Upload folder using huggingface_hub
Browse files- README.md +3 -1
- config.json +62 -9
- configuration_midashenglm.py +67 -13
- generation_config.json +8 -0
- model.safetensors.index.json +398 -398
- modeling_midashenglm.py +258 -457
README.md
CHANGED
|
@@ -52,7 +52,9 @@ TODO:以下由Qwen2.5-Omni-3B依赖,引入路径未知,需要去除
|
|
| 52 |
|
| 53 |
>>> with torch.no_grad():
|
| 54 |
... model_inputs = processor(text=text, audio=audio)
|
| 55 |
-
...
|
|
|
|
|
|
|
| 56 |
>>> print(output)
|
| 57 |
["An engine is idling.'"]
|
| 58 |
```
|
|
|
|
| 52 |
|
| 53 |
>>> with torch.no_grad():
|
| 54 |
... model_inputs = processor(text=text, audio=audio)
|
| 55 |
+
... generation = model.generate(**model_inputs)
|
| 56 |
+
... output = processor.batch_decode(generation, skip_special_tokens=True)
|
| 57 |
+
|
| 58 |
>>> print(output)
|
| 59 |
["An engine is idling.'"]
|
| 60 |
```
|
config.json
CHANGED
|
@@ -2,11 +2,36 @@
|
|
| 2 |
"architectures": [
|
| 3 |
"DashengQwen25OmniModelInstruct"
|
| 4 |
],
|
| 5 |
-
"
|
| 6 |
-
|
| 7 |
-
"
|
| 8 |
-
"
|
| 9 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
},
|
| 11 |
"auto_map": {
|
| 12 |
"AutoConfig": "configuration_midashenglm.MiAudioLLMHFConfig",
|
|
@@ -19,9 +44,37 @@
|
|
| 19 |
"model_type": "miaudiollm",
|
| 20 |
"resize_tokenizer": false,
|
| 21 |
"subsample_factor": 5,
|
| 22 |
-
"
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
"torch_dtype": "float32",
|
| 25 |
-
"transformers_version": "4.52.0.dev0"
|
| 26 |
-
"use_encoderattention_mask": true
|
| 27 |
}
|
|
|
|
| 2 |
"architectures": [
|
| 3 |
"DashengQwen25OmniModelInstruct"
|
| 4 |
],
|
| 5 |
+
"audio_encoder_config": {
|
| 6 |
+
"attn_drop_rate": 0.0,
|
| 7 |
+
"center": true,
|
| 8 |
+
"depth": 32,
|
| 9 |
+
"drop_path_rate": 0.0,
|
| 10 |
+
"drop_rate": 0.0,
|
| 11 |
+
"embed_dim": 1280,
|
| 12 |
+
"f_max": 8000.0,
|
| 13 |
+
"f_min": 0.0,
|
| 14 |
+
"hop_length": 160,
|
| 15 |
+
"init_values": null,
|
| 16 |
+
"input_channels": 1,
|
| 17 |
+
"mlp_ratio": 4.0,
|
| 18 |
+
"model_type": "miaudiollm_dasheng_encoder",
|
| 19 |
+
"n_fft": 512,
|
| 20 |
+
"n_mels": 64,
|
| 21 |
+
"num_heads": 16,
|
| 22 |
+
"outputdim": 527,
|
| 23 |
+
"patch_size": [
|
| 24 |
+
64,
|
| 25 |
+
4
|
| 26 |
+
],
|
| 27 |
+
"patch_stride": [
|
| 28 |
+
64,
|
| 29 |
+
4
|
| 30 |
+
],
|
| 31 |
+
"qkv_bias": true,
|
| 32 |
+
"sample_rate": 16000,
|
| 33 |
+
"target_length": 1008,
|
| 34 |
+
"win_length": 512
|
| 35 |
},
|
| 36 |
"auto_map": {
|
| 37 |
"AutoConfig": "configuration_midashenglm.MiAudioLLMHFConfig",
|
|
|
|
| 44 |
"model_type": "miaudiollm",
|
| 45 |
"resize_tokenizer": false,
|
| 46 |
"subsample_factor": 5,
|
| 47 |
+
"text_model_config": {
|
| 48 |
+
"_attn_implementation_autoset": true,
|
| 49 |
+
"attention_dropout": 0.0,
|
| 50 |
+
"hidden_act": "silu",
|
| 51 |
+
"hidden_size": 2048,
|
| 52 |
+
"init_std": 0.02,
|
| 53 |
+
"initializer_range": 0.02,
|
| 54 |
+
"intermediate_size": 11008,
|
| 55 |
+
"max_position_embeddings": 32768,
|
| 56 |
+
"max_window_layers": 70,
|
| 57 |
+
"model_type": "qwen2_5_omni_text",
|
| 58 |
+
"num_attention_heads": 16,
|
| 59 |
+
"num_hidden_layers": 36,
|
| 60 |
+
"num_key_value_heads": 2,
|
| 61 |
+
"rms_norm_eps": 1e-06,
|
| 62 |
+
"rope_scaling": {
|
| 63 |
+
"mrope_section": [
|
| 64 |
+
16,
|
| 65 |
+
24,
|
| 66 |
+
24
|
| 67 |
+
],
|
| 68 |
+
"rope_type": "default",
|
| 69 |
+
"type": "default"
|
| 70 |
+
},
|
| 71 |
+
"rope_theta": 1000000.0,
|
| 72 |
+
"sliding_window": 32768,
|
| 73 |
+
"torch_dtype": "bfloat16",
|
| 74 |
+
"use_cache": true,
|
| 75 |
+
"use_sliding_window": false,
|
| 76 |
+
"vocab_size": 152064
|
| 77 |
+
},
|
| 78 |
"torch_dtype": "float32",
|
| 79 |
+
"transformers_version": "4.52.0.dev0"
|
|
|
|
| 80 |
}
|
configuration_midashenglm.py
CHANGED
|
@@ -1,6 +1,64 @@
|
|
| 1 |
-
from
|
|
|
|
| 2 |
|
| 3 |
from transformers import PretrainedConfig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
|
| 6 |
class MiAudioLLMHFConfig(PretrainedConfig):
|
|
@@ -9,25 +67,21 @@ class MiAudioLLMHFConfig(PretrainedConfig):
|
|
| 9 |
def __init__(
|
| 10 |
self,
|
| 11 |
model: str = "DashengQwen2ModelInstruct",
|
| 12 |
-
|
| 13 |
-
audio_encoder_args=dict(
|
| 14 |
-
model_name="audiotransformer_base.dasheng.10s", pretrained=True
|
| 15 |
-
),
|
| 16 |
-
text_model="Qwen/Qwen2.5-0.5B-Instruct",
|
| 17 |
-
text_model_args=dict(),
|
| 18 |
freeze: Literal["audio", "text"] | str | None = None,
|
| 19 |
lora: Literal["encoder", "decoder"] | None = None,
|
| 20 |
subsample_factor: int = 5,
|
| 21 |
-
|
| 22 |
**kwargs,
|
| 23 |
):
|
| 24 |
self.model = model
|
| 25 |
-
self.
|
| 26 |
-
self.audio_encoder_args = audio_encoder_args
|
| 27 |
-
self.text_model = text_model
|
| 28 |
-
self.text_model_args = text_model_args
|
| 29 |
self.freeze = freeze
|
| 30 |
self.lora = lora
|
| 31 |
self.subsample_factor = subsample_factor
|
| 32 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
super().__init__(**kwargs)
|
|
|
|
| 1 |
+
from ast import Dict
|
| 2 |
+
from typing import Literal, Tuple, Union
|
| 3 |
|
| 4 |
from transformers import PretrainedConfig
|
| 5 |
+
from transformers.models.qwen2_5_omni.configuration_qwen2_5_omni import (
|
| 6 |
+
Qwen2_5OmniTextConfig,
|
| 7 |
+
)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class DashengConfig(PretrainedConfig):
|
| 11 |
+
model_type = "miaudiollm_dasheng_encoder"
|
| 12 |
+
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
embed_dim: int = 768,
|
| 16 |
+
outputdim: int = 527,
|
| 17 |
+
patch_size: Union[int, Tuple[int, int]] = 16,
|
| 18 |
+
patch_stride: Union[int, Tuple[int, int]] = 16,
|
| 19 |
+
input_channels: int = 1,
|
| 20 |
+
target_length: int = 1012,
|
| 21 |
+
depth: int = 12,
|
| 22 |
+
num_heads: int = 12,
|
| 23 |
+
mlp_ratio: float = 4.0,
|
| 24 |
+
qkv_bias: bool = True,
|
| 25 |
+
init_values: float | None = None,
|
| 26 |
+
drop_rate: float = 0.0,
|
| 27 |
+
attn_drop_rate: float = 0.0,
|
| 28 |
+
drop_path_rate: float = 0.0,
|
| 29 |
+
f_min: float = 0.0,
|
| 30 |
+
f_max: float = 8000.0,
|
| 31 |
+
center: bool = True,
|
| 32 |
+
win_length: int = 512,
|
| 33 |
+
hop_length: int = 160,
|
| 34 |
+
sample_rate: int = 16000,
|
| 35 |
+
n_fft: int = 512,
|
| 36 |
+
n_mels: int = 64,
|
| 37 |
+
**kwargs,
|
| 38 |
+
):
|
| 39 |
+
self.embed_dim = embed_dim
|
| 40 |
+
self.outputdim = outputdim
|
| 41 |
+
self.patch_size = patch_size
|
| 42 |
+
self.patch_stride = patch_stride
|
| 43 |
+
self.input_channels = input_channels
|
| 44 |
+
self.target_length = target_length
|
| 45 |
+
self.depth = depth
|
| 46 |
+
self.num_heads = num_heads
|
| 47 |
+
self.mlp_ratio = mlp_ratio
|
| 48 |
+
self.qkv_bias = qkv_bias
|
| 49 |
+
self.init_values = init_values
|
| 50 |
+
self.drop_rate = drop_rate
|
| 51 |
+
self.attn_drop_rate = attn_drop_rate
|
| 52 |
+
self.drop_path_rate = drop_path_rate
|
| 53 |
+
self.f_min = f_min
|
| 54 |
+
self.f_max = f_max
|
| 55 |
+
self.center = center
|
| 56 |
+
self.win_length = win_length
|
| 57 |
+
self.hop_length = hop_length
|
| 58 |
+
self.sample_rate = sample_rate
|
| 59 |
+
self.n_fft = n_fft
|
| 60 |
+
self.n_mels = n_mels
|
| 61 |
+
super().__init__(**kwargs)
|
| 62 |
|
| 63 |
|
| 64 |
class MiAudioLLMHFConfig(PretrainedConfig):
|
|
|
|
| 67 |
def __init__(
|
| 68 |
self,
|
| 69 |
model: str = "DashengQwen2ModelInstruct",
|
| 70 |
+
audio_encoder_config: Dict = {},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
freeze: Literal["audio", "text"] | str | None = None,
|
| 72 |
lora: Literal["encoder", "decoder"] | None = None,
|
| 73 |
subsample_factor: int = 5,
|
| 74 |
+
text_model_config: Dict = None,
|
| 75 |
**kwargs,
|
| 76 |
):
|
| 77 |
self.model = model
|
| 78 |
+
self.audio_encoder_config = DashengConfig(**audio_encoder_config)
|
|
|
|
|
|
|
|
|
|
| 79 |
self.freeze = freeze
|
| 80 |
self.lora = lora
|
| 81 |
self.subsample_factor = subsample_factor
|
| 82 |
+
self.text_model_config = (
|
| 83 |
+
Qwen2_5OmniTextConfig(**text_model_config)
|
| 84 |
+
if text_model_config
|
| 85 |
+
else Qwen2_5OmniTextConfig()
|
| 86 |
+
)
|
| 87 |
super().__init__(**kwargs)
|
generation_config.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"eos_token_id": [
|
| 3 |
+
151643,
|
| 4 |
+
151645
|
| 5 |
+
],
|
| 6 |
+
"pad_token_id": 151643,
|
| 7 |
+
"transformers_version": "4.52.0.dev0"
|
| 8 |
+
}
|
model.safetensors.index.json
CHANGED
|
@@ -1,405 +1,405 @@
|
|
| 1 |
{
|
| 2 |
"metadata": {
|
| 3 |
-
"total_size":
|
| 4 |
},
|
| 5 |
"weight_map": {
|
| 6 |
-
"audio_encoder.
|
| 7 |
-
"audio_encoder.
|
| 8 |
-
"audio_encoder.
|
| 9 |
-
"audio_encoder.
|
| 10 |
-
"audio_encoder.
|
| 11 |
-
"audio_encoder.
|
| 12 |
-
"audio_encoder.
|
| 13 |
-
"audio_encoder.
|
| 14 |
-
"audio_encoder.
|
| 15 |
-
"audio_encoder.
|
| 16 |
-
"audio_encoder.
|
| 17 |
-
"audio_encoder.
|
| 18 |
-
"audio_encoder.
|
| 19 |
-
"audio_encoder.
|
| 20 |
-
"audio_encoder.
|
| 21 |
-
"audio_encoder.
|
| 22 |
-
"audio_encoder.
|
| 23 |
-
"audio_encoder.
|
| 24 |
-
"audio_encoder.
|
| 25 |
-
"audio_encoder.
|
| 26 |
-
"audio_encoder.
|
| 27 |
-
"audio_encoder.
|
| 28 |
-
"audio_encoder.
|
| 29 |
-
"audio_encoder.
|
| 30 |
-
"audio_encoder.
|
| 31 |
-
"audio_encoder.
|
| 32 |
-
"audio_encoder.
|
| 33 |
-
"audio_encoder.
|
| 34 |
-
"audio_encoder.
|
| 35 |
-
"audio_encoder.
|
| 36 |
-
"audio_encoder.
|
| 37 |
-
"audio_encoder.
|
| 38 |
-
"audio_encoder.
|
| 39 |
-
"audio_encoder.
|
| 40 |
-
"audio_encoder.
|
| 41 |
-
"audio_encoder.
|
| 42 |
-
"audio_encoder.
|
| 43 |
-
"audio_encoder.
|
| 44 |
-
"audio_encoder.
|
| 45 |
-
"audio_encoder.
|
| 46 |
-
"audio_encoder.
|
| 47 |
-
"audio_encoder.
|
| 48 |
-
"audio_encoder.
|
| 49 |
-
"audio_encoder.
|
| 50 |
-
"audio_encoder.
|
| 51 |
-
"audio_encoder.
|
| 52 |
-
"audio_encoder.
|
| 53 |
-
"audio_encoder.
|
| 54 |
-
"audio_encoder.
|
| 55 |
-
"audio_encoder.
|
| 56 |
-
"audio_encoder.
|
| 57 |
-
"audio_encoder.
|
| 58 |
-
"audio_encoder.
|
| 59 |
-
"audio_encoder.
|
| 60 |
-
"audio_encoder.
|
| 61 |
-
"audio_encoder.
|
| 62 |
-
"audio_encoder.
|
| 63 |
-
"audio_encoder.
|
| 64 |
-
"audio_encoder.
|
| 65 |
-
"audio_encoder.
|
| 66 |
-
"audio_encoder.
|
| 67 |
-
"audio_encoder.
|
| 68 |
-
"audio_encoder.
|
| 69 |
-
"audio_encoder.
|
| 70 |
-
"audio_encoder.
|
| 71 |
-
"audio_encoder.
|
| 72 |
-
"audio_encoder.
|
| 73 |
-
"audio_encoder.
|
| 74 |
-
"audio_encoder.
|
| 75 |
-
"audio_encoder.
|
| 76 |
-
"audio_encoder.
|
| 77 |
-
"audio_encoder.
|
| 78 |
-
"audio_encoder.
|
| 79 |
-
"audio_encoder.
|
| 80 |
-
"audio_encoder.
|
| 81 |
-
"audio_encoder.
|
| 82 |
-
"audio_encoder.
|
| 83 |
-
"audio_encoder.
|
| 84 |
-
"audio_encoder.
|
| 85 |
-
"audio_encoder.
|
| 86 |
-
"audio_encoder.
|
| 87 |
-
"audio_encoder.
|
| 88 |
-
"audio_encoder.
|
| 89 |
-
"audio_encoder.
|
| 90 |
-
"audio_encoder.
|
| 91 |
-
"audio_encoder.
|
| 92 |
-
"audio_encoder.
|
| 93 |
-
"audio_encoder.
|
| 94 |
-
"audio_encoder.
|
| 95 |
-
"audio_encoder.
|
| 96 |
-
"audio_encoder.
|
| 97 |
-
"audio_encoder.
|
| 98 |
-
"audio_encoder.
|
| 99 |
-
"audio_encoder.
|
| 100 |
-
"audio_encoder.
|
| 101 |
-
"audio_encoder.
|
| 102 |
-
"audio_encoder.
|
| 103 |
-
"audio_encoder.
|
| 104 |
-
"audio_encoder.
|
| 105 |
-
"audio_encoder.
|
| 106 |
-
"audio_encoder.
|
| 107 |
-
"audio_encoder.
|
| 108 |
-
"audio_encoder.
|
| 109 |
-
"audio_encoder.
|
| 110 |
-
"audio_encoder.
|
| 111 |
-
"audio_encoder.
|
| 112 |
-
"audio_encoder.
|
| 113 |
-
"audio_encoder.
|
| 114 |
-
"audio_encoder.
|
| 115 |
-
"audio_encoder.
|
| 116 |
-
"audio_encoder.
|
| 117 |
-
"audio_encoder.
|
| 118 |
-
"audio_encoder.
|
| 119 |
-
"audio_encoder.
|
| 120 |
-
"audio_encoder.
|
| 121 |
-
"audio_encoder.
|
| 122 |
-
"audio_encoder.
|
| 123 |
-
"audio_encoder.
|
| 124 |
-
"audio_encoder.
|
| 125 |
-
"audio_encoder.
|
| 126 |
-
"audio_encoder.
|
| 127 |
-
"audio_encoder.
|
| 128 |
-
"audio_encoder.
|
| 129 |
-
"audio_encoder.
|
| 130 |
-
"audio_encoder.
|
| 131 |
-
"audio_encoder.
|
| 132 |
-
"audio_encoder.
|
| 133 |
-
"audio_encoder.
|
| 134 |
-
"audio_encoder.
|
| 135 |
-
"audio_encoder.
|
| 136 |
-
"audio_encoder.
|
| 137 |
-
"audio_encoder.
|
| 138 |
-
"audio_encoder.
|
| 139 |
-
"audio_encoder.
|
| 140 |
-
"audio_encoder.
|
| 141 |
-
"audio_encoder.
|
| 142 |
-
"audio_encoder.
|
| 143 |
-
"audio_encoder.
|
| 144 |
-
"audio_encoder.
|
| 145 |
-
"audio_encoder.
|
| 146 |
-
"audio_encoder.
|
| 147 |
-
"audio_encoder.
|
| 148 |
-
"audio_encoder.
|
| 149 |
-
"audio_encoder.
|
| 150 |
-
"audio_encoder.
|
| 151 |
-
"audio_encoder.
|
| 152 |
-
"audio_encoder.
|
| 153 |
-
"audio_encoder.
|
| 154 |
-
"audio_encoder.
|
| 155 |
-
"audio_encoder.
|
| 156 |
-
"audio_encoder.
|
| 157 |
-
"audio_encoder.
|
| 158 |
-
"audio_encoder.
|
| 159 |
-
"audio_encoder.
|
| 160 |
-
"audio_encoder.
|
| 161 |
-
"audio_encoder.
|
| 162 |
-
"audio_encoder.
|
| 163 |
-
"audio_encoder.
|
| 164 |
-
"audio_encoder.
|
| 165 |
-
"audio_encoder.
|
| 166 |
-
"audio_encoder.
|
| 167 |
-
"audio_encoder.
|
| 168 |
-
"audio_encoder.
|
| 169 |
-
"audio_encoder.
|
| 170 |
-
"audio_encoder.
|
| 171 |
-
"audio_encoder.
|
| 172 |
-
"audio_encoder.
|
| 173 |
-
"audio_encoder.
|
| 174 |
-
"audio_encoder.
|
| 175 |
-
"audio_encoder.
|
| 176 |
-
"audio_encoder.
|
| 177 |
-
"audio_encoder.
|
| 178 |
-
"audio_encoder.
|
| 179 |
-
"audio_encoder.
|
| 180 |
-
"audio_encoder.
|
| 181 |
-
"audio_encoder.
|
| 182 |
-
"audio_encoder.
|
| 183 |
-
"audio_encoder.
|
| 184 |
-
"audio_encoder.
|
| 185 |
-
"audio_encoder.
|
| 186 |
-
"audio_encoder.
|
| 187 |
-
"audio_encoder.
|
| 188 |
-
"audio_encoder.
|
| 189 |
-
"audio_encoder.
|
| 190 |
-
"audio_encoder.
|
| 191 |
-
"audio_encoder.
|
| 192 |
-
"audio_encoder.
|
| 193 |
-
"audio_encoder.
|
| 194 |
-
"audio_encoder.
|
| 195 |
-
"audio_encoder.
|
| 196 |
-
"audio_encoder.
|
| 197 |
-
"audio_encoder.
|
| 198 |
-
"audio_encoder.
|
| 199 |
-
"audio_encoder.
|
| 200 |
-
"audio_encoder.
|
| 201 |
-
"audio_encoder.
|
| 202 |
-
"audio_encoder.
|
| 203 |
-
"audio_encoder.
|
| 204 |
-
"audio_encoder.
|
| 205 |
-
"audio_encoder.
|
| 206 |
-
"audio_encoder.
|
| 207 |
-
"audio_encoder.
|
| 208 |
-
"audio_encoder.
|
| 209 |
-
"audio_encoder.
|
| 210 |
-
"audio_encoder.
|
| 211 |
-
"audio_encoder.
|
| 212 |
-
"audio_encoder.
|
| 213 |
-
"audio_encoder.
|
| 214 |
-
"audio_encoder.
|
| 215 |
-
"audio_encoder.
|
| 216 |
-
"audio_encoder.
|
| 217 |
-
"audio_encoder.
|
| 218 |
-
"audio_encoder.
|
| 219 |
-
"audio_encoder.
|
| 220 |
-
"audio_encoder.
|
| 221 |
-
"audio_encoder.
|
| 222 |
-
"audio_encoder.
|
| 223 |
-
"audio_encoder.
|
| 224 |
-
"audio_encoder.
|
| 225 |
-
"audio_encoder.
|
| 226 |
-
"audio_encoder.
|
| 227 |
-
"audio_encoder.
|
| 228 |
-
"audio_encoder.
|
| 229 |
-
"audio_encoder.
|
| 230 |
-
"audio_encoder.
|
| 231 |
-
"audio_encoder.
|
| 232 |
-
"audio_encoder.
|
| 233 |
-
"audio_encoder.
|
| 234 |
-
"audio_encoder.
|
| 235 |
-
"audio_encoder.
|
| 236 |
-
"audio_encoder.
|
| 237 |
-
"audio_encoder.
|
| 238 |
-
"audio_encoder.
|
| 239 |
-
"audio_encoder.
|
| 240 |
-
"audio_encoder.
|
| 241 |
-
"audio_encoder.
|
| 242 |
-
"audio_encoder.
|
| 243 |
-
"audio_encoder.
|
| 244 |
-
"audio_encoder.
|
| 245 |
-
"audio_encoder.
|
| 246 |
-
"audio_encoder.
|
| 247 |
-
"audio_encoder.
|
| 248 |
-
"audio_encoder.
|
| 249 |
-
"audio_encoder.
|
| 250 |
-
"audio_encoder.
|
| 251 |
-
"audio_encoder.
|
| 252 |
-
"audio_encoder.
|
| 253 |
-
"audio_encoder.
|
| 254 |
-
"audio_encoder.
|
| 255 |
-
"audio_encoder.
|
| 256 |
-
"audio_encoder.
|
| 257 |
-
"audio_encoder.
|
| 258 |
-
"audio_encoder.
|
| 259 |
-
"audio_encoder.
|
| 260 |
-
"audio_encoder.
|
| 261 |
-
"audio_encoder.
|
| 262 |
-
"audio_encoder.
|
| 263 |
-
"audio_encoder.
|
| 264 |
-
"audio_encoder.
|
| 265 |
-
"audio_encoder.
|
| 266 |
-
"audio_encoder.
|
| 267 |
-
"audio_encoder.
|
| 268 |
-
"audio_encoder.
|
| 269 |
-
"audio_encoder.
|
| 270 |
-
"audio_encoder.
|
| 271 |
-
"audio_encoder.
|
| 272 |
-
"audio_encoder.
|
| 273 |
-
"audio_encoder.
|
| 274 |
-
"audio_encoder.
|
| 275 |
-
"audio_encoder.
|
| 276 |
-
"audio_encoder.
|
| 277 |
-
"audio_encoder.
|
| 278 |
-
"audio_encoder.
|
| 279 |
-
"audio_encoder.
|
| 280 |
-
"audio_encoder.
|
| 281 |
-
"audio_encoder.
|
| 282 |
-
"audio_encoder.
|
| 283 |
-
"audio_encoder.
|
| 284 |
-
"audio_encoder.
|
| 285 |
-
"audio_encoder.
|
| 286 |
-
"audio_encoder.
|
| 287 |
-
"audio_encoder.
|
| 288 |
-
"audio_encoder.
|
| 289 |
-
"audio_encoder.
|
| 290 |
-
"audio_encoder.
|
| 291 |
-
"audio_encoder.
|
| 292 |
-
"audio_encoder.
|
| 293 |
-
"audio_encoder.
|
| 294 |
-
"audio_encoder.
|
| 295 |
-
"audio_encoder.
|
| 296 |
-
"audio_encoder.
|
| 297 |
-
"audio_encoder.
|
| 298 |
-
"audio_encoder.
|
| 299 |
-
"audio_encoder.
|
| 300 |
-
"audio_encoder.
|
| 301 |
-
"audio_encoder.
|
| 302 |
-
"audio_encoder.
|
| 303 |
-
"audio_encoder.
|
| 304 |
-
"audio_encoder.
|
| 305 |
-
"audio_encoder.
|
| 306 |
-
"audio_encoder.
|
| 307 |
-
"audio_encoder.
|
| 308 |
-
"audio_encoder.
|
| 309 |
-
"audio_encoder.
|
| 310 |
-
"audio_encoder.
|
| 311 |
-
"audio_encoder.
|
| 312 |
-
"audio_encoder.
|
| 313 |
-
"audio_encoder.
|
| 314 |
-
"audio_encoder.
|
| 315 |
-
"audio_encoder.
|
| 316 |
-
"audio_encoder.
|
| 317 |
-
"audio_encoder.
|
| 318 |
-
"audio_encoder.
|
| 319 |
-
"audio_encoder.
|
| 320 |
-
"audio_encoder.
|
| 321 |
-
"audio_encoder.
|
| 322 |
-
"audio_encoder.
|
| 323 |
-
"audio_encoder.
|
| 324 |
-
"audio_encoder.
|
| 325 |
-
"audio_encoder.
|
| 326 |
-
"audio_encoder.
|
| 327 |
-
"audio_encoder.
|
| 328 |
-
"audio_encoder.
|
| 329 |
-
"audio_encoder.
|
| 330 |
-
"audio_encoder.
|
| 331 |
-
"audio_encoder.
|
| 332 |
-
"audio_encoder.
|
| 333 |
-
"audio_encoder.
|
| 334 |
-
"audio_encoder.
|
| 335 |
-
"audio_encoder.
|
| 336 |
-
"audio_encoder.
|
| 337 |
-
"audio_encoder.
|
| 338 |
-
"audio_encoder.
|
| 339 |
-
"audio_encoder.
|
| 340 |
-
"audio_encoder.
|
| 341 |
-
"audio_encoder.
|
| 342 |
-
"audio_encoder.
|
| 343 |
-
"audio_encoder.
|
| 344 |
-
"audio_encoder.
|
| 345 |
-
"audio_encoder.
|
| 346 |
-
"audio_encoder.
|
| 347 |
-
"audio_encoder.
|
| 348 |
-
"audio_encoder.
|
| 349 |
-
"audio_encoder.
|
| 350 |
-
"audio_encoder.
|
| 351 |
-
"audio_encoder.
|
| 352 |
-
"audio_encoder.
|
| 353 |
-
"audio_encoder.
|
| 354 |
-
"audio_encoder.
|
| 355 |
-
"audio_encoder.
|
| 356 |
-
"audio_encoder.
|
| 357 |
-
"audio_encoder.
|
| 358 |
-
"audio_encoder.
|
| 359 |
-
"audio_encoder.
|
| 360 |
-
"audio_encoder.
|
| 361 |
-
"audio_encoder.
|
| 362 |
-
"audio_encoder.
|
| 363 |
-
"audio_encoder.
|
| 364 |
-
"audio_encoder.
|
| 365 |
-
"audio_encoder.
|
| 366 |
-
"audio_encoder.
|
| 367 |
-
"audio_encoder.
|
| 368 |
-
"audio_encoder.
|
| 369 |
-
"audio_encoder.
|
| 370 |
-
"audio_encoder.
|
| 371 |
-
"audio_encoder.
|
| 372 |
-
"audio_encoder.
|
| 373 |
-
"audio_encoder.
|
| 374 |
-
"audio_encoder.
|
| 375 |
-
"audio_encoder.
|
| 376 |
-
"audio_encoder.
|
| 377 |
-
"audio_encoder.
|
| 378 |
-
"audio_encoder.
|
| 379 |
-
"audio_encoder.
|
| 380 |
-
"audio_encoder.
|
| 381 |
-
"audio_encoder.
|
| 382 |
-
"audio_encoder.
|
| 383 |
-
"audio_encoder.
|
| 384 |
-
"audio_encoder.
|
| 385 |
-
"audio_encoder.
|
| 386 |
-
"audio_encoder.
|
| 387 |
-
"audio_encoder.
|
| 388 |
-
"audio_encoder.
|
| 389 |
-
"audio_encoder.
|
| 390 |
-
"audio_encoder.
|
| 391 |
-
"audio_encoder.
|
| 392 |
-
"audio_encoder.
|
| 393 |
-
"audio_encoder.
|
| 394 |
-
"audio_encoder.
|
| 395 |
-
"audio_encoder.
|
| 396 |
-
"audio_encoder.
|
| 397 |
-
"audio_encoder.
|
| 398 |
-
"audio_encoder.
|
| 399 |
-
"audio_encoder.
|
| 400 |
-
"audio_encoder.
|
| 401 |
-
"audio_encoder.
|
| 402 |
-
"audio_encoder.
|
| 403 |
"audio_projector.net.0.bias": "model-00002-of-00002.safetensors",
|
| 404 |
"audio_projector.net.0.weight": "model-00002-of-00002.safetensors",
|
| 405 |
"audio_projector.net.2.bias": "model-00002-of-00002.safetensors",
|
|
|
|
| 1 |
{
|
| 2 |
"metadata": {
|
| 3 |
+
"total_size": 9385880844
|
| 4 |
},
|
| 5 |
"weight_map": {
|
| 6 |
+
"audio_encoder.blocks.0.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 7 |
+
"audio_encoder.blocks.0.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 8 |
+
"audio_encoder.blocks.0.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 9 |
+
"audio_encoder.blocks.0.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 10 |
+
"audio_encoder.blocks.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 11 |
+
"audio_encoder.blocks.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 12 |
+
"audio_encoder.blocks.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 13 |
+
"audio_encoder.blocks.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 14 |
+
"audio_encoder.blocks.0.norm1.bias": "model-00001-of-00002.safetensors",
|
| 15 |
+
"audio_encoder.blocks.0.norm1.weight": "model-00001-of-00002.safetensors",
|
| 16 |
+
"audio_encoder.blocks.0.norm2.bias": "model-00001-of-00002.safetensors",
|
| 17 |
+
"audio_encoder.blocks.0.norm2.weight": "model-00001-of-00002.safetensors",
|
| 18 |
+
"audio_encoder.blocks.1.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 19 |
+
"audio_encoder.blocks.1.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 20 |
+
"audio_encoder.blocks.1.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 21 |
+
"audio_encoder.blocks.1.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 22 |
+
"audio_encoder.blocks.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 23 |
+
"audio_encoder.blocks.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 24 |
+
"audio_encoder.blocks.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 25 |
+
"audio_encoder.blocks.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 26 |
+
"audio_encoder.blocks.1.norm1.bias": "model-00001-of-00002.safetensors",
|
| 27 |
+
"audio_encoder.blocks.1.norm1.weight": "model-00001-of-00002.safetensors",
|
| 28 |
+
"audio_encoder.blocks.1.norm2.bias": "model-00001-of-00002.safetensors",
|
| 29 |
+
"audio_encoder.blocks.1.norm2.weight": "model-00001-of-00002.safetensors",
|
| 30 |
+
"audio_encoder.blocks.10.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 31 |
+
"audio_encoder.blocks.10.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 32 |
+
"audio_encoder.blocks.10.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 33 |
+
"audio_encoder.blocks.10.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 34 |
+
"audio_encoder.blocks.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 35 |
+
"audio_encoder.blocks.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 36 |
+
"audio_encoder.blocks.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 37 |
+
"audio_encoder.blocks.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 38 |
+
"audio_encoder.blocks.10.norm1.bias": "model-00001-of-00002.safetensors",
|
| 39 |
+
"audio_encoder.blocks.10.norm1.weight": "model-00001-of-00002.safetensors",
|
| 40 |
+
"audio_encoder.blocks.10.norm2.bias": "model-00001-of-00002.safetensors",
|
| 41 |
+
"audio_encoder.blocks.10.norm2.weight": "model-00001-of-00002.safetensors",
|
| 42 |
+
"audio_encoder.blocks.11.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 43 |
+
"audio_encoder.blocks.11.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 44 |
+
"audio_encoder.blocks.11.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 45 |
+
"audio_encoder.blocks.11.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 46 |
+
"audio_encoder.blocks.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 47 |
+
"audio_encoder.blocks.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 48 |
+
"audio_encoder.blocks.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 49 |
+
"audio_encoder.blocks.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 50 |
+
"audio_encoder.blocks.11.norm1.bias": "model-00001-of-00002.safetensors",
|
| 51 |
+
"audio_encoder.blocks.11.norm1.weight": "model-00001-of-00002.safetensors",
|
| 52 |
+
"audio_encoder.blocks.11.norm2.bias": "model-00001-of-00002.safetensors",
|
| 53 |
+
"audio_encoder.blocks.11.norm2.weight": "model-00001-of-00002.safetensors",
|
| 54 |
+
"audio_encoder.blocks.12.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 55 |
+
"audio_encoder.blocks.12.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 56 |
+
"audio_encoder.blocks.12.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 57 |
+
"audio_encoder.blocks.12.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 58 |
+
"audio_encoder.blocks.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 59 |
+
"audio_encoder.blocks.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 60 |
+
"audio_encoder.blocks.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 61 |
+
"audio_encoder.blocks.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 62 |
+
"audio_encoder.blocks.12.norm1.bias": "model-00001-of-00002.safetensors",
|
| 63 |
+
"audio_encoder.blocks.12.norm1.weight": "model-00001-of-00002.safetensors",
|
| 64 |
+
"audio_encoder.blocks.12.norm2.bias": "model-00001-of-00002.safetensors",
|
| 65 |
+
"audio_encoder.blocks.12.norm2.weight": "model-00001-of-00002.safetensors",
|
| 66 |
+
"audio_encoder.blocks.13.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 67 |
+
"audio_encoder.blocks.13.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 68 |
+
"audio_encoder.blocks.13.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 69 |
+
"audio_encoder.blocks.13.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 70 |
+
"audio_encoder.blocks.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 71 |
+
"audio_encoder.blocks.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 72 |
+
"audio_encoder.blocks.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 73 |
+
"audio_encoder.blocks.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 74 |
+
"audio_encoder.blocks.13.norm1.bias": "model-00001-of-00002.safetensors",
|
| 75 |
+
"audio_encoder.blocks.13.norm1.weight": "model-00001-of-00002.safetensors",
|
| 76 |
+
"audio_encoder.blocks.13.norm2.bias": "model-00001-of-00002.safetensors",
|
| 77 |
+
"audio_encoder.blocks.13.norm2.weight": "model-00001-of-00002.safetensors",
|
| 78 |
+
"audio_encoder.blocks.14.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 79 |
+
"audio_encoder.blocks.14.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 80 |
+
"audio_encoder.blocks.14.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 81 |
+
"audio_encoder.blocks.14.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 82 |
+
"audio_encoder.blocks.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 83 |
+
"audio_encoder.blocks.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 84 |
+
"audio_encoder.blocks.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 85 |
+
"audio_encoder.blocks.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 86 |
+
"audio_encoder.blocks.14.norm1.bias": "model-00001-of-00002.safetensors",
|
| 87 |
+
"audio_encoder.blocks.14.norm1.weight": "model-00001-of-00002.safetensors",
|
| 88 |
+
"audio_encoder.blocks.14.norm2.bias": "model-00001-of-00002.safetensors",
|
| 89 |
+
"audio_encoder.blocks.14.norm2.weight": "model-00001-of-00002.safetensors",
|
| 90 |
+
"audio_encoder.blocks.15.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 91 |
+
"audio_encoder.blocks.15.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 92 |
+
"audio_encoder.blocks.15.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 93 |
+
"audio_encoder.blocks.15.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 94 |
+
"audio_encoder.blocks.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 95 |
+
"audio_encoder.blocks.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 96 |
+
"audio_encoder.blocks.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 97 |
+
"audio_encoder.blocks.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 98 |
+
"audio_encoder.blocks.15.norm1.bias": "model-00001-of-00002.safetensors",
|
| 99 |
+
"audio_encoder.blocks.15.norm1.weight": "model-00001-of-00002.safetensors",
|
| 100 |
+
"audio_encoder.blocks.15.norm2.bias": "model-00001-of-00002.safetensors",
|
| 101 |
+
"audio_encoder.blocks.15.norm2.weight": "model-00001-of-00002.safetensors",
|
| 102 |
+
"audio_encoder.blocks.16.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 103 |
+
"audio_encoder.blocks.16.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 104 |
+
"audio_encoder.blocks.16.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 105 |
+
"audio_encoder.blocks.16.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 106 |
+
"audio_encoder.blocks.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 107 |
+
"audio_encoder.blocks.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 108 |
+
"audio_encoder.blocks.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 109 |
+
"audio_encoder.blocks.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 110 |
+
"audio_encoder.blocks.16.norm1.bias": "model-00001-of-00002.safetensors",
|
| 111 |
+
"audio_encoder.blocks.16.norm1.weight": "model-00001-of-00002.safetensors",
|
| 112 |
+
"audio_encoder.blocks.16.norm2.bias": "model-00001-of-00002.safetensors",
|
| 113 |
+
"audio_encoder.blocks.16.norm2.weight": "model-00001-of-00002.safetensors",
|
| 114 |
+
"audio_encoder.blocks.17.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 115 |
+
"audio_encoder.blocks.17.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 116 |
+
"audio_encoder.blocks.17.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 117 |
+
"audio_encoder.blocks.17.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 118 |
+
"audio_encoder.blocks.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 119 |
+
"audio_encoder.blocks.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 120 |
+
"audio_encoder.blocks.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 121 |
+
"audio_encoder.blocks.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 122 |
+
"audio_encoder.blocks.17.norm1.bias": "model-00001-of-00002.safetensors",
|
| 123 |
+
"audio_encoder.blocks.17.norm1.weight": "model-00001-of-00002.safetensors",
|
| 124 |
+
"audio_encoder.blocks.17.norm2.bias": "model-00001-of-00002.safetensors",
|
| 125 |
+
"audio_encoder.blocks.17.norm2.weight": "model-00001-of-00002.safetensors",
|
| 126 |
+
"audio_encoder.blocks.18.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 127 |
+
"audio_encoder.blocks.18.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 128 |
+
"audio_encoder.blocks.18.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 129 |
+
"audio_encoder.blocks.18.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 130 |
+
"audio_encoder.blocks.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 131 |
+
"audio_encoder.blocks.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 132 |
+
"audio_encoder.blocks.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 133 |
+
"audio_encoder.blocks.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 134 |
+
"audio_encoder.blocks.18.norm1.bias": "model-00001-of-00002.safetensors",
|
| 135 |
+
"audio_encoder.blocks.18.norm1.weight": "model-00001-of-00002.safetensors",
|
| 136 |
+
"audio_encoder.blocks.18.norm2.bias": "model-00001-of-00002.safetensors",
|
| 137 |
+
"audio_encoder.blocks.18.norm2.weight": "model-00001-of-00002.safetensors",
|
| 138 |
+
"audio_encoder.blocks.19.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 139 |
+
"audio_encoder.blocks.19.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 140 |
+
"audio_encoder.blocks.19.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 141 |
+
"audio_encoder.blocks.19.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 142 |
+
"audio_encoder.blocks.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 143 |
+
"audio_encoder.blocks.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 144 |
+
"audio_encoder.blocks.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 145 |
+
"audio_encoder.blocks.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 146 |
+
"audio_encoder.blocks.19.norm1.bias": "model-00001-of-00002.safetensors",
|
| 147 |
+
"audio_encoder.blocks.19.norm1.weight": "model-00001-of-00002.safetensors",
|
| 148 |
+
"audio_encoder.blocks.19.norm2.bias": "model-00001-of-00002.safetensors",
|
| 149 |
+
"audio_encoder.blocks.19.norm2.weight": "model-00001-of-00002.safetensors",
|
| 150 |
+
"audio_encoder.blocks.2.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 151 |
+
"audio_encoder.blocks.2.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 152 |
+
"audio_encoder.blocks.2.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 153 |
+
"audio_encoder.blocks.2.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 154 |
+
"audio_encoder.blocks.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 155 |
+
"audio_encoder.blocks.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 156 |
+
"audio_encoder.blocks.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 157 |
+
"audio_encoder.blocks.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 158 |
+
"audio_encoder.blocks.2.norm1.bias": "model-00001-of-00002.safetensors",
|
| 159 |
+
"audio_encoder.blocks.2.norm1.weight": "model-00001-of-00002.safetensors",
|
| 160 |
+
"audio_encoder.blocks.2.norm2.bias": "model-00001-of-00002.safetensors",
|
| 161 |
+
"audio_encoder.blocks.2.norm2.weight": "model-00001-of-00002.safetensors",
|
| 162 |
+
"audio_encoder.blocks.20.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 163 |
+
"audio_encoder.blocks.20.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 164 |
+
"audio_encoder.blocks.20.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 165 |
+
"audio_encoder.blocks.20.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 166 |
+
"audio_encoder.blocks.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 167 |
+
"audio_encoder.blocks.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 168 |
+
"audio_encoder.blocks.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 169 |
+
"audio_encoder.blocks.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 170 |
+
"audio_encoder.blocks.20.norm1.bias": "model-00001-of-00002.safetensors",
|
| 171 |
+
"audio_encoder.blocks.20.norm1.weight": "model-00001-of-00002.safetensors",
|
| 172 |
+
"audio_encoder.blocks.20.norm2.bias": "model-00001-of-00002.safetensors",
|
| 173 |
+
"audio_encoder.blocks.20.norm2.weight": "model-00001-of-00002.safetensors",
|
| 174 |
+
"audio_encoder.blocks.21.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 175 |
+
"audio_encoder.blocks.21.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 176 |
+
"audio_encoder.blocks.21.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 177 |
+
"audio_encoder.blocks.21.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 178 |
+
"audio_encoder.blocks.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 179 |
+
"audio_encoder.blocks.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 180 |
+
"audio_encoder.blocks.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 181 |
+
"audio_encoder.blocks.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 182 |
+
"audio_encoder.blocks.21.norm1.bias": "model-00001-of-00002.safetensors",
|
| 183 |
+
"audio_encoder.blocks.21.norm1.weight": "model-00001-of-00002.safetensors",
|
| 184 |
+
"audio_encoder.blocks.21.norm2.bias": "model-00001-of-00002.safetensors",
|
| 185 |
+
"audio_encoder.blocks.21.norm2.weight": "model-00001-of-00002.safetensors",
|
| 186 |
+
"audio_encoder.blocks.22.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 187 |
+
"audio_encoder.blocks.22.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 188 |
+
"audio_encoder.blocks.22.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 189 |
+
"audio_encoder.blocks.22.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 190 |
+
"audio_encoder.blocks.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 191 |
+
"audio_encoder.blocks.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 192 |
+
"audio_encoder.blocks.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 193 |
+
"audio_encoder.blocks.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 194 |
+
"audio_encoder.blocks.22.norm1.bias": "model-00001-of-00002.safetensors",
|
| 195 |
+
"audio_encoder.blocks.22.norm1.weight": "model-00001-of-00002.safetensors",
|
| 196 |
+
"audio_encoder.blocks.22.norm2.bias": "model-00001-of-00002.safetensors",
|
| 197 |
+
"audio_encoder.blocks.22.norm2.weight": "model-00001-of-00002.safetensors",
|
| 198 |
+
"audio_encoder.blocks.23.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 199 |
+
"audio_encoder.blocks.23.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 200 |
+
"audio_encoder.blocks.23.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 201 |
+
"audio_encoder.blocks.23.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 202 |
+
"audio_encoder.blocks.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 203 |
+
"audio_encoder.blocks.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 204 |
+
"audio_encoder.blocks.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 205 |
+
"audio_encoder.blocks.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 206 |
+
"audio_encoder.blocks.23.norm1.bias": "model-00001-of-00002.safetensors",
|
| 207 |
+
"audio_encoder.blocks.23.norm1.weight": "model-00001-of-00002.safetensors",
|
| 208 |
+
"audio_encoder.blocks.23.norm2.bias": "model-00001-of-00002.safetensors",
|
| 209 |
+
"audio_encoder.blocks.23.norm2.weight": "model-00001-of-00002.safetensors",
|
| 210 |
+
"audio_encoder.blocks.24.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 211 |
+
"audio_encoder.blocks.24.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 212 |
+
"audio_encoder.blocks.24.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 213 |
+
"audio_encoder.blocks.24.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 214 |
+
"audio_encoder.blocks.24.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 215 |
+
"audio_encoder.blocks.24.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 216 |
+
"audio_encoder.blocks.24.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 217 |
+
"audio_encoder.blocks.24.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 218 |
+
"audio_encoder.blocks.24.norm1.bias": "model-00001-of-00002.safetensors",
|
| 219 |
+
"audio_encoder.blocks.24.norm1.weight": "model-00001-of-00002.safetensors",
|
| 220 |
+
"audio_encoder.blocks.24.norm2.bias": "model-00001-of-00002.safetensors",
|
| 221 |
+
"audio_encoder.blocks.24.norm2.weight": "model-00001-of-00002.safetensors",
|
| 222 |
+
"audio_encoder.blocks.25.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 223 |
+
"audio_encoder.blocks.25.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 224 |
+
"audio_encoder.blocks.25.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 225 |
+
"audio_encoder.blocks.25.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 226 |
+
"audio_encoder.blocks.25.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 227 |
+
"audio_encoder.blocks.25.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 228 |
+
"audio_encoder.blocks.25.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 229 |
+
"audio_encoder.blocks.25.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 230 |
+
"audio_encoder.blocks.25.norm1.bias": "model-00001-of-00002.safetensors",
|
| 231 |
+
"audio_encoder.blocks.25.norm1.weight": "model-00001-of-00002.safetensors",
|
| 232 |
+
"audio_encoder.blocks.25.norm2.bias": "model-00001-of-00002.safetensors",
|
| 233 |
+
"audio_encoder.blocks.25.norm2.weight": "model-00001-of-00002.safetensors",
|
| 234 |
+
"audio_encoder.blocks.26.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 235 |
+
"audio_encoder.blocks.26.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 236 |
+
"audio_encoder.blocks.26.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 237 |
+
"audio_encoder.blocks.26.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 238 |
+
"audio_encoder.blocks.26.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 239 |
+
"audio_encoder.blocks.26.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 240 |
+
"audio_encoder.blocks.26.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 241 |
+
"audio_encoder.blocks.26.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 242 |
+
"audio_encoder.blocks.26.norm1.bias": "model-00001-of-00002.safetensors",
|
| 243 |
+
"audio_encoder.blocks.26.norm1.weight": "model-00001-of-00002.safetensors",
|
| 244 |
+
"audio_encoder.blocks.26.norm2.bias": "model-00001-of-00002.safetensors",
|
| 245 |
+
"audio_encoder.blocks.26.norm2.weight": "model-00001-of-00002.safetensors",
|
| 246 |
+
"audio_encoder.blocks.27.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 247 |
+
"audio_encoder.blocks.27.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 248 |
+
"audio_encoder.blocks.27.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 249 |
+
"audio_encoder.blocks.27.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 250 |
+
"audio_encoder.blocks.27.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 251 |
+
"audio_encoder.blocks.27.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 252 |
+
"audio_encoder.blocks.27.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 253 |
+
"audio_encoder.blocks.27.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 254 |
+
"audio_encoder.blocks.27.norm1.bias": "model-00001-of-00002.safetensors",
|
| 255 |
+
"audio_encoder.blocks.27.norm1.weight": "model-00001-of-00002.safetensors",
|
| 256 |
+
"audio_encoder.blocks.27.norm2.bias": "model-00001-of-00002.safetensors",
|
| 257 |
+
"audio_encoder.blocks.27.norm2.weight": "model-00001-of-00002.safetensors",
|
| 258 |
+
"audio_encoder.blocks.28.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 259 |
+
"audio_encoder.blocks.28.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 260 |
+
"audio_encoder.blocks.28.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 261 |
+
"audio_encoder.blocks.28.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 262 |
+
"audio_encoder.blocks.28.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 263 |
+
"audio_encoder.blocks.28.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 264 |
+
"audio_encoder.blocks.28.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 265 |
+
"audio_encoder.blocks.28.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 266 |
+
"audio_encoder.blocks.28.norm1.bias": "model-00001-of-00002.safetensors",
|
| 267 |
+
"audio_encoder.blocks.28.norm1.weight": "model-00001-of-00002.safetensors",
|
| 268 |
+
"audio_encoder.blocks.28.norm2.bias": "model-00001-of-00002.safetensors",
|
| 269 |
+
"audio_encoder.blocks.28.norm2.weight": "model-00001-of-00002.safetensors",
|
| 270 |
+
"audio_encoder.blocks.29.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 271 |
+
"audio_encoder.blocks.29.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 272 |
+
"audio_encoder.blocks.29.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 273 |
+
"audio_encoder.blocks.29.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 274 |
+
"audio_encoder.blocks.29.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 275 |
+
"audio_encoder.blocks.29.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 276 |
+
"audio_encoder.blocks.29.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 277 |
+
"audio_encoder.blocks.29.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 278 |
+
"audio_encoder.blocks.29.norm1.bias": "model-00001-of-00002.safetensors",
|
| 279 |
+
"audio_encoder.blocks.29.norm1.weight": "model-00001-of-00002.safetensors",
|
| 280 |
+
"audio_encoder.blocks.29.norm2.bias": "model-00001-of-00002.safetensors",
|
| 281 |
+
"audio_encoder.blocks.29.norm2.weight": "model-00001-of-00002.safetensors",
|
| 282 |
+
"audio_encoder.blocks.3.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 283 |
+
"audio_encoder.blocks.3.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 284 |
+
"audio_encoder.blocks.3.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 285 |
+
"audio_encoder.blocks.3.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 286 |
+
"audio_encoder.blocks.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 287 |
+
"audio_encoder.blocks.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 288 |
+
"audio_encoder.blocks.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 289 |
+
"audio_encoder.blocks.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 290 |
+
"audio_encoder.blocks.3.norm1.bias": "model-00001-of-00002.safetensors",
|
| 291 |
+
"audio_encoder.blocks.3.norm1.weight": "model-00001-of-00002.safetensors",
|
| 292 |
+
"audio_encoder.blocks.3.norm2.bias": "model-00001-of-00002.safetensors",
|
| 293 |
+
"audio_encoder.blocks.3.norm2.weight": "model-00001-of-00002.safetensors",
|
| 294 |
+
"audio_encoder.blocks.30.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 295 |
+
"audio_encoder.blocks.30.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 296 |
+
"audio_encoder.blocks.30.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 297 |
+
"audio_encoder.blocks.30.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 298 |
+
"audio_encoder.blocks.30.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 299 |
+
"audio_encoder.blocks.30.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 300 |
+
"audio_encoder.blocks.30.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 301 |
+
"audio_encoder.blocks.30.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 302 |
+
"audio_encoder.blocks.30.norm1.bias": "model-00001-of-00002.safetensors",
|
| 303 |
+
"audio_encoder.blocks.30.norm1.weight": "model-00001-of-00002.safetensors",
|
| 304 |
+
"audio_encoder.blocks.30.norm2.bias": "model-00001-of-00002.safetensors",
|
| 305 |
+
"audio_encoder.blocks.30.norm2.weight": "model-00001-of-00002.safetensors",
|
| 306 |
+
"audio_encoder.blocks.31.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 307 |
+
"audio_encoder.blocks.31.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 308 |
+
"audio_encoder.blocks.31.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 309 |
+
"audio_encoder.blocks.31.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 310 |
+
"audio_encoder.blocks.31.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 311 |
+
"audio_encoder.blocks.31.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 312 |
+
"audio_encoder.blocks.31.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 313 |
+
"audio_encoder.blocks.31.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 314 |
+
"audio_encoder.blocks.31.norm1.bias": "model-00001-of-00002.safetensors",
|
| 315 |
+
"audio_encoder.blocks.31.norm1.weight": "model-00001-of-00002.safetensors",
|
| 316 |
+
"audio_encoder.blocks.31.norm2.bias": "model-00001-of-00002.safetensors",
|
| 317 |
+
"audio_encoder.blocks.31.norm2.weight": "model-00001-of-00002.safetensors",
|
| 318 |
+
"audio_encoder.blocks.4.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 319 |
+
"audio_encoder.blocks.4.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 320 |
+
"audio_encoder.blocks.4.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 321 |
+
"audio_encoder.blocks.4.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 322 |
+
"audio_encoder.blocks.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 323 |
+
"audio_encoder.blocks.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 324 |
+
"audio_encoder.blocks.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 325 |
+
"audio_encoder.blocks.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 326 |
+
"audio_encoder.blocks.4.norm1.bias": "model-00001-of-00002.safetensors",
|
| 327 |
+
"audio_encoder.blocks.4.norm1.weight": "model-00001-of-00002.safetensors",
|
| 328 |
+
"audio_encoder.blocks.4.norm2.bias": "model-00001-of-00002.safetensors",
|
| 329 |
+
"audio_encoder.blocks.4.norm2.weight": "model-00001-of-00002.safetensors",
|
| 330 |
+
"audio_encoder.blocks.5.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 331 |
+
"audio_encoder.blocks.5.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 332 |
+
"audio_encoder.blocks.5.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 333 |
+
"audio_encoder.blocks.5.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 334 |
+
"audio_encoder.blocks.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 335 |
+
"audio_encoder.blocks.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 336 |
+
"audio_encoder.blocks.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 337 |
+
"audio_encoder.blocks.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 338 |
+
"audio_encoder.blocks.5.norm1.bias": "model-00001-of-00002.safetensors",
|
| 339 |
+
"audio_encoder.blocks.5.norm1.weight": "model-00001-of-00002.safetensors",
|
| 340 |
+
"audio_encoder.blocks.5.norm2.bias": "model-00001-of-00002.safetensors",
|
| 341 |
+
"audio_encoder.blocks.5.norm2.weight": "model-00001-of-00002.safetensors",
|
| 342 |
+
"audio_encoder.blocks.6.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 343 |
+
"audio_encoder.blocks.6.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 344 |
+
"audio_encoder.blocks.6.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 345 |
+
"audio_encoder.blocks.6.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 346 |
+
"audio_encoder.blocks.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 347 |
+
"audio_encoder.blocks.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 348 |
+
"audio_encoder.blocks.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 349 |
+
"audio_encoder.blocks.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 350 |
+
"audio_encoder.blocks.6.norm1.bias": "model-00001-of-00002.safetensors",
|
| 351 |
+
"audio_encoder.blocks.6.norm1.weight": "model-00001-of-00002.safetensors",
|
| 352 |
+
"audio_encoder.blocks.6.norm2.bias": "model-00001-of-00002.safetensors",
|
| 353 |
+
"audio_encoder.blocks.6.norm2.weight": "model-00001-of-00002.safetensors",
|
| 354 |
+
"audio_encoder.blocks.7.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 355 |
+
"audio_encoder.blocks.7.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 356 |
+
"audio_encoder.blocks.7.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 357 |
+
"audio_encoder.blocks.7.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 358 |
+
"audio_encoder.blocks.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 359 |
+
"audio_encoder.blocks.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 360 |
+
"audio_encoder.blocks.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 361 |
+
"audio_encoder.blocks.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 362 |
+
"audio_encoder.blocks.7.norm1.bias": "model-00001-of-00002.safetensors",
|
| 363 |
+
"audio_encoder.blocks.7.norm1.weight": "model-00001-of-00002.safetensors",
|
| 364 |
+
"audio_encoder.blocks.7.norm2.bias": "model-00001-of-00002.safetensors",
|
| 365 |
+
"audio_encoder.blocks.7.norm2.weight": "model-00001-of-00002.safetensors",
|
| 366 |
+
"audio_encoder.blocks.8.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 367 |
+
"audio_encoder.blocks.8.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 368 |
+
"audio_encoder.blocks.8.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 369 |
+
"audio_encoder.blocks.8.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 370 |
+
"audio_encoder.blocks.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 371 |
+
"audio_encoder.blocks.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 372 |
+
"audio_encoder.blocks.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 373 |
+
"audio_encoder.blocks.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 374 |
+
"audio_encoder.blocks.8.norm1.bias": "model-00001-of-00002.safetensors",
|
| 375 |
+
"audio_encoder.blocks.8.norm1.weight": "model-00001-of-00002.safetensors",
|
| 376 |
+
"audio_encoder.blocks.8.norm2.bias": "model-00001-of-00002.safetensors",
|
| 377 |
+
"audio_encoder.blocks.8.norm2.weight": "model-00001-of-00002.safetensors",
|
| 378 |
+
"audio_encoder.blocks.9.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 379 |
+
"audio_encoder.blocks.9.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 380 |
+
"audio_encoder.blocks.9.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 381 |
+
"audio_encoder.blocks.9.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 382 |
+
"audio_encoder.blocks.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 383 |
+
"audio_encoder.blocks.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 384 |
+
"audio_encoder.blocks.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 385 |
+
"audio_encoder.blocks.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 386 |
+
"audio_encoder.blocks.9.norm1.bias": "model-00001-of-00002.safetensors",
|
| 387 |
+
"audio_encoder.blocks.9.norm1.weight": "model-00001-of-00002.safetensors",
|
| 388 |
+
"audio_encoder.blocks.9.norm2.bias": "model-00001-of-00002.safetensors",
|
| 389 |
+
"audio_encoder.blocks.9.norm2.weight": "model-00001-of-00002.safetensors",
|
| 390 |
+
"audio_encoder.freq_pos_embed": "model-00001-of-00002.safetensors",
|
| 391 |
+
"audio_encoder.front_end.0.mel_scale.fb": "model-00001-of-00002.safetensors",
|
| 392 |
+
"audio_encoder.front_end.0.spectrogram.window": "model-00001-of-00002.safetensors",
|
| 393 |
+
"audio_encoder.init_bn.1.bias": "model-00001-of-00002.safetensors",
|
| 394 |
+
"audio_encoder.init_bn.1.num_batches_tracked": "model-00001-of-00002.safetensors",
|
| 395 |
+
"audio_encoder.init_bn.1.running_mean": "model-00001-of-00002.safetensors",
|
| 396 |
+
"audio_encoder.init_bn.1.running_var": "model-00001-of-00002.safetensors",
|
| 397 |
+
"audio_encoder.init_bn.1.weight": "model-00001-of-00002.safetensors",
|
| 398 |
+
"audio_encoder.norm.bias": "model-00001-of-00002.safetensors",
|
| 399 |
+
"audio_encoder.norm.weight": "model-00001-of-00002.safetensors",
|
| 400 |
+
"audio_encoder.patch_embed.proj.bias": "model-00001-of-00002.safetensors",
|
| 401 |
+
"audio_encoder.patch_embed.proj.weight": "model-00001-of-00002.safetensors",
|
| 402 |
+
"audio_encoder.time_pos_embed": "model-00001-of-00002.safetensors",
|
| 403 |
"audio_projector.net.0.bias": "model-00002-of-00002.safetensors",
|
| 404 |
"audio_projector.net.0.weight": "model-00002-of-00002.safetensors",
|
| 405 |
"audio_projector.net.2.bias": "model-00002-of-00002.safetensors",
|
modeling_midashenglm.py
CHANGED
|
@@ -1,50 +1,22 @@
|
|
| 1 |
import collections.abc
|
|
|
|
| 2 |
from functools import partial
|
| 3 |
-
from typing import Any, Callable, Iterable,
|
| 4 |
|
| 5 |
import torch
|
| 6 |
import torch.nn as nn
|
| 7 |
import torchaudio.transforms as audio_transforms
|
| 8 |
from torch import Tensor
|
| 9 |
-
from transformers import PreTrainedModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
from .configuration_midashenglm import MiAudioLLMHFConfig
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
class AudioProjectorSubsample(torch.nn.Module):
|
| 15 |
-
def __init__(self, in_dim: int, out_dim: int, downsample_rate=5):
|
| 16 |
-
super().__init__()
|
| 17 |
-
self.k = downsample_rate
|
| 18 |
-
self.net = torch.nn.Sequential(
|
| 19 |
-
torch.nn.Linear(in_dim * self.k, out_dim),
|
| 20 |
-
torch.nn.GELU(),
|
| 21 |
-
torch.nn.Linear(out_dim, out_dim),
|
| 22 |
-
)
|
| 23 |
-
|
| 24 |
-
def forward(self, x, mask=None):
|
| 25 |
-
"""
|
| 26 |
-
inputs is the output of audio encoder.
|
| 27 |
-
:param x: [B, T, D]
|
| 28 |
-
:param x_lens: [B, T]
|
| 29 |
-
:return: [B, T', D']
|
| 30 |
-
"""
|
| 31 |
-
batch_size, seq_len, dim = x.shape
|
| 32 |
-
num_frames_to_discard = seq_len % self.k
|
| 33 |
-
if num_frames_to_discard > 0:
|
| 34 |
-
x = x[:, :-num_frames_to_discard, :]
|
| 35 |
-
if mask is not None:
|
| 36 |
-
mask = mask[:, :-num_frames_to_discard]
|
| 37 |
-
if mask is None:
|
| 38 |
-
mask = torch.ones(x.shape[:-1], dtype=torch.long, device=x.device)
|
| 39 |
-
x = x.reshape(
|
| 40 |
-
batch_size, -1, self.k * dim
|
| 41 |
-
) # rearrange(x, "b (s k) d -> b s (k d)", k=self.k)
|
| 42 |
-
x = self.net(x)
|
| 43 |
-
mask = mask.reshape(
|
| 44 |
-
batch_size, -1, self.k
|
| 45 |
-
) # rearrange(mask, "b (s k) -> b s k", k=self.k)
|
| 46 |
-
mask = mask.any(dim=-1).long()
|
| 47 |
-
return x, mask
|
| 48 |
|
| 49 |
|
| 50 |
# The functions `drop_path` and the module `DropPath` are taken from timm
|
|
@@ -144,7 +116,7 @@ class Mlp(nn.Module):
|
|
| 144 |
in_features: int,
|
| 145 |
hidden_features: Optional[int] = None,
|
| 146 |
out_features: Optional[int] = None,
|
| 147 |
-
act_layer: Type[
|
| 148 |
drop: float = 0.0,
|
| 149 |
):
|
| 150 |
super().__init__()
|
|
@@ -238,11 +210,11 @@ class Block(nn.Module):
|
|
| 238 |
qkv_bias: bool = False,
|
| 239 |
drop: float = 0.0,
|
| 240 |
attn_drop: float = 0.0,
|
| 241 |
-
init_values=None,
|
| 242 |
drop_path: float = 0.0,
|
| 243 |
-
act_layer: Type[
|
| 244 |
-
norm_layer: Type[
|
| 245 |
-
attention_type: Type[
|
| 246 |
):
|
| 247 |
super().__init__()
|
| 248 |
self.norm1 = norm_layer(dim)
|
|
@@ -277,6 +249,7 @@ class Block(nn.Module):
|
|
| 277 |
return x
|
| 278 |
|
| 279 |
|
|
|
|
| 280 |
class RearranceReplace(nn.Module):
|
| 281 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 282 |
# rearrange(x, "b c f t -> b f c t")
|
|
@@ -288,69 +261,23 @@ class RearranceReplace(nn.Module):
|
|
| 288 |
class AudioTransformer(nn.Module):
|
| 289 |
def __init__(
|
| 290 |
self,
|
| 291 |
-
|
| 292 |
-
patch_size: Union[int, Tuple[int, int]] = 16,
|
| 293 |
-
patch_stride: Union[int, Tuple[int, int]] = 16,
|
| 294 |
-
embed_dim: int = 768,
|
| 295 |
-
depth: int = 12,
|
| 296 |
-
num_heads: int = 12,
|
| 297 |
-
mlp_ratio: float = 4.0,
|
| 298 |
-
qkv_bias: bool = True,
|
| 299 |
-
drop_rate: float = 0.0,
|
| 300 |
-
attn_drop_rate: float = 0.0,
|
| 301 |
-
drop_path_rate: float = 0.0,
|
| 302 |
-
norm_layer: torch.nn.Module | None = None,
|
| 303 |
-
act_layer: Type[torch.nn.Module] = nn.GELU,
|
| 304 |
-
init_values=None,
|
| 305 |
-
target_length: int = 1012,
|
| 306 |
-
input_channels: int = 1,
|
| 307 |
-
pooling: Literal["mean", "token", "dm", "logit", "cat"] | None = "token",
|
| 308 |
-
time_patch_out: float | None = None,
|
| 309 |
-
freq_patch_out: float | None = None,
|
| 310 |
-
block_type: Type[torch.nn.Module] = Block,
|
| 311 |
-
attention_type: Type[torch.nn.Module] = Attention,
|
| 312 |
-
eval_avg: Literal["mean", "max", "cat"] = "mean",
|
| 313 |
-
n_mels: int = 64,
|
| 314 |
-
n_fft: int = 512,
|
| 315 |
-
hop_size: int = 160,
|
| 316 |
-
win_size: int = 512,
|
| 317 |
-
f_min: float = 0.0,
|
| 318 |
-
f_max: float = 8000.0,
|
| 319 |
-
sample_rate: int = 16000,
|
| 320 |
-
center: bool = True,
|
| 321 |
-
pad_last: bool = True,
|
| 322 |
):
|
| 323 |
super().__init__()
|
| 324 |
-
|
| 325 |
-
self.
|
| 326 |
-
self.
|
| 327 |
-
self.embed_dim = embed_dim
|
| 328 |
-
self.patch_stride = patch_stride
|
| 329 |
-
self.patch_size = patch_size
|
| 330 |
-
self.n_mels = n_mels
|
| 331 |
-
self.n_fft = n_fft
|
| 332 |
-
self.hop_size = hop_size
|
| 333 |
-
self.win_size = win_size
|
| 334 |
-
self.f_min = f_min
|
| 335 |
-
self.f_max = f_max
|
| 336 |
-
self.sample_rate = sample_rate
|
| 337 |
-
self.center = center
|
| 338 |
-
self.pad_last = pad_last
|
| 339 |
-
self.input_channels = input_channels
|
| 340 |
-
self.eval_avg = eval_avg
|
| 341 |
-
self.time_patch_out = time_patch_out
|
| 342 |
-
self.freq_patch_out = freq_patch_out
|
| 343 |
|
| 344 |
self.front_end = nn.Sequential(
|
| 345 |
audio_transforms.MelSpectrogram(
|
| 346 |
-
f_min=
|
| 347 |
-
f_max=
|
| 348 |
-
center=
|
| 349 |
-
win_length=
|
| 350 |
-
hop_length=
|
| 351 |
-
sample_rate=
|
| 352 |
-
n_fft=
|
| 353 |
-
n_mels=
|
| 354 |
),
|
| 355 |
audio_transforms.AmplitudeToDB(top_db=120),
|
| 356 |
)
|
|
@@ -358,62 +285,47 @@ class AudioTransformer(nn.Module):
|
|
| 358 |
self.init_bn = nn.Sequential(
|
| 359 |
# Rearrange("b c f t -> b f c t"),
|
| 360 |
RearranceReplace(),
|
| 361 |
-
|
| 362 |
# Rearrange("b f c t -> b c f t"),
|
| 363 |
RearranceReplace(),
|
| 364 |
)
|
| 365 |
|
| 366 |
-
self.target_length = target_length
|
| 367 |
-
|
| 368 |
-
patch_stride = to_2tuple(self.patch_stride)[-1]
|
| 369 |
-
# Allowed length in number of frames, otherwise the positional embedding will throw an error
|
| 370 |
-
self.maximal_allowed_length = self.target_length
|
| 371 |
-
|
| 372 |
self.patch_embed = AudioPatchEmbed(
|
| 373 |
-
input_size=(
|
| 374 |
-
embed_dim=
|
| 375 |
-
in_chans=
|
| 376 |
-
patch_size=
|
| 377 |
flatten=False,
|
| 378 |
-
patch_stride=
|
| 379 |
)
|
| 380 |
|
| 381 |
-
if self.pooling == "token":
|
| 382 |
-
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
| 383 |
-
self.token_pos_embed = nn.Parameter(torch.randn(1, embed_dim) * 0.02)
|
| 384 |
-
|
| 385 |
self.time_pos_embed = nn.Parameter(
|
| 386 |
-
torch.randn(1, embed_dim, 1, self.patch_embed.grid_size[1]) * 0.02
|
| 387 |
)
|
| 388 |
self.freq_pos_embed = nn.Parameter(
|
| 389 |
-
torch.randn(1, embed_dim, self.patch_embed.grid_size[0], 1) * 0.02
|
| 390 |
)
|
| 391 |
|
| 392 |
-
norm_layer =
|
| 393 |
-
act_layer = act_layer or nn.GELU
|
| 394 |
dpr = [
|
| 395 |
-
x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
| 396 |
] # stochastic depth decay rule
|
| 397 |
-
self.pos_drop = nn.Dropout(p=drop_rate)
|
| 398 |
self.blocks = nn.ModuleList(
|
| 399 |
-
|
| 400 |
-
dim=embed_dim,
|
| 401 |
-
num_heads=num_heads,
|
| 402 |
-
mlp_ratio=mlp_ratio,
|
| 403 |
-
qkv_bias=qkv_bias,
|
| 404 |
-
init_values=init_values,
|
| 405 |
-
drop=drop_rate,
|
| 406 |
-
attn_drop=attn_drop_rate,
|
| 407 |
drop_path=dpr[i],
|
| 408 |
norm_layer=norm_layer,
|
| 409 |
-
act_layer=act_layer,
|
| 410 |
-
attention_type=attention_type,
|
| 411 |
)
|
| 412 |
-
for i in range(depth)
|
| 413 |
)
|
| 414 |
-
self.norm = norm_layer(embed_dim)
|
| 415 |
-
if hasattr(self, "cls_token") and self.cls_token is not None:
|
| 416 |
-
nn.init.normal_(self.cls_token, std=1e-6)
|
| 417 |
|
| 418 |
def forward_features(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
|
| 419 |
t = x.shape[-1]
|
|
@@ -424,119 +336,23 @@ class AudioTransformer(nn.Module):
|
|
| 424 |
x = torch.permute(
|
| 425 |
torch.flatten(x, 2, 3), (0, 2, 1)
|
| 426 |
) # rearrange(x, "b c f t -> b (f t) c")
|
| 427 |
-
if self.pooling == "token":
|
| 428 |
-
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
|
| 429 |
-
cls_token = cls_token + self.token_pos_embed
|
| 430 |
-
x = torch.cat((cls_token, x), dim=1)
|
| 431 |
x = self.pos_drop(x)
|
| 432 |
for block in self.blocks:
|
| 433 |
x = block(x, **kwargs)
|
| 434 |
x = self.norm(x)
|
| 435 |
return x
|
| 436 |
|
| 437 |
-
# TODO
|
| 438 |
-
# ================ 从此行开始,与Dasheng代码严重分歧 ================
|
| 439 |
-
|
| 440 |
-
def forward_head(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
|
| 441 |
-
mask = kwargs.get("mask", None)
|
| 442 |
-
if self.pooling == "token":
|
| 443 |
-
x = x[:, 0]
|
| 444 |
-
return x.sigmoid()
|
| 445 |
-
elif self.pooling == "mean":
|
| 446 |
-
if mask is not None:
|
| 447 |
-
m = (1.0 - mask.float()).unsqueeze(-1) # 1.0 means is masked
|
| 448 |
-
x = torch.nan_to_num((x * m).sum(1) / m.sum(1))
|
| 449 |
-
else:
|
| 450 |
-
x = x.mean(1)
|
| 451 |
-
return x.sigmoid()
|
| 452 |
-
elif self.pooling == "logit":
|
| 453 |
-
if mask is not None:
|
| 454 |
-
m = (1.0 - mask.float()).unsqueeze(-1) # 1.0 means is masked
|
| 455 |
-
x = torch.nan_to_num((x * m).sum(1) / m.sum(1))
|
| 456 |
-
else:
|
| 457 |
-
x = x.mean(1)
|
| 458 |
-
return x
|
| 459 |
-
elif self.pooling == "dm":
|
| 460 |
-
# Unpack using the frequency dimension, which is constant
|
| 461 |
-
b, _, d = x.shape
|
| 462 |
-
x = x.reshape(
|
| 463 |
-
b, -1, self.patch_embed.grid_size[0], d
|
| 464 |
-
) # rearrange(x, "b (f t) d -> b f t d")
|
| 465 |
-
# First poolin frequency, then sigmoid the (B T D) output
|
| 466 |
-
x = (x.mean(1)).sigmoid()
|
| 467 |
-
return x.mean(1)
|
| 468 |
-
elif self.pooling is None:
|
| 469 |
-
return x
|
| 470 |
-
else:
|
| 471 |
-
return x.mean(1)
|
| 472 |
-
|
| 473 |
-
def _audiosample_to_mellength(self, lengths: torch.Tensor) -> torch.Tensor:
|
| 474 |
-
if self.center:
|
| 475 |
-
lengths = lengths + self.win_size
|
| 476 |
-
lengths = 1 + ((lengths - self.win_size) / self.hop_size).long()
|
| 477 |
-
return lengths
|
| 478 |
-
|
| 479 |
-
# Calculates the number of patches for a given length in audio-samples
|
| 480 |
-
# For example : torch.Tensor([16000]) will return 250 for Dasheng
|
| 481 |
-
def _audiosample_to_patchlength(self, lengths: torch.Tensor) -> torch.Tensor:
|
| 482 |
-
lengths = self._audiosample_to_mellength(lengths)
|
| 483 |
-
return self._frames_to_patchlength(lengths)
|
| 484 |
-
|
| 485 |
-
# Calcualtes the same as above but for a spectrogram input
|
| 486 |
-
# i.e., [100] will return 25 for Dasheng
|
| 487 |
-
def _frames_to_patchlength(self, lengths: torch.Tensor) -> torch.Tensor:
|
| 488 |
-
patch_stride = to_2tuple(self.patch_stride)
|
| 489 |
-
patch_size = to_2tuple(self.patch_size)
|
| 490 |
-
frequency_patch_size = self.n_mels // patch_stride[0]
|
| 491 |
-
time_patch_size = patch_stride[1]
|
| 492 |
-
time_window_size = patch_size[1]
|
| 493 |
-
number_of_tokens = (
|
| 494 |
-
torch.floor((lengths - time_window_size) / time_patch_size) + 1
|
| 495 |
-
) * frequency_patch_size
|
| 496 |
-
if self.pooling == "token":
|
| 497 |
-
number_of_tokens += 1
|
| 498 |
-
return number_of_tokens
|
| 499 |
-
|
| 500 |
-
# Note that we use (... t f) -> (f t) here, meaning that patches are ordered as:
|
| 501 |
-
# 0 4 -> 0 4 1 5 2 6 3 7
|
| 502 |
-
# 1 5
|
| 503 |
-
# 2 6
|
| 504 |
-
# 3 7
|
| 505 |
-
# This function does the (t f) -> (f t) transform
|
| 506 |
-
def _reshape_mask_to_ft_format(self, mask: torch.Tensor) -> torch.Tensor:
|
| 507 |
-
n_freq_patches = self.n_mels // to_2tuple(self.patch_stride)[0]
|
| 508 |
-
mask = (
|
| 509 |
-
mask.reshape(-1, n_freq_patches)
|
| 510 |
-
.transpose(-2, -1)
|
| 511 |
-
.flatten(-2)
|
| 512 |
-
.reshape_as(mask)
|
| 513 |
-
)
|
| 514 |
-
return mask
|
| 515 |
-
|
| 516 |
-
def _to_binary_mask(self, lengths: torch.Tensor, max_length: int) -> torch.Tensor:
|
| 517 |
-
batch_size = len(lengths)
|
| 518 |
-
lengths = self._audiosample_to_patchlength(lengths)
|
| 519 |
-
idx = torch.arange(max_length, device=lengths.device)
|
| 520 |
-
idx = idx.repeat(batch_size).view(batch_size, max_length)
|
| 521 |
-
mask = (idx >= lengths.unsqueeze(-1)).bool()
|
| 522 |
-
return mask
|
| 523 |
-
|
| 524 |
def _to_mask(self, lengths: torch.Tensor, max_length: int) -> torch.Tensor:
|
| 525 |
batch_size = len(lengths)
|
| 526 |
idx = torch.arange(max_length, device=lengths.device)
|
| 527 |
idx = idx.repeat(batch_size).view(batch_size, max_length)
|
| 528 |
-
mask = (idx
|
| 529 |
return mask
|
| 530 |
|
| 531 |
-
def _create_mask(self, x_length, audio_length_in_spec_frames: int):
|
| 532 |
-
max_length_in_patches = self._frames_to_patchlength(
|
| 533 |
-
torch.tensor(audio_length_in_spec_frames)
|
| 534 |
-
)
|
| 535 |
-
mask_1d = self._to_binary_mask(x_length, max_length=int(max_length_in_patches))
|
| 536 |
-
return mask_1d
|
| 537 |
-
|
| 538 |
def forward(
|
| 539 |
-
self,
|
|
|
|
|
|
|
| 540 |
) -> torch.Tensor:
|
| 541 |
x = self.front_end(x)
|
| 542 |
target_length_in_patches = self.target_length // 4
|
|
@@ -547,109 +363,120 @@ class AudioTransformer(nn.Module):
|
|
| 547 |
t = x.shape[-1]
|
| 548 |
|
| 549 |
input_splits = x.split(target_length_in_patches, dim=-1)
|
| 550 |
-
mask = None # Single mask
|
| 551 |
-
masks = [None for _ in range(len(input_splits))]
|
| 552 |
|
| 553 |
if x_length is not None:
|
| 554 |
assert len(x_length) == len(x), (
|
| 555 |
"batchsizes of input x and x_length need to be same"
|
| 556 |
)
|
| 557 |
assert x_length.ndim == 1, "Lengths are of size (B,)"
|
| 558 |
-
scaled_lengths = (
|
| 559 |
-
|
| 560 |
-
).
|
| 561 |
-
|
| 562 |
-
mask =
|
| 563 |
-
|
| 564 |
-
lengths=scaled_lengths,
|
| 565 |
-
)
|
| 566 |
-
# Trim mask to only use valid "patches", since x.shape[-1] is based on the possibly padded input
|
| 567 |
-
masks = mask.split(target_length_in_patches, dim=-1)
|
| 568 |
|
| 569 |
outputs = []
|
| 570 |
|
| 571 |
-
for split_x,
|
| 572 |
forward_kwargs = {}
|
| 573 |
-
forward_kwargs["mask"] =
|
| 574 |
split_x = self.forward_features(split_x, **forward_kwargs)
|
| 575 |
-
split_x = self.forward_head(split_x, **forward_kwargs)
|
| 576 |
outputs.append(split_x)
|
| 577 |
x = torch.cat(outputs, dim=1)
|
| 578 |
-
return x
|
| 579 |
|
| 580 |
|
| 581 |
-
class
|
| 582 |
-
def __init__(
|
| 583 |
-
self,
|
| 584 |
-
append_cls_token: bool = False,
|
| 585 |
-
**kwargs,
|
| 586 |
-
):
|
| 587 |
super().__init__()
|
| 588 |
-
self.
|
| 589 |
-
|
|
|
|
|
|
|
|
|
|
| 590 |
)
|
| 591 |
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
create_kwargs.update(
|
| 611 |
-
pooling=None,
|
| 612 |
-
eval_avg="cat",
|
| 613 |
-
)
|
| 614 |
|
| 615 |
-
self.model = AudioTransformer(**create_kwargs)
|
| 616 |
-
self.embed_dim = self.model.embed_dim
|
| 617 |
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
| 624 |
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
).
|
| 631 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 632 |
|
| 633 |
def forward(
|
| 634 |
self,
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 653 |
|
| 654 |
|
| 655 |
class DashengQwen25OmniModelInstruct(PreTrainedModel):
|
|
@@ -658,98 +485,53 @@ class DashengQwen25OmniModelInstruct(PreTrainedModel):
|
|
| 658 |
def __init__(self, config: MiAudioLLMHFConfig):
|
| 659 |
super().__init__(config)
|
| 660 |
|
| 661 |
-
audio_encoder = config.audio_encoder
|
| 662 |
-
audio_encoder_args = config.audio_encoder_args
|
| 663 |
-
text_model = config.text_model
|
| 664 |
-
text_model_args = config.text_model_args
|
| 665 |
freeze = config.freeze
|
| 666 |
lora = config.lora
|
| 667 |
subsample_factor = config.subsample_factor
|
| 668 |
-
use_encoderattention_mask = config.use_encoderattention_mask
|
| 669 |
-
resize_tokenizer = True
|
| 670 |
-
force_fp32 = False
|
| 671 |
-
|
| 672 |
-
from transformers.models.qwen2_5_omni import (
|
| 673 |
-
Qwen2_5OmniProcessor,
|
| 674 |
-
Qwen2_5OmniThinkerForConditionalGeneration,
|
| 675 |
-
)
|
| 676 |
|
| 677 |
self.subsample_factor = subsample_factor
|
| 678 |
self.lora = lora
|
| 679 |
-
self.use_encoderattention_mask = use_encoderattention_mask
|
| 680 |
# Encoder part
|
| 681 |
-
|
| 682 |
-
self.audio_encoder = LemonstoreWrapper(**audio_encoder_args)
|
| 683 |
assert lora != "encoder"
|
| 684 |
|
| 685 |
-
# For some reason, torch.cuda.is_bf16_supported() does return True on V100
|
| 686 |
-
has_bf16support = torch.cuda.get_device_capability(torch.device("cuda"))[0] > 7
|
| 687 |
-
|
| 688 |
# decoder
|
| 689 |
-
self.
|
| 690 |
-
self.tokenizer = self.processor.tokenizer
|
| 691 |
-
self.decoder = Qwen2_5OmniThinkerForConditionalGeneration.from_pretrained(
|
| 692 |
-
text_model,
|
| 693 |
-
attn_implementation="sdpa",
|
| 694 |
-
torch_dtype=torch.bfloat16
|
| 695 |
-
if not force_fp32 and has_bf16support
|
| 696 |
-
else torch.float32,
|
| 697 |
-
**text_model_args,
|
| 698 |
-
)
|
| 699 |
-
del self.decoder.visual
|
| 700 |
-
del self.decoder.audio_tower
|
| 701 |
-
hidden_size_text = self.decoder.model.config.hidden_size
|
| 702 |
-
# Overwrite default ForCausalLMLoss, now also support reduction
|
| 703 |
-
special_tokens = [
|
| 704 |
-
"<|en|>",
|
| 705 |
-
"<|kr|>",
|
| 706 |
-
"<|de|>",
|
| 707 |
-
"<|es|>",
|
| 708 |
-
"<|fr|>",
|
| 709 |
-
"<|hi|>",
|
| 710 |
-
"<|uk|>",
|
| 711 |
-
"<|th|>",
|
| 712 |
-
"<|vi|>",
|
| 713 |
-
"<|nl|>",
|
| 714 |
-
"<|pt|>",
|
| 715 |
-
"<|id|>",
|
| 716 |
-
"<|ru|>",
|
| 717 |
-
"<|it|>",
|
| 718 |
-
"<|ar|>",
|
| 719 |
-
"<|jp|>",
|
| 720 |
-
"<|unknown|>",
|
| 721 |
-
]
|
| 722 |
-
self.tokenizer.add_special_tokens({"additional_special_tokens": special_tokens})
|
| 723 |
-
if resize_tokenizer:
|
| 724 |
-
self.decoder.model.resize_token_embeddings(len(self.tokenizer))
|
| 725 |
assert lora != "decoder"
|
| 726 |
assert freeze is None
|
| 727 |
|
| 728 |
# audio projector
|
| 729 |
self.audio_projector = AudioProjectorSubsample(
|
| 730 |
-
self.audio_encoder.embed_dim,
|
|
|
|
|
|
|
| 731 |
)
|
| 732 |
|
| 733 |
-
|
| 734 |
-
encoder_out = self.audio_encoder(
|
| 735 |
-
audios, audio_length, return_attention_mask=self.use_encoderattention_mask
|
| 736 |
-
)
|
| 737 |
-
encoder_atts = None
|
| 738 |
|
| 739 |
-
|
| 740 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 741 |
|
| 742 |
# audio projector
|
| 743 |
encoder_out, encoder_atts = self.audio_projector(encoder_out, encoder_atts)
|
| 744 |
|
| 745 |
-
return encoder_out
|
| 746 |
|
| 747 |
def _prepare_with_input_ids(
|
| 748 |
-
self,
|
| 749 |
-
|
|
|
|
|
|
|
|
|
|
| 750 |
special_mask = input_ids == audio_token_id
|
| 751 |
assert audio_embeddings.shape[1] <= (special_mask.sum(-1)).max(), (
|
| 752 |
-
"Mask and audio embeddings seem to have different sizes"
|
|
|
|
|
|
|
| 753 |
)
|
| 754 |
input_embeddings = self.decoder.model.embed_tokens(input_ids)
|
| 755 |
audio_embeddings = audio_embeddings.to(input_embeddings.dtype)
|
|
@@ -762,85 +544,104 @@ class DashengQwen25OmniModelInstruct(PreTrainedModel):
|
|
| 762 |
|
| 763 |
def forward(
|
| 764 |
self,
|
| 765 |
-
input_ids: Tensor,
|
| 766 |
-
input_values: Tensor,
|
| 767 |
-
|
| 768 |
-
|
| 769 |
-
attention_mask: Tensor
|
| 770 |
-
audio_token_id: int
|
|
|
|
| 771 |
):
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
-
|
| 786 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 787 |
input_ids=None,
|
| 788 |
-
inputs_embeds=
|
| 789 |
-
attention_mask=
|
| 790 |
-
|
| 791 |
-
return_dict=True,
|
| 792 |
)
|
| 793 |
|
| 794 |
-
if return_loss:
|
| 795 |
-
return decoder_output.loss
|
| 796 |
-
return decoder_output.logits
|
| 797 |
-
|
| 798 |
def generate(
|
| 799 |
self,
|
| 800 |
-
input_ids: Tensor,
|
| 801 |
-
input_values: Tensor,
|
| 802 |
-
|
| 803 |
-
|
| 804 |
-
|
| 805 |
-
|
| 806 |
-
top_k: int = 50,
|
| 807 |
-
temperature: float = 1.0,
|
| 808 |
-
repetition_penalty=1.0,
|
| 809 |
-
return_text=True,
|
| 810 |
-
# The following are only used by HF
|
| 811 |
-
attention_mask: Tensor | None = None,
|
| 812 |
-
audio_token_id: int | None = None,
|
| 813 |
):
|
| 814 |
-
|
| 815 |
-
|
| 816 |
-
|
| 817 |
-
|
| 818 |
-
|
| 819 |
-
|
| 820 |
-
|
| 821 |
-
|
| 822 |
-
|
| 823 |
-
|
| 824 |
-
|
| 825 |
-
|
| 826 |
-
|
| 827 |
-
|
| 828 |
-
|
| 829 |
-
|
| 830 |
-
|
| 831 |
-
|
| 832 |
-
|
| 833 |
-
|
| 834 |
-
|
| 835 |
-
|
| 836 |
-
|
| 837 |
-
|
| 838 |
-
|
| 839 |
-
|
| 840 |
-
|
| 841 |
-
|
| 842 |
-
|
| 843 |
-
|
| 844 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 845 |
)
|
| 846 |
-
return texts
|
|
|
|
| 1 |
import collections.abc
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
from functools import partial
|
| 4 |
+
from typing import Any, Callable, Iterable, List, Optional, Tuple, Type, Union
|
| 5 |
|
| 6 |
import torch
|
| 7 |
import torch.nn as nn
|
| 8 |
import torchaudio.transforms as audio_transforms
|
| 9 |
from torch import Tensor
|
| 10 |
+
from transformers import GenerationMixin, PreTrainedModel
|
| 11 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
|
| 12 |
+
from transformers.models.qwen2_5_omni.configuration_qwen2_5_omni import (
|
| 13 |
+
Qwen2_5OmniTextConfig,
|
| 14 |
+
)
|
| 15 |
+
from transformers.models.qwen2_5_omni.modeling_qwen2_5_omni import (
|
| 16 |
+
Qwen2_5OmniThinkerTextModel,
|
| 17 |
+
)
|
| 18 |
|
| 19 |
+
from .configuration_midashenglm import DashengConfig, MiAudioLLMHFConfig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
# The functions `drop_path` and the module `DropPath` are taken from timm
|
|
|
|
| 116 |
in_features: int,
|
| 117 |
hidden_features: Optional[int] = None,
|
| 118 |
out_features: Optional[int] = None,
|
| 119 |
+
act_layer: Type[nn.Module] = nn.GELU,
|
| 120 |
drop: float = 0.0,
|
| 121 |
):
|
| 122 |
super().__init__()
|
|
|
|
| 210 |
qkv_bias: bool = False,
|
| 211 |
drop: float = 0.0,
|
| 212 |
attn_drop: float = 0.0,
|
| 213 |
+
init_values: float | None = None,
|
| 214 |
drop_path: float = 0.0,
|
| 215 |
+
act_layer: Type[nn.Module] = nn.GELU,
|
| 216 |
+
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
| 217 |
+
attention_type: Type[nn.Module] = Attention,
|
| 218 |
):
|
| 219 |
super().__init__()
|
| 220 |
self.norm1 = norm_layer(dim)
|
|
|
|
| 249 |
return x
|
| 250 |
|
| 251 |
|
| 252 |
+
# TODO
|
| 253 |
class RearranceReplace(nn.Module):
|
| 254 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 255 |
# rearrange(x, "b c f t -> b f c t")
|
|
|
|
| 261 |
class AudioTransformer(nn.Module):
|
| 262 |
def __init__(
|
| 263 |
self,
|
| 264 |
+
config: DashengConfig,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
):
|
| 266 |
super().__init__()
|
| 267 |
+
self.target_length = config.target_length
|
| 268 |
+
self.embed_dim = config.embed_dim
|
| 269 |
+
self.hop_length = config.hop_length
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
|
| 271 |
self.front_end = nn.Sequential(
|
| 272 |
audio_transforms.MelSpectrogram(
|
| 273 |
+
f_min=config.f_min,
|
| 274 |
+
f_max=config.f_max,
|
| 275 |
+
center=config.center,
|
| 276 |
+
win_length=config.win_length,
|
| 277 |
+
hop_length=config.hop_length,
|
| 278 |
+
sample_rate=config.sample_rate,
|
| 279 |
+
n_fft=config.n_fft,
|
| 280 |
+
n_mels=config.n_mels,
|
| 281 |
),
|
| 282 |
audio_transforms.AmplitudeToDB(top_db=120),
|
| 283 |
)
|
|
|
|
| 285 |
self.init_bn = nn.Sequential(
|
| 286 |
# Rearrange("b c f t -> b f c t"),
|
| 287 |
RearranceReplace(),
|
| 288 |
+
nn.BatchNorm2d(config.n_mels, momentum=0.01),
|
| 289 |
# Rearrange("b f c t -> b c f t"),
|
| 290 |
RearranceReplace(),
|
| 291 |
)
|
| 292 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
self.patch_embed = AudioPatchEmbed(
|
| 294 |
+
input_size=(config.n_mels, config.target_length),
|
| 295 |
+
embed_dim=config.embed_dim,
|
| 296 |
+
in_chans=config.input_channels,
|
| 297 |
+
patch_size=config.patch_size,
|
| 298 |
flatten=False,
|
| 299 |
+
patch_stride=config.patch_stride,
|
| 300 |
)
|
| 301 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
self.time_pos_embed = nn.Parameter(
|
| 303 |
+
torch.randn(1, config.embed_dim, 1, self.patch_embed.grid_size[1]) * 0.02
|
| 304 |
)
|
| 305 |
self.freq_pos_embed = nn.Parameter(
|
| 306 |
+
torch.randn(1, config.embed_dim, self.patch_embed.grid_size[0], 1) * 0.02
|
| 307 |
)
|
| 308 |
|
| 309 |
+
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
|
|
|
| 310 |
dpr = [
|
| 311 |
+
x.item() for x in torch.linspace(0, config.drop_path_rate, config.depth)
|
| 312 |
] # stochastic depth decay rule
|
| 313 |
+
self.pos_drop = nn.Dropout(p=config.drop_rate)
|
| 314 |
self.blocks = nn.ModuleList(
|
| 315 |
+
Block(
|
| 316 |
+
dim=config.embed_dim,
|
| 317 |
+
num_heads=config.num_heads,
|
| 318 |
+
mlp_ratio=config.mlp_ratio,
|
| 319 |
+
qkv_bias=config.qkv_bias,
|
| 320 |
+
init_values=config.init_values,
|
| 321 |
+
drop=config.drop_rate,
|
| 322 |
+
attn_drop=config.attn_drop_rate,
|
| 323 |
drop_path=dpr[i],
|
| 324 |
norm_layer=norm_layer,
|
|
|
|
|
|
|
| 325 |
)
|
| 326 |
+
for i in range(config.depth)
|
| 327 |
)
|
| 328 |
+
self.norm = norm_layer(config.embed_dim)
|
|
|
|
|
|
|
| 329 |
|
| 330 |
def forward_features(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
|
| 331 |
t = x.shape[-1]
|
|
|
|
| 336 |
x = torch.permute(
|
| 337 |
torch.flatten(x, 2, 3), (0, 2, 1)
|
| 338 |
) # rearrange(x, "b c f t -> b (f t) c")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 339 |
x = self.pos_drop(x)
|
| 340 |
for block in self.blocks:
|
| 341 |
x = block(x, **kwargs)
|
| 342 |
x = self.norm(x)
|
| 343 |
return x
|
| 344 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
def _to_mask(self, lengths: torch.Tensor, max_length: int) -> torch.Tensor:
|
| 346 |
batch_size = len(lengths)
|
| 347 |
idx = torch.arange(max_length, device=lengths.device)
|
| 348 |
idx = idx.repeat(batch_size).view(batch_size, max_length)
|
| 349 |
+
mask = (idx < lengths.unsqueeze(-1)).bool()
|
| 350 |
return mask
|
| 351 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
def forward(
|
| 353 |
+
self,
|
| 354 |
+
x: torch.Tensor,
|
| 355 |
+
x_length: Optional[torch.Tensor] = None,
|
| 356 |
) -> torch.Tensor:
|
| 357 |
x = self.front_end(x)
|
| 358 |
target_length_in_patches = self.target_length // 4
|
|
|
|
| 363 |
t = x.shape[-1]
|
| 364 |
|
| 365 |
input_splits = x.split(target_length_in_patches, dim=-1)
|
|
|
|
|
|
|
| 366 |
|
| 367 |
if x_length is not None:
|
| 368 |
assert len(x_length) == len(x), (
|
| 369 |
"batchsizes of input x and x_length need to be same"
|
| 370 |
)
|
| 371 |
assert x_length.ndim == 1, "Lengths are of size (B,)"
|
| 372 |
+
scaled_lengths = (x_length / (self.hop_length * 4)).long()
|
| 373 |
+
mask = self._to_mask(max_length=t, lengths=scaled_lengths)
|
| 374 |
+
split_masks = mask.logical_not().split(target_length_in_patches, dim=-1)
|
| 375 |
+
else:
|
| 376 |
+
mask = None
|
| 377 |
+
split_masks = [None] * len(input_splits)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 378 |
|
| 379 |
outputs = []
|
| 380 |
|
| 381 |
+
for split_x, split_mask in zip(input_splits, split_masks):
|
| 382 |
forward_kwargs = {}
|
| 383 |
+
forward_kwargs["mask"] = split_mask
|
| 384 |
split_x = self.forward_features(split_x, **forward_kwargs)
|
|
|
|
| 385 |
outputs.append(split_x)
|
| 386 |
x = torch.cat(outputs, dim=1)
|
| 387 |
+
return x, mask
|
| 388 |
|
| 389 |
|
| 390 |
+
class AudioProjectorSubsample(nn.Module):
|
| 391 |
+
def __init__(self, in_dim: int, out_dim: int, downsample_rate=5):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 392 |
super().__init__()
|
| 393 |
+
self.k = downsample_rate
|
| 394 |
+
self.net = nn.Sequential(
|
| 395 |
+
nn.Linear(in_dim * self.k, out_dim),
|
| 396 |
+
nn.GELU(),
|
| 397 |
+
nn.Linear(out_dim, out_dim),
|
| 398 |
)
|
| 399 |
|
| 400 |
+
def forward(self, x, mask=None):
|
| 401 |
+
batch_size, seq_len, dim = x.shape
|
| 402 |
+
num_frames_to_discard = seq_len % self.k
|
| 403 |
+
if num_frames_to_discard > 0:
|
| 404 |
+
x = x[:, :-num_frames_to_discard, :]
|
| 405 |
+
if mask is not None:
|
| 406 |
+
mask = mask[:, :-num_frames_to_discard]
|
| 407 |
+
if mask is None:
|
| 408 |
+
mask = torch.ones(x.shape[:-1], dtype=torch.long, device=x.device)
|
| 409 |
+
x = x.reshape(
|
| 410 |
+
batch_size, -1, self.k * dim
|
| 411 |
+
) # rearrange(x, "b (s k) d -> b s (k d)", k=self.k)
|
| 412 |
+
x = self.net(x)
|
| 413 |
+
mask = mask.reshape(
|
| 414 |
+
batch_size, -1, self.k
|
| 415 |
+
) # rearrange(mask, "b (s k) -> b s k", k=self.k)
|
| 416 |
+
mask = mask.any(dim=-1).long()
|
| 417 |
+
return x, mask
|
|
|
|
|
|
|
|
|
|
|
|
|
| 418 |
|
|
|
|
|
|
|
| 419 |
|
| 420 |
+
@dataclass
|
| 421 |
+
class DashengQwen25OmniModelInstructOutput(ModelOutput):
|
| 422 |
+
logits: torch.FloatTensor = None
|
| 423 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
| 424 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 425 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 426 |
|
| 427 |
+
|
| 428 |
+
class Decoder(PreTrainedModel, GenerationMixin):
|
| 429 |
+
config_class = Qwen2_5OmniTextConfig
|
| 430 |
+
|
| 431 |
+
def __init__(self, config: Qwen2_5OmniTextConfig):
|
| 432 |
+
super().__init__(config)
|
| 433 |
+
self.model = Qwen2_5OmniThinkerTextModel._from_config(
|
| 434 |
+
config,
|
| 435 |
+
attn_implementation="sdpa", # TODO
|
| 436 |
+
)
|
| 437 |
+
self.lm_head = nn.Linear(
|
| 438 |
+
config.hidden_size,
|
| 439 |
+
config.vocab_size,
|
| 440 |
+
bias=False,
|
| 441 |
+
)
|
| 442 |
+
# TODO fix dtype
|
| 443 |
+
self.lm_head.weight.data = self.lm_head.weight.data.to(
|
| 444 |
+
self.model.embed_tokens.weight.dtype
|
| 445 |
+
)
|
| 446 |
+
# TODO tie weight?
|
| 447 |
+
self.post_init()
|
| 448 |
|
| 449 |
def forward(
|
| 450 |
self,
|
| 451 |
+
return_dict: Optional[bool] = None,
|
| 452 |
+
**kwargs: Any,
|
| 453 |
+
) -> DashengQwen25OmniModelInstructOutput:
|
| 454 |
+
outputs: BaseModelOutputWithPast = self.model(
|
| 455 |
+
return_dict=True,
|
| 456 |
+
**kwargs,
|
| 457 |
+
)
|
| 458 |
+
hidden_states = outputs.last_hidden_state
|
| 459 |
+
logits = self.lm_head(hidden_states)
|
| 460 |
+
|
| 461 |
+
if not return_dict:
|
| 462 |
+
return tuple(
|
| 463 |
+
v
|
| 464 |
+
for v in [
|
| 465 |
+
logits,
|
| 466 |
+
outputs.last_hidden_state,
|
| 467 |
+
outputs.past_key_values,
|
| 468 |
+
outputs.hidden_states,
|
| 469 |
+
outputs.attentions,
|
| 470 |
+
]
|
| 471 |
+
if v is not None
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
return DashengQwen25OmniModelInstructOutput(
|
| 475 |
+
logits=logits,
|
| 476 |
+
past_key_values=outputs.past_key_values,
|
| 477 |
+
hidden_states=outputs.hidden_states,
|
| 478 |
+
attentions=outputs.attentions,
|
| 479 |
+
)
|
| 480 |
|
| 481 |
|
| 482 |
class DashengQwen25OmniModelInstruct(PreTrainedModel):
|
|
|
|
| 485 |
def __init__(self, config: MiAudioLLMHFConfig):
|
| 486 |
super().__init__(config)
|
| 487 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 488 |
freeze = config.freeze
|
| 489 |
lora = config.lora
|
| 490 |
subsample_factor = config.subsample_factor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 491 |
|
| 492 |
self.subsample_factor = subsample_factor
|
| 493 |
self.lora = lora
|
|
|
|
| 494 |
# Encoder part
|
| 495 |
+
self.audio_encoder = AudioTransformer(config.audio_encoder_config)
|
|
|
|
| 496 |
assert lora != "encoder"
|
| 497 |
|
|
|
|
|
|
|
|
|
|
| 498 |
# decoder
|
| 499 |
+
self.decoder = Decoder(config.text_model_config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 500 |
assert lora != "decoder"
|
| 501 |
assert freeze is None
|
| 502 |
|
| 503 |
# audio projector
|
| 504 |
self.audio_projector = AudioProjectorSubsample(
|
| 505 |
+
self.audio_encoder.embed_dim,
|
| 506 |
+
config.text_model_config.hidden_size,
|
| 507 |
+
self.subsample_factor,
|
| 508 |
)
|
| 509 |
|
| 510 |
+
self.post_init()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 511 |
|
| 512 |
+
def _forward_audio_encoder(
|
| 513 |
+
self,
|
| 514 |
+
audios: torch.Tensor,
|
| 515 |
+
audio_length: Optional[Iterable[int]],
|
| 516 |
+
) -> torch.Tensor:
|
| 517 |
+
encoder_out, encoder_atts = self.audio_encoder(audios, audio_length)
|
| 518 |
|
| 519 |
# audio projector
|
| 520 |
encoder_out, encoder_atts = self.audio_projector(encoder_out, encoder_atts)
|
| 521 |
|
| 522 |
+
return encoder_out
|
| 523 |
|
| 524 |
def _prepare_with_input_ids(
|
| 525 |
+
self,
|
| 526 |
+
input_ids: torch.Tensor,
|
| 527 |
+
audio_embeddings: torch.Tensor,
|
| 528 |
+
audio_token_id: int,
|
| 529 |
+
) -> torch.Tensor:
|
| 530 |
special_mask = input_ids == audio_token_id
|
| 531 |
assert audio_embeddings.shape[1] <= (special_mask.sum(-1)).max(), (
|
| 532 |
+
"Mask and audio embeddings seem to have different sizes: "
|
| 533 |
+
f"{audio_embeddings.shape=}, {special_mask=}, {input_ids=}, "
|
| 534 |
+
f"{audio_embeddings.shape[1]=} vs {(special_mask.sum(-1)).max()=}"
|
| 535 |
)
|
| 536 |
input_embeddings = self.decoder.model.embed_tokens(input_ids)
|
| 537 |
audio_embeddings = audio_embeddings.to(input_embeddings.dtype)
|
|
|
|
| 544 |
|
| 545 |
def forward(
|
| 546 |
self,
|
| 547 |
+
input_ids: Optional[Tensor] = None,
|
| 548 |
+
input_values: Optional[Tensor] = None,
|
| 549 |
+
inputs_embeds: Optional[Tensor] = None,
|
| 550 |
+
audio_length: Optional[Iterable[int]] = None,
|
| 551 |
+
attention_mask: Optional[Tensor] = None,
|
| 552 |
+
audio_token_id: Optional[int] = None,
|
| 553 |
+
**kwargs: Any,
|
| 554 |
):
|
| 555 |
+
if input_ids is not None:
|
| 556 |
+
if inputs_embeds is not None:
|
| 557 |
+
raise ValueError(
|
| 558 |
+
"Both `inputs_embeds` and `input_ids` are passed. Please pass only one of them."
|
| 559 |
+
)
|
| 560 |
+
|
| 561 |
+
if input_values is not None:
|
| 562 |
+
input_values = input_values.to(self.device)
|
| 563 |
+
audio_encoder_hidden_states = self._forward_audio_encoder(
|
| 564 |
+
input_values, audio_length=audio_length
|
| 565 |
+
)
|
| 566 |
+
else:
|
| 567 |
+
batch, _ = input_ids.shape
|
| 568 |
+
input_values = torch.zeros(
|
| 569 |
+
batch,
|
| 570 |
+
0,
|
| 571 |
+
self.audio_encoder.embed_dim,
|
| 572 |
+
device=input_ids.device,
|
| 573 |
+
)
|
| 574 |
+
|
| 575 |
+
input_ids = input_ids.to(self.device)
|
| 576 |
+
inputs_embeds = self._prepare_with_input_ids(
|
| 577 |
+
input_ids=input_ids,
|
| 578 |
+
audio_embeddings=audio_encoder_hidden_states,
|
| 579 |
+
audio_token_id=audio_token_id,
|
| 580 |
+
)
|
| 581 |
+
else:
|
| 582 |
+
if inputs_embeds is None:
|
| 583 |
+
raise ValueError(
|
| 584 |
+
"Either `input_ids` or `inputs_embeds` must be passed."
|
| 585 |
+
)
|
| 586 |
+
if input_values is not None:
|
| 587 |
+
raise ValueError(
|
| 588 |
+
"Cannot pass `input_values` when `inputs_embeds` is provided."
|
| 589 |
+
)
|
| 590 |
+
|
| 591 |
+
return self.decoder(
|
| 592 |
input_ids=None,
|
| 593 |
+
inputs_embeds=inputs_embeds,
|
| 594 |
+
attention_mask=attention_mask,
|
| 595 |
+
**kwargs,
|
|
|
|
| 596 |
)
|
| 597 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 598 |
def generate(
|
| 599 |
self,
|
| 600 |
+
input_ids: Optional[Tensor] = None,
|
| 601 |
+
input_values: Optional[Tensor] = None,
|
| 602 |
+
inputs_embeds: Optional[Tensor] = None,
|
| 603 |
+
audio_length: Optional[Iterable[int]] = None,
|
| 604 |
+
audio_token_id: Optional[int] = None,
|
| 605 |
+
**kwargs,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 606 |
):
|
| 607 |
+
if input_ids is not None:
|
| 608 |
+
if inputs_embeds is not None:
|
| 609 |
+
raise ValueError(
|
| 610 |
+
"Both `inputs_embeds` and `input_ids` are passed. Please pass only one of them."
|
| 611 |
+
)
|
| 612 |
+
|
| 613 |
+
if input_values is not None:
|
| 614 |
+
input_values = input_values.to(self.device)
|
| 615 |
+
audio_encoder_hidden_states = self._forward_audio_encoder(
|
| 616 |
+
input_values, audio_length=audio_length
|
| 617 |
+
)
|
| 618 |
+
else:
|
| 619 |
+
batch, _ = input_ids.shape
|
| 620 |
+
input_values = torch.zeros(
|
| 621 |
+
batch,
|
| 622 |
+
0,
|
| 623 |
+
self.audio_encoder.embed_dim,
|
| 624 |
+
device=input_ids.device,
|
| 625 |
+
)
|
| 626 |
+
|
| 627 |
+
input_ids = input_ids.to(self.device)
|
| 628 |
+
inputs_embeds = self._prepare_with_input_ids(
|
| 629 |
+
input_ids=input_ids,
|
| 630 |
+
audio_embeddings=audio_encoder_hidden_states,
|
| 631 |
+
audio_token_id=audio_token_id,
|
| 632 |
+
)
|
| 633 |
+
else:
|
| 634 |
+
if inputs_embeds is None:
|
| 635 |
+
raise ValueError(
|
| 636 |
+
"Either `input_ids` or `inputs_embeds` must be passed."
|
| 637 |
+
)
|
| 638 |
+
if input_values is not None:
|
| 639 |
+
raise ValueError(
|
| 640 |
+
"Cannot pass `input_values` when `inputs_embeds` is provided."
|
| 641 |
+
)
|
| 642 |
+
|
| 643 |
+
return self.decoder.generate(
|
| 644 |
+
inputs_embeds=inputs_embeds,
|
| 645 |
+
generation_config=kwargs.pop("generation_config", self.generation_config),
|
| 646 |
+
**kwargs,
|
| 647 |
)
|
|
|