juliekallini
commited on
Upload model
Browse files- config.json +42 -0
- generation_config.json +7 -0
- model.safetensors +3 -0
- modeling_gpt2_no_pos.py +427 -0
config.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/nlp/scr3/nlp/llms-in-llms/babylm_models/babylm_shuffle_even_odd_100M_randinit_no_positional_encodings/babylm_shuffle_even_odd_100M_randinit_no_positional_encodings_seed0/runs/babylm_shuffle_even_odd_100M_randinit_no_positional_encodings_seed0/checkpoint-3000",
|
3 |
+
"activation_function": "gelu_new",
|
4 |
+
"architectures": [
|
5 |
+
"GPT2NoPositionalEncodingLMHeadModel"
|
6 |
+
],
|
7 |
+
"attn_pdrop": 0.1,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoModelForCausalLM": "modeling_gpt2_no_pos.GPT2NoPositionalEncodingLMHeadModel"
|
10 |
+
},
|
11 |
+
"bos_token_id": 50256,
|
12 |
+
"embd_pdrop": 0.1,
|
13 |
+
"eos_token_id": 50256,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"layer_norm_epsilon": 1e-05,
|
16 |
+
"model_type": "gpt2",
|
17 |
+
"n_ctx": 1024,
|
18 |
+
"n_embd": 768,
|
19 |
+
"n_head": 12,
|
20 |
+
"n_inner": null,
|
21 |
+
"n_layer": 12,
|
22 |
+
"n_positions": 1024,
|
23 |
+
"reorder_and_upcast_attn": true,
|
24 |
+
"resid_pdrop": 0.1,
|
25 |
+
"scale_attn_by_inverse_layer_idx": true,
|
26 |
+
"scale_attn_weights": true,
|
27 |
+
"summary_activation": null,
|
28 |
+
"summary_first_dropout": 0.2,
|
29 |
+
"summary_proj_to_labels": true,
|
30 |
+
"summary_type": "cls_index",
|
31 |
+
"summary_use_proj": true,
|
32 |
+
"task_specific_params": {
|
33 |
+
"text-generation": {
|
34 |
+
"do_sample": true,
|
35 |
+
"max_length": 1024
|
36 |
+
}
|
37 |
+
},
|
38 |
+
"torch_dtype": "float32",
|
39 |
+
"transformers_version": "4.35.2",
|
40 |
+
"use_cache": false,
|
41 |
+
"vocab_size": 50257
|
42 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 50256,
|
4 |
+
"eos_token_id": 50256,
|
5 |
+
"transformers_version": "4.35.2",
|
6 |
+
"use_cache": false
|
7 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72e5ca054a8467d11edd3b1216dc9a8d412a1aa56ad1dc96824e45d1e07eb36e
|
3 |
+
size 494628384
|
modeling_gpt2_no_pos.py
ADDED
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modeling_gpt2_no_pos.py
|
2 |
+
# Adapted from Huggingface's transformers library
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2Block, GPT2PreTrainedModel
|
6 |
+
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions, BaseModelOutputWithPastAndCrossAttentions
|
7 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import CrossEntropyLoss
|
10 |
+
from typing import Optional, Tuple, Union
|
11 |
+
|
12 |
+
class GPT2NoPositionalEncodingModel(GPT2PreTrainedModel):
|
13 |
+
def __init__(self, config):
|
14 |
+
super().__init__(config)
|
15 |
+
|
16 |
+
self.embed_dim = config.hidden_size
|
17 |
+
|
18 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
19 |
+
|
20 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
21 |
+
self.h = nn.ModuleList([GPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
22 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
23 |
+
|
24 |
+
# Model parallel
|
25 |
+
self.model_parallel = False
|
26 |
+
self.device_map = None
|
27 |
+
self.gradient_checkpointing = False
|
28 |
+
|
29 |
+
# Initialize weights and apply final processing
|
30 |
+
self.post_init()
|
31 |
+
|
32 |
+
def parallelize(self, device_map=None):
|
33 |
+
# Check validity of device_map
|
34 |
+
self.device_map = (
|
35 |
+
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
|
36 |
+
)
|
37 |
+
assert_device_map(self.device_map, len(self.h))
|
38 |
+
self.model_parallel = True
|
39 |
+
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
40 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
41 |
+
self.wte = self.wte.to(self.first_device)
|
42 |
+
# Load onto devices
|
43 |
+
for k, v in self.device_map.items():
|
44 |
+
for block in v:
|
45 |
+
cuda_device = "cuda:" + str(k)
|
46 |
+
self.h[block] = self.h[block].to(cuda_device)
|
47 |
+
# ln_f to last
|
48 |
+
self.ln_f = self.ln_f.to(self.last_device)
|
49 |
+
|
50 |
+
def deparallelize(self):
|
51 |
+
self.model_parallel = False
|
52 |
+
self.device_map = None
|
53 |
+
self.first_device = "cpu"
|
54 |
+
self.last_device = "cpu"
|
55 |
+
self.wte = self.wte.to("cpu")
|
56 |
+
for index in range(len(self.h)):
|
57 |
+
self.h[index] = self.h[index].to("cpu")
|
58 |
+
self.ln_f = self.ln_f.to("cpu")
|
59 |
+
torch.cuda.empty_cache()
|
60 |
+
|
61 |
+
def get_input_embeddings(self):
|
62 |
+
return self.wte
|
63 |
+
|
64 |
+
def set_input_embeddings(self, new_embeddings):
|
65 |
+
self.wte = new_embeddings
|
66 |
+
|
67 |
+
def _prune_heads(self, heads_to_prune):
|
68 |
+
"""
|
69 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
70 |
+
"""
|
71 |
+
for layer, heads in heads_to_prune.items():
|
72 |
+
self.h[layer].attn.prune_heads(heads)
|
73 |
+
|
74 |
+
def forward(
|
75 |
+
self,
|
76 |
+
input_ids: Optional[torch.LongTensor] = None,
|
77 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
78 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
79 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
80 |
+
position_ids: Optional[torch.LongTensor] = None,
|
81 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
82 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
83 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
84 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
85 |
+
use_cache: Optional[bool] = None,
|
86 |
+
output_attentions: Optional[bool] = None,
|
87 |
+
output_hidden_states: Optional[bool] = None,
|
88 |
+
return_dict: Optional[bool] = None,
|
89 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
90 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
91 |
+
output_hidden_states = (
|
92 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
93 |
+
)
|
94 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
95 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
96 |
+
|
97 |
+
if input_ids is not None and inputs_embeds is not None:
|
98 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
99 |
+
elif input_ids is not None:
|
100 |
+
input_shape = input_ids.size()
|
101 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
102 |
+
batch_size = input_ids.shape[0]
|
103 |
+
elif inputs_embeds is not None:
|
104 |
+
input_shape = inputs_embeds.size()[:-1]
|
105 |
+
batch_size = inputs_embeds.shape[0]
|
106 |
+
else:
|
107 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
108 |
+
|
109 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
110 |
+
|
111 |
+
if token_type_ids is not None:
|
112 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
113 |
+
|
114 |
+
if past_key_values is None:
|
115 |
+
past_length = 0
|
116 |
+
past_key_values = tuple([None] * len(self.h))
|
117 |
+
else:
|
118 |
+
past_length = past_key_values[0][0].size(-2)
|
119 |
+
if position_ids is None:
|
120 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
121 |
+
position_ids = position_ids.unsqueeze(0)
|
122 |
+
|
123 |
+
# GPT2Attention mask.
|
124 |
+
if attention_mask is not None:
|
125 |
+
if batch_size <= 0:
|
126 |
+
raise ValueError("batch_size has to be defined and > 0")
|
127 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
128 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
129 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
130 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
131 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
132 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
133 |
+
attention_mask = attention_mask[:, None, None, :]
|
134 |
+
|
135 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
136 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
137 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
138 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
139 |
+
# effectively the same as removing these entirely.
|
140 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
141 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
142 |
+
|
143 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
144 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
145 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
146 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
147 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
148 |
+
if encoder_attention_mask is None:
|
149 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
150 |
+
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
151 |
+
else:
|
152 |
+
encoder_attention_mask = None
|
153 |
+
|
154 |
+
# Prepare head mask if needed
|
155 |
+
# 1.0 in head_mask indicate we keep the head
|
156 |
+
# attention_probs has shape bsz x n_heads x N x N
|
157 |
+
# head_mask has shape n_layer x batch x n_heads x N x N
|
158 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
159 |
+
|
160 |
+
if inputs_embeds is None:
|
161 |
+
inputs_embeds = self.wte(input_ids)
|
162 |
+
hidden_states = inputs_embeds
|
163 |
+
|
164 |
+
if token_type_ids is not None:
|
165 |
+
token_type_embeds = self.wte(token_type_ids)
|
166 |
+
hidden_states = hidden_states + token_type_embeds
|
167 |
+
|
168 |
+
hidden_states = self.drop(hidden_states)
|
169 |
+
|
170 |
+
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
171 |
+
|
172 |
+
if self.gradient_checkpointing and self.training:
|
173 |
+
if use_cache:
|
174 |
+
use_cache = False
|
175 |
+
|
176 |
+
presents = () if use_cache else None
|
177 |
+
all_self_attentions = () if output_attentions else None
|
178 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
179 |
+
all_hidden_states = () if output_hidden_states else None
|
180 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
181 |
+
# Model parallel
|
182 |
+
if self.model_parallel:
|
183 |
+
torch.cuda.set_device(hidden_states.device)
|
184 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
185 |
+
if layer_past is not None:
|
186 |
+
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
187 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
188 |
+
if attention_mask is not None:
|
189 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
190 |
+
if isinstance(head_mask, torch.Tensor):
|
191 |
+
head_mask = head_mask.to(hidden_states.device)
|
192 |
+
if output_hidden_states:
|
193 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
194 |
+
|
195 |
+
if self.gradient_checkpointing and self.training:
|
196 |
+
outputs = self._gradient_checkpointing_func(
|
197 |
+
block.__call__,
|
198 |
+
hidden_states,
|
199 |
+
None,
|
200 |
+
attention_mask,
|
201 |
+
head_mask[i],
|
202 |
+
encoder_hidden_states,
|
203 |
+
encoder_attention_mask,
|
204 |
+
use_cache,
|
205 |
+
output_attentions,
|
206 |
+
)
|
207 |
+
else:
|
208 |
+
outputs = block(
|
209 |
+
hidden_states,
|
210 |
+
layer_past=layer_past,
|
211 |
+
attention_mask=attention_mask,
|
212 |
+
head_mask=head_mask[i],
|
213 |
+
encoder_hidden_states=encoder_hidden_states,
|
214 |
+
encoder_attention_mask=encoder_attention_mask,
|
215 |
+
use_cache=use_cache,
|
216 |
+
output_attentions=output_attentions,
|
217 |
+
)
|
218 |
+
|
219 |
+
hidden_states = outputs[0]
|
220 |
+
if use_cache is True:
|
221 |
+
presents = presents + (outputs[1],)
|
222 |
+
|
223 |
+
if output_attentions:
|
224 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
225 |
+
if self.config.add_cross_attention:
|
226 |
+
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
|
227 |
+
|
228 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
229 |
+
if self.model_parallel:
|
230 |
+
for k, v in self.device_map.items():
|
231 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
232 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
233 |
+
|
234 |
+
hidden_states = self.ln_f(hidden_states)
|
235 |
+
|
236 |
+
hidden_states = hidden_states.view(output_shape)
|
237 |
+
# Add last hidden state
|
238 |
+
if output_hidden_states:
|
239 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
240 |
+
|
241 |
+
if not return_dict:
|
242 |
+
return tuple(
|
243 |
+
v
|
244 |
+
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
|
245 |
+
if v is not None
|
246 |
+
)
|
247 |
+
|
248 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
249 |
+
last_hidden_state=hidden_states,
|
250 |
+
past_key_values=presents,
|
251 |
+
hidden_states=all_hidden_states,
|
252 |
+
attentions=all_self_attentions,
|
253 |
+
cross_attentions=all_cross_attentions,
|
254 |
+
)
|
255 |
+
|
256 |
+
class GPT2NoPositionalEncodingLMHeadModel(GPT2PreTrainedModel):
|
257 |
+
_tied_weights_keys = ["lm_head.weight"]
|
258 |
+
|
259 |
+
def __init__(self, config):
|
260 |
+
super().__init__(config)
|
261 |
+
self.transformer = GPT2NoPositionalEncodingModel(config)
|
262 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
263 |
+
|
264 |
+
# Model parallel
|
265 |
+
self.model_parallel = False
|
266 |
+
self.device_map = None
|
267 |
+
|
268 |
+
# Initialize weights and apply final processing
|
269 |
+
self.post_init()
|
270 |
+
|
271 |
+
def parallelize(self, device_map=None):
|
272 |
+
self.device_map = (
|
273 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
274 |
+
if device_map is None
|
275 |
+
else device_map
|
276 |
+
)
|
277 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
278 |
+
self.transformer.parallelize(self.device_map)
|
279 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
280 |
+
self.model_parallel = True
|
281 |
+
|
282 |
+
def deparallelize(self):
|
283 |
+
self.transformer.deparallelize()
|
284 |
+
self.transformer = self.transformer.to("cpu")
|
285 |
+
self.lm_head = self.lm_head.to("cpu")
|
286 |
+
self.model_parallel = False
|
287 |
+
torch.cuda.empty_cache()
|
288 |
+
|
289 |
+
def get_output_embeddings(self):
|
290 |
+
return self.lm_head
|
291 |
+
|
292 |
+
def set_output_embeddings(self, new_embeddings):
|
293 |
+
self.lm_head = new_embeddings
|
294 |
+
|
295 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
296 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
297 |
+
# Omit tokens covered by past_key_values
|
298 |
+
if past_key_values:
|
299 |
+
past_length = past_key_values[0][0].shape[2]
|
300 |
+
|
301 |
+
# Some generation methods already pass only the last input ID
|
302 |
+
if input_ids.shape[1] > past_length:
|
303 |
+
remove_prefix_length = past_length
|
304 |
+
else:
|
305 |
+
# Default to old behavior: keep only final ID
|
306 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
307 |
+
|
308 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
309 |
+
if token_type_ids is not None:
|
310 |
+
token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
|
311 |
+
|
312 |
+
attention_mask = kwargs.get("attention_mask", None)
|
313 |
+
position_ids = kwargs.get("position_ids", None)
|
314 |
+
|
315 |
+
if attention_mask is not None and position_ids is None:
|
316 |
+
# create position_ids on the fly for batch generation
|
317 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
318 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
319 |
+
if past_key_values:
|
320 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
321 |
+
else:
|
322 |
+
position_ids = None
|
323 |
+
|
324 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
325 |
+
if inputs_embeds is not None and past_key_values is None:
|
326 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
327 |
+
else:
|
328 |
+
model_inputs = {"input_ids": input_ids}
|
329 |
+
|
330 |
+
model_inputs.update(
|
331 |
+
{
|
332 |
+
"past_key_values": past_key_values,
|
333 |
+
"use_cache": kwargs.get("use_cache"),
|
334 |
+
"position_ids": position_ids,
|
335 |
+
"attention_mask": attention_mask,
|
336 |
+
"token_type_ids": token_type_ids,
|
337 |
+
}
|
338 |
+
)
|
339 |
+
|
340 |
+
return model_inputs
|
341 |
+
|
342 |
+
def forward(
|
343 |
+
self,
|
344 |
+
input_ids: Optional[torch.LongTensor] = None,
|
345 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
346 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
347 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
348 |
+
position_ids: Optional[torch.LongTensor] = None,
|
349 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
350 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
351 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
352 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
353 |
+
labels: Optional[torch.LongTensor] = None,
|
354 |
+
use_cache: Optional[bool] = None,
|
355 |
+
output_attentions: Optional[bool] = None,
|
356 |
+
output_hidden_states: Optional[bool] = None,
|
357 |
+
return_dict: Optional[bool] = None,
|
358 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
359 |
+
r"""
|
360 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
361 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
362 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
363 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
364 |
+
"""
|
365 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
366 |
+
|
367 |
+
transformer_outputs = self.transformer(
|
368 |
+
input_ids,
|
369 |
+
past_key_values=past_key_values,
|
370 |
+
attention_mask=attention_mask,
|
371 |
+
token_type_ids=token_type_ids,
|
372 |
+
position_ids=position_ids,
|
373 |
+
head_mask=head_mask,
|
374 |
+
inputs_embeds=inputs_embeds,
|
375 |
+
encoder_hidden_states=encoder_hidden_states,
|
376 |
+
encoder_attention_mask=encoder_attention_mask,
|
377 |
+
use_cache=use_cache,
|
378 |
+
output_attentions=output_attentions,
|
379 |
+
output_hidden_states=output_hidden_states,
|
380 |
+
return_dict=return_dict,
|
381 |
+
)
|
382 |
+
hidden_states = transformer_outputs[0]
|
383 |
+
|
384 |
+
# Set device for model parallelism
|
385 |
+
if self.model_parallel:
|
386 |
+
torch.cuda.set_device(self.transformer.first_device)
|
387 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
388 |
+
|
389 |
+
lm_logits = self.lm_head(hidden_states)
|
390 |
+
|
391 |
+
loss = None
|
392 |
+
if labels is not None:
|
393 |
+
# move labels to correct device to enable model parallelism
|
394 |
+
labels = labels.to(lm_logits.device)
|
395 |
+
# Shift so that tokens < n predict n
|
396 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
397 |
+
shift_labels = labels[..., 1:].contiguous()
|
398 |
+
# Flatten the tokens
|
399 |
+
loss_fct = CrossEntropyLoss()
|
400 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
401 |
+
|
402 |
+
if not return_dict:
|
403 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
404 |
+
return ((loss,) + output) if loss is not None else output
|
405 |
+
|
406 |
+
return CausalLMOutputWithCrossAttentions(
|
407 |
+
loss=loss,
|
408 |
+
logits=lm_logits,
|
409 |
+
past_key_values=transformer_outputs.past_key_values,
|
410 |
+
hidden_states=transformer_outputs.hidden_states,
|
411 |
+
attentions=transformer_outputs.attentions,
|
412 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
413 |
+
)
|
414 |
+
|
415 |
+
@staticmethod
|
416 |
+
def _reorder_cache(
|
417 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
418 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
419 |
+
"""
|
420 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
421 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
422 |
+
beam_idx at every generation step.
|
423 |
+
"""
|
424 |
+
return tuple(
|
425 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
426 |
+
for layer_past in past_key_values
|
427 |
+
)
|