX2UKGgGaAloD0MILj2a6sntWcCUhpRSlGgVS1hoFkdAQ3MauOjqOnV9lChoBmgJaA9DCOc1donqLVjAlIaUUpRoFUtPaBZHQEN0J+DvmYB1fZQoaAZoCWgPQwg9K2nFN0JOwJSGlFKUaBVLRGgWR0BDeEeyRjjJdX2UKGgGaAloD0MI7Zv7q0eCbcCUhpRSlGgVS2xoFkdAQ30tyxRl6XV9lChoBmgJaA9DCEmFsYUgxXLAlIaUUpRoFUtdaBZHQEN8s0YTCch1fZQoaAZoCWgPQwjPukbLAUllwJSGlFKUaBVLX2gWR0BDgbZezD4ydX2UKGgGaAloD0MIhEiGHNt6YcCUhpRSlGgVS3JoFkdAQ4G8XenAI3V9lChoBmgJaA9DCEfH1ciuEl/AlIaUUpRoFUtJaBZHQEOC4cWCVbB1fZQoaAZoCWgPQwg1QdR9ANxWwJSGlFKUaBVLOWgWR0BDjQmu1WsBdX2UKGgGaAloD0MI5YBdTZ5WXcCUhpRSlGgVS2toFkdAQ40Lc9GI9HV9lChoBmgJaA9DCCHn/X+c9VvAlIaUUpRoFUtnaBZHQEOPVf/m1Y11fZQoaAZoCWgPQwhSRlwAGrtfwJSGlFKUaBVLTGgWR0BDkHrpqynldX2UKGgGaAloD0MIILb0aKraYsCUhpRSlGgVS1NoFkdAQ5LV4HHFP3V9lChoBmgJaA9DCO1ESUikZl/AlIaUUpRoFUs/aBZHQEOUU8FINEx1fZQoaAZoCWgPQwg5YcJoVnhkwJSGlFKUaBVLZ2gWR0BDl++mFajfdX2UKGgGaAloD0MIfAvrxruJX8CUhpRSlGgVS2NoFkdAQ5sxM36yjnV9lChoBmgJaA9DCJFfP8SG+nTAlIaUUpRoFUtyaBZHQEOcrK/20zF1fZQoaAZoCWgPQwi4I5wWvC5YwJSGlFKUaBVLQWgWR0BDnyDAaef7dX2UKGgGaAloD0MItHdGW5UHc8CUhpRSlGgVS2ZoFkdAQ6BfrrxAjnV9lChoBmgJaA9DCIGyKVf4FmvAlIaUUpRoFUthaBZHQEOoO6unuRd1fZQoaAZoCWgPQwidEDroEkhSwJSGlFKUaBVLV2gWR0BDqSWZ7XxwdX2UKGgGaAloD0MIQPz89+ACXcCUhpRSlGgVS2hoFkdAQ6v1tfoicHV9lChoBmgJaA9DCMpuZvQjImvAlIaUUpRoFUtIaBZHQEOtxQSBbwB1fZQoaAZoCWgPQwjVITfDjQpxwJSGlFKUaBVLRWgWR0BDrr0Bfa6CdX2UKGgGaAloD0MI+BkXDoTVaMCUhpRSlGgVS0FoFkdAQ7CIrOJLunV9lChoBmgJaA9DCAEwnkHDqm/AlIaUUpRoFUtiaBZHQEOvxG2Culp1fZQoaAZoCWgPQwgwndZtUD1WwJSGlFKUaBVLW2gWR0BDtm/N7jT8dX2UKGgGaAloD0MI598u+3W0b8CUhpRSlGgVS05oFkdAQ7fFUADJVHV9lChoBmgJaA9DCOVFJuAXPnLAlIaUUpRoFUtfaBZHQEO7nvlU6xR1fZQoaAZoCWgPQwjgg9cu7cppwJSGlFKUaBVLWWgWR0BDxb1ZkkKNdX2UKGgGaAloD0MItybdlkgWacCUhpRSlGgVS1hoFkdAQ8lg8bJfY3V9lChoBmgJaA9DCOC593DJGVXAlIaUUpRoFUtCaBZHQEPLFb3XZoR1fZQoaAZoCWgPQwjQs1n1+ZlzwJSGlFKUaBVLUGgWR0BDzitA9mpVdX2UKGgGaAloD0MIeLRxxFo+UcCUhpRSlGgVS0VoFkdAQ8+mtQsPKHV9lChoBmgJaA9DCC8012mkNU/AlIaUUpRoFUtJaBZHQEPQnHeaa1F1fZQoaAZoCWgPQwheTDPda+FgwJSGlFKUaBVLRWgWR0BD0Knm7rcCdX2UKGgGaAloD0MIh1Pm5hu4YMCUhpRSlGgVS3ZoFkdAQ9KC8OCoTHV9lChoBmgJaA9DCDY+k/3zi2HAlIaUUpRoFUt3aBZHQEPXPP9kz411fZQoaAZoCWgPQwg6B8+EJqFXwJSGlFKUaBVLRWgWR0BD19UKiO/+dX2UKGgGaAloD0MIRX9o5kkZbMCUhpRSlGgVS4poFkdAQ9ip71Iy03V9lChoBmgJaA9DCGHGFKyxanLAlIaUUpRoFUtsaBZHQEPdJ5mh/RV1fZQoaAZoCWgPQwjh7xezpSpwwJSGlFKUaBVLb2gWR0BD53LNfPX1dX2UKGgGaAloD0MIg9xFmCL0YMCUhpRSlGgVS1xoFkdAQ+sC1Z1V53V9lChoBmgJaA9DCHDtRElIMVXAlIaUUpRoFUtIaBZHQEPu7FsHjZN1fZQoaAZoCWgPQwjohNBBl0BwwJSGlFKUaBVLgmgWR0BD+wRGtp22dX2UKGgGaAloD0MIB9LFppXuW8CUhpRSlGgVS1VoFkdARABoysS00HV9lChoBmgJaA9DCL3kf/J331zAlIaUUpRoFUtbaBZHQEQBsmfGuLd1fZQoaAZoCWgPQwhS1QRR14+CwJSGlFKUaBVLcmgWR0BEApKzzErHdX2UKGgGaAloD0MISghW1cuWb8CUhpRSlGgVS2BoFkdARAN+9alk6XV9lChoBmgJaA9DCAPMfAc/0WDAlIaUUpRoFUt9aBZHQEQOWNWEK3N1fZQoaAZoCWgPQwjv4ZLjTiplwJSGlFKUaBVLP2gWR0BEDboB7u2JdX2UKGgGaAloD0MIueLiqNwHXsCUhpRSlGgVS3loFkdARA+rS3LFGXV9lChoBmgJaA9DCAoQBTOm9lnAlIaUUpRoFUtwaBZHQEQUkPczqKR1fZQoaAZoCWgPQwh2ptB5zfV4wJSGlFKUaBVLfGgWR0BEE7mU4aP0dX2UKGgGaAloD0MI6q7sgsHKZMCUhpRSlGgVS4hoFkdARCKL4vexfXV9lChoBmgJaA9DCHE8nwF1ZHjAlIaUUpRoFUtvaBZHQEQj3B55Z8t1fZQoaAZoCWgPQwj8xWzJqrNSwJSGlFKUaBVLRWgWR0BEJX1anrIHdX2UKGgGaAloD0MIfgBSm7gXYcCUhpRSlGgVS4NoFkdARCTWwu/UOXV9lChoBmgJaA9DCMeb/BYdrWLAlIaUUpRoFUuSaBZHQEQnRkVeruJ1fZQoaAZoCWgPQwjRsBh17ft0wJSGlFKUaBVLbWgWR0BEKjmCAc1gdX2UKGgGaAloD0MI32xzY/owZcCUhpRSlGgVS1BoFkdARCxujynUD3V9lChoBmgJaA9DCMe9+Q0ToFrAlIaUUpRoFUtMaBZHQEQsEM9bHIZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4233120a1fb45b4c9d3c70bc935aabb35db02ab0049182cfe8621627c1e099b6
|
3 |
+
size 147014
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f711b55e160>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f711b55e1f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f711b55e280>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f711b55e310>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f711b55e3a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f711b55e430>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f711b55e4c0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f711b55e550>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f711b55e5e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f711b55e670>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f711b55e700>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f711b559630>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 16384,
|
46 |
+
"_total_timesteps": 10000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670420241113887027,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACs/BT8id4U+adyEP9Kgrb+XwBm/mMN1vgAAAAAAAAAAzepcvN4vrD+v6o6+nm0gv7Aqnjz4xM49AAAAAAAAAADAOYW997wGPwp1Ib7cd5q/DE3lPZtH+D0AAAAAAAAAAJrq1738X8c/VjICv5LSMT5AIHM942WGvAAAAAAAAAAAM1ybPA2wvj+hwwQ+iUJwOuZSfr2lsRm+AAAAAAAAAAAzo3S7itWxP6Wjf72T43q+gIEgvJGtpL0AAAAAAAAAABoUwj3Ogaw/bqcuP7wGor7lw+G9whYtvgAAAAAAAAAAANTcO66opz91+749BlAhvyFJcbzISaW9AAAAAAAAAACGXkM+jkA2P5BNiz4J43a/WxUTPmagBz4AAAAAAAAAAPPohL0IabM/+tKXvm2HSr5seUK5Yl5DvAAAAAAAAAAAmrsHvWotlD/sw4I+FcVLv0AtQ7+w1La+AAAAAAAAAACNiae+GGfZPtYH8b7HWZu/tKe2vrJS170AAAAAAAAAAM0StLyxzrY/UuS9vaz0pL1EIj+9BRfuvQAAAAAAAAAAzalFvaIEhz7b8DM96lSuv//wB78Hd4G+AAAAAAAAAABIsqu+e6rmvA4ne72Rd6O9cMsMPpo6qj4AAIA/AACAP005nb3Rhp89QjWvvkNCs7/Wjl0/GghVPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.6384000000000001,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoKTAApjAX8CUhpRSlIwBbJRLeIwBdJRHQEMUCfYjB2x1fZQoaAZoCWgPQwiSzsDIS+J4wJSGlFKUaBVLXmgWR0BDGwfhddE9dX2UKGgGaAloD0MIwt7EkBykYsCUhpRSlGgVS0RoFkdAQx1pXZGrj3V9lChoBmgJaA9DCNycSgYA23DAlIaUUpRoFUtwaBZHQEMd3N9ph4N1fZQoaAZoCWgPQwgKLev+sf9kwJSGlFKUaBVLcmgWR0BDH9bX6InCdX2UKGgGaAloD0MI1ESfj7L9c8CUhpRSlGgVS1poFkdAQyI3DNyHVXV9lChoBmgJaA9DCIsZ4e3BVXTAlIaUUpRoFUtoaBZHQEMnjEvTPSl1fZQoaAZoCWgPQwh6xr5kY49lwJSGlFKUaBVLfGgWR0BDKRNZeRgadX2UKGgGaAloD0MIOx3Iemo2XsCUhpRSlGgVS0NoFkdAQypIre67NHV9lChoBmgJaA9DCGfSpuoe6mjAlIaUUpRoFUs7aBZHQEMrqHoHLRt1fZQoaAZoCWgPQwht5SX/k0tewJSGlFKUaBVLZmgWR0BDLTySV4X5dX2UKGgGaAloD0MIcXFUbiJnacCUhpRSlGgVS1toFkdAQzR+pfhMrXV9lChoBmgJaA9DCC1A22pWuX/AlIaUUpRoFUtnaBZHQEM2KziS7oV1fZQoaAZoCWgPQwh/2xMkthFgwJSGlFKUaBVLUmgWR0BDNp8v24/edX2UKGgGaAloD0MIEXLe/8f5c8CUhpRSlGgVS3poFkdAQzn18LKFI3V9lChoBmgJaA9DCDVG66hq+mDAlIaUUpRoFUtaaBZHQEM64kNWluZ1fZQoaAZoCWgPQwgvNq0UQqlywJSGlFKUaBVLU2gWR0BDPqy4Wk8BdX2UKGgGaAloD0MIXKrSFtfvVcCUhpRSlGgVS29oFkdAQz7JOnEVFnV9lChoBmgJaA9DCNBGrptStjDAlIaUUpRoFUtTaBZHQENA6ErXlKd1fZQoaAZoCWgPQwjJ5qp5jgtewJSGlFKUaBVLYmgWR0BDR5sTFl06dX2UKGgGaAloD0MIFytqMM0RdsCUhpRSlGgVS2BoFkdAQ0i+Yc/+sHV9lChoBmgJaA9DCPwXCALkNmHAlIaUUpRoFUtSaBZHQENKdmQKa5R1fZQoaAZoCWgPQwgMVwdA3KZXwJSGlFKUaBVLSWgWR0BDTD6nBLwndX2UKGgGaAloD0MIza0QVmO9WMCUhpRSlGgVS1ZoFkdAQ03LFGXoknV9lChoBmgJaA9DCEZ9kjvs0m3AlIaUUpRoFUtYaBZHQENQC4Bmwq11fZQoaAZoCWgPQwgQBTOmIFN7wJSGlFKUaBVLWGgWR0BDUXEqDsdDdX2UKGgGaAloD0MIotCy7h+tUcCUhpRSlGgVS0loFkdAQ1QKneizs3V9lChoBmgJaA9DCHpW0opvr1fAlIaUUpRoFUs7aBZHQENYR3/xUed1fZQoaAZoCWgPQwi8I2O1+QBWwJSGlFKUaBVLgmgWR0BDWmozeoDQdX2UKGgGaAloD0MIoSsRqP6eaMCUhpRSlGgVS1xoFkdAQ13YjB2wFHV9lChoBmgJaA9DCIUGYtnMcUrAlIaUUpRoFUtRaBZHQENiLLIPsiV1fZQoaAZoCWgPQwjDmsqisKNKwJSGlFKUaBVLZ2gWR0BDY8Udq+JxdX2UKGgGaAloD0MITHDqA0kLdsCUhpRSlGgVS2poFkdAQ2lcB2fTTnV9lChoBmgJaA9DCDgR/dp6J23AlIaUUpRoFUteaBZHQENqlC1JDmd1fZQoaAZoCWgPQwgBv0aSIIVbwJSGlFKUaBVLTmgWR0BDapa7mMfjdX2UKGgGaAloD0MIkloomZxKXMCUhpRSlGgVS1VoFkdAQ26QPqcEvHV9lChoBmgJaA9DCEZfQZoxs2bAlIaUUpRoFUtTaBZHQENvbM5fdAR1fZQoaAZoCWgPQwjItDaNrdlzwJSGlFKUaBVLemgWR0BDb2VeKKpDdX2UKGgGaAloD0MILj2a6sntWcCUhpRSlGgVS1hoFkdAQ3MauOjqOnV9lChoBmgJaA9DCOc1donqLVjAlIaUUpRoFUtPaBZHQEN0J+DvmYB1fZQoaAZoCWgPQwg9K2nFN0JOwJSGlFKUaBVLRGgWR0BDeEeyRjjJdX2UKGgGaAloD0MI7Zv7q0eCbcCUhpRSlGgVS2xoFkdAQ30tyxRl6XV9lChoBmgJaA9DCEmFsYUgxXLAlIaUUpRoFUtdaBZHQEN8s0YTCch1fZQoaAZoCWgPQwjPukbLAUllwJSGlFKUaBVLX2gWR0BDgbZezD4ydX2UKGgGaAloD0MIhEiGHNt6YcCUhpRSlGgVS3JoFkdAQ4G8XenAI3V9lChoBmgJaA9DCEfH1ciuEl/AlIaUUpRoFUtJaBZHQEOC4cWCVbB1fZQoaAZoCWgPQwg1QdR9ANxWwJSGlFKUaBVLOWgWR0BDjQmu1WsBdX2UKGgGaAloD0MI5YBdTZ5WXcCUhpRSlGgVS2toFkdAQ40Lc9GI9HV9lChoBmgJaA9DCCHn/X+c9VvAlIaUUpRoFUtnaBZHQEOPVf/m1Y11fZQoaAZoCWgPQwhSRlwAGrtfwJSGlFKUaBVLTGgWR0BDkHrpqynldX2UKGgGaAloD0MIILb0aKraYsCUhpRSlGgVS1NoFkdAQ5LV4HHFP3V9lChoBmgJaA9DCO1ESUikZl/AlIaUUpRoFUs/aBZHQEOUU8FINEx1fZQoaAZoCWgPQwg5YcJoVnhkwJSGlFKUaBVLZ2gWR0BDl++mFajfdX2UKGgGaAloD0MIfAvrxruJX8CUhpRSlGgVS2NoFkdAQ5sxM36yjnV9lChoBmgJaA9DCJFfP8SG+nTAlIaUUpRoFUtyaBZHQEOcrK/20zF1fZQoaAZoCWgPQwi4I5wWvC5YwJSGlFKUaBVLQWgWR0BDnyDAaef7dX2UKGgGaAloD0MItHdGW5UHc8CUhpRSlGgVS2ZoFkdAQ6BfrrxAjnV9lChoBmgJaA9DCIGyKVf4FmvAlIaUUpRoFUthaBZHQEOoO6unuRd1fZQoaAZoCWgPQwidEDroEkhSwJSGlFKUaBVLV2gWR0BDqSWZ7XxwdX2UKGgGaAloD0MIQPz89+ACXcCUhpRSlGgVS2hoFkdAQ6v1tfoicHV9lChoBmgJaA9DCMpuZvQjImvAlIaUUpRoFUtIaBZHQEOtxQSBbwB1fZQoaAZoCWgPQwjVITfDjQpxwJSGlFKUaBVLRWgWR0BDrr0Bfa6CdX2UKGgGaAloD0MI+BkXDoTVaMCUhpRSlGgVS0FoFkdAQ7CIrOJLunV9lChoBmgJaA9DCAEwnkHDqm/AlIaUUpRoFUtiaBZHQEOvxG2Culp1fZQoaAZoCWgPQwgwndZtUD1WwJSGlFKUaBVLW2gWR0BDtm/N7jT8dX2UKGgGaAloD0MI598u+3W0b8CUhpRSlGgVS05oFkdAQ7fFUADJVHV9lChoBmgJaA9DCOVFJuAXPnLAlIaUUpRoFUtfaBZHQEO7nvlU6xR1fZQoaAZoCWgPQwjgg9cu7cppwJSGlFKUaBVLWWgWR0BDxb1ZkkKNdX2UKGgGaAloD0MItybdlkgWacCUhpRSlGgVS1hoFkdAQ8lg8bJfY3V9lChoBmgJaA9DCOC593DJGVXAlIaUUpRoFUtCaBZHQEPLFb3XZoR1fZQoaAZoCWgPQwjQs1n1+ZlzwJSGlFKUaBVLUGgWR0BDzitA9mpVdX2UKGgGaAloD0MIeLRxxFo+UcCUhpRSlGgVS0VoFkdAQ8+mtQsPKHV9lChoBmgJaA9DCC8012mkNU/AlIaUUpRoFUtJaBZHQEPQnHeaa1F1fZQoaAZoCWgPQwheTDPda+FgwJSGlFKUaBVLRWgWR0BD0Knm7rcCdX2UKGgGaAloD0MIh1Pm5hu4YMCUhpRSlGgVS3ZoFkdAQ9KC8OCoTHV9lChoBmgJaA9DCDY+k/3zi2HAlIaUUpRoFUt3aBZHQEPXPP9kz411fZQoaAZoCWgPQwg6B8+EJqFXwJSGlFKUaBVLRWgWR0BD19UKiO/+dX2UKGgGaAloD0MIRX9o5kkZbMCUhpRSlGgVS4poFkdAQ9ip71Iy03V9lChoBmgJaA9DCGHGFKyxanLAlIaUUpRoFUtsaBZHQEPdJ5mh/RV1fZQoaAZoCWgPQwjh7xezpSpwwJSGlFKUaBVLb2gWR0BD53LNfPX1dX2UKGgGaAloD0MIg9xFmCL0YMCUhpRSlGgVS1xoFkdAQ+sC1Z1V53V9lChoBmgJaA9DCHDtRElIMVXAlIaUUpRoFUtIaBZHQEPu7FsHjZN1fZQoaAZoCWgPQwjohNBBl0BwwJSGlFKUaBVLgmgWR0BD+wRGtp22dX2UKGgGaAloD0MIB9LFppXuW8CUhpRSlGgVS1VoFkdARABoysS00HV9lChoBmgJaA9DCL3kf/J331zAlIaUUpRoFUtbaBZHQEQBsmfGuLd1fZQoaAZoCWgPQwhS1QRR14+CwJSGlFKUaBVLcmgWR0BEApKzzErHdX2UKGgGaAloD0MISghW1cuWb8CUhpRSlGgVS2BoFkdARAN+9alk6XV9lChoBmgJaA9DCAPMfAc/0WDAlIaUUpRoFUt9aBZHQEQOWNWEK3N1fZQoaAZoCWgPQwjv4ZLjTiplwJSGlFKUaBVLP2gWR0BEDboB7u2JdX2UKGgGaAloD0MIueLiqNwHXsCUhpRSlGgVS3loFkdARA+rS3LFGXV9lChoBmgJaA9DCAoQBTOm9lnAlIaUUpRoFUtwaBZHQEQUkPczqKR1fZQoaAZoCWgPQwh2ptB5zfV4wJSGlFKUaBVLfGgWR0BEE7mU4aP0dX2UKGgGaAloD0MI6q7sgsHKZMCUhpRSlGgVS4hoFkdARCKL4vexfXV9lChoBmgJaA9DCHE8nwF1ZHjAlIaUUpRoFUtvaBZHQEQj3B55Z8t1fZQoaAZoCWgPQwj8xWzJqrNSwJSGlFKUaBVLRWgWR0BEJX1anrIHdX2UKGgGaAloD0MIfgBSm7gXYcCUhpRSlGgVS4NoFkdARCTWwu/UOXV9lChoBmgJaA9DCMeb/BYdrWLAlIaUUpRoFUuSaBZHQEQnRkVeruJ1fZQoaAZoCWgPQwjRsBh17ft0wJSGlFKUaBVLbWgWR0BEKjmCAc1gdX2UKGgGaAloD0MI32xzY/owZcCUhpRSlGgVS1BoFkdARCxujynUD3V9lChoBmgJaA9DCMe9+Q0ToFrAlIaUUpRoFUtMaBZHQEQsEM9bHIZ1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 4,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4834ccb79dc2b0902565361d03dd1767aabd151614dda626b0d23b93f3670c6
|
3 |
+
size 87865
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ede23470c0e6484ead05246990d964f5f6061de54e1daa905b49cc46f7a9b01a
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (247 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -137.26750015551224, "std_reward": 63.12628345813939, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-07T13:43:12.779016"}
|