mirbostani
commited on
Commit
•
01d9139
1
Parent(s):
87e1f45
Upload run_newsqa.py
Browse files- run_newsqa.py +929 -0
run_newsqa.py
ADDED
@@ -0,0 +1,929 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Finetuning the library models for question-answering on NewsQA (DistilBERT, Bert, XLM, XLNet).
|
18 |
+
|
19 |
+
@see examples/legacy/multiple_choice/utils_multiple_choice.py
|
20 |
+
@see src/transformers/data/processors/squad.py
|
21 |
+
@see examples/legacy/question-answering/run_squad.py
|
22 |
+
"""
|
23 |
+
|
24 |
+
|
25 |
+
import argparse
|
26 |
+
import glob
|
27 |
+
import logging
|
28 |
+
import os
|
29 |
+
import random
|
30 |
+
import timeit
|
31 |
+
import json
|
32 |
+
from matplotlib.style import context
|
33 |
+
|
34 |
+
import numpy as np
|
35 |
+
import torch
|
36 |
+
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
|
37 |
+
from torch.utils.data.distributed import DistributedSampler
|
38 |
+
from tqdm import tqdm, trange
|
39 |
+
|
40 |
+
import transformers
|
41 |
+
from transformers import (
|
42 |
+
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
|
43 |
+
WEIGHTS_NAME,
|
44 |
+
AdamW,
|
45 |
+
AutoConfig,
|
46 |
+
AutoModelForQuestionAnswering,
|
47 |
+
AutoTokenizer,
|
48 |
+
get_linear_schedule_with_warmup,
|
49 |
+
squad_convert_examples_to_features,
|
50 |
+
)
|
51 |
+
from transformers.data.metrics.squad_metrics import (
|
52 |
+
compute_predictions_log_probs,
|
53 |
+
compute_predictions_logits,
|
54 |
+
squad_evaluate,
|
55 |
+
)
|
56 |
+
from transformers.data.processors.squad import SquadExample, SquadResult, SquadV1Processor, SquadV2Processor
|
57 |
+
from transformers.data.processors.utils import DataProcessor
|
58 |
+
from transformers.trainer_utils import is_main_process
|
59 |
+
|
60 |
+
|
61 |
+
try:
|
62 |
+
from torch.utils.tensorboard import SummaryWriter
|
63 |
+
except ImportError:
|
64 |
+
from tensorboardX import SummaryWriter
|
65 |
+
|
66 |
+
|
67 |
+
logger = logging.getLogger(__name__)
|
68 |
+
|
69 |
+
MODEL_CONFIG_CLASSES = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
|
70 |
+
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
71 |
+
|
72 |
+
|
73 |
+
class NewsQAProcessor(DataProcessor):
|
74 |
+
"""
|
75 |
+
Processor for the NewsQA dataset.
|
76 |
+
|
77 |
+
https://github.com/Maluuba/newsqa
|
78 |
+
"""
|
79 |
+
|
80 |
+
train_file = "combined-newsqa-data-v1.json"
|
81 |
+
dev_file = "combined-newsqa-data-v1.json"
|
82 |
+
|
83 |
+
def get_train_examples(self, data_dir, filename=None):
|
84 |
+
if data_dir is None:
|
85 |
+
data_dir = ""
|
86 |
+
|
87 |
+
set_type = "train"
|
88 |
+
filepath = os.path.join(data_dir, self.train_file if filename is None else filename)
|
89 |
+
with open(filepath, "r", encoding="utf-8") as file:
|
90 |
+
source = json.load(file)
|
91 |
+
if source["version"] != "1":
|
92 |
+
raise ValueError("Invalid NewsQA dataset version")
|
93 |
+
input_data = [story for story in source["data"] if story["type"] == set_type]
|
94 |
+
return self._create_examples(input_data, set_type)
|
95 |
+
|
96 |
+
def get_dev_examples(self, data_dir, filename=None):
|
97 |
+
if data_dir is None:
|
98 |
+
data_dir = ""
|
99 |
+
|
100 |
+
set_type = "dev"
|
101 |
+
filepath = os.path.join(data_dir, self.dev_file if filename is None else filename)
|
102 |
+
with open(filepath, "r", encoding="utf-8") as file:
|
103 |
+
source = json.load(file)
|
104 |
+
if source["version"] != "1":
|
105 |
+
raise ValueError("Invalid NewsQA dataset version")
|
106 |
+
input_data = [story for story in source["data"] if story["type"] == set_type]
|
107 |
+
return self._create_examples(input_data, set_type)
|
108 |
+
|
109 |
+
def _create_examples(self, input_data, set_type):
|
110 |
+
is_training = set_type == "train"
|
111 |
+
examples = []
|
112 |
+
for story in tqdm(input_data):
|
113 |
+
title = story["storyId"] # no title is available in NewsQA
|
114 |
+
context_text = story["text"]
|
115 |
+
|
116 |
+
for iqa, qa in enumerate(story["questions"]):
|
117 |
+
qas_id = story["storyId"] + str(iqa)
|
118 |
+
question_text = qa["q"]
|
119 |
+
start_position_character = None
|
120 |
+
answer_text = None
|
121 |
+
answers = []
|
122 |
+
is_impossible = False
|
123 |
+
|
124 |
+
if "s" in qa["consensus"].keys() and "e" in qa["consensus"].keys():
|
125 |
+
# Append consensus as the first answer for training
|
126 |
+
answer_start = qa["consensus"]["s"]
|
127 |
+
answer_end = qa["consensus"]["e"]
|
128 |
+
answer_text = context_text[answer_start:answer_end].strip()
|
129 |
+
start_position_character = answer_start
|
130 |
+
answers.append({
|
131 |
+
"answer_start": answer_start,
|
132 |
+
"text": answer_text
|
133 |
+
})
|
134 |
+
# Append sourcer answers for validation
|
135 |
+
for a in qa["answers"]:
|
136 |
+
for sa in a["sourcerAnswers"]:
|
137 |
+
if "s" in sa.keys() and "e" in sa.keys():
|
138 |
+
answer_start = sa["s"]
|
139 |
+
answer_end = sa["e"]
|
140 |
+
answers.append({
|
141 |
+
"answer_start": answer_start,
|
142 |
+
"text": context_text[answer_start:answer_end].strip()
|
143 |
+
})
|
144 |
+
|
145 |
+
is_impossible = not (len(answers) > 0)
|
146 |
+
|
147 |
+
if not is_impossible:
|
148 |
+
if is_training:
|
149 |
+
# Use the first answer (consensus) for training
|
150 |
+
answers = [answers[0]]
|
151 |
+
else:
|
152 |
+
# Use all the sourcer answers for validation
|
153 |
+
pass
|
154 |
+
|
155 |
+
# Only examples with a valid answer are considered.
|
156 |
+
if not is_impossible:
|
157 |
+
example = SquadExample(
|
158 |
+
qas_id=qas_id,
|
159 |
+
question_text=question_text,
|
160 |
+
context_text=context_text,
|
161 |
+
answer_text=answer_text,
|
162 |
+
start_position_character=start_position_character,
|
163 |
+
title=title,
|
164 |
+
is_impossible=is_impossible,
|
165 |
+
answers=answers
|
166 |
+
)
|
167 |
+
examples.append(example)
|
168 |
+
|
169 |
+
|
170 |
+
return examples
|
171 |
+
|
172 |
+
def set_seed(args):
|
173 |
+
random.seed(args.seed)
|
174 |
+
np.random.seed(args.seed)
|
175 |
+
torch.manual_seed(args.seed)
|
176 |
+
if args.n_gpu > 0:
|
177 |
+
torch.cuda.manual_seed_all(args.seed)
|
178 |
+
|
179 |
+
|
180 |
+
def to_list(tensor):
|
181 |
+
return tensor.detach().cpu().tolist()
|
182 |
+
|
183 |
+
|
184 |
+
def train(args, train_dataset, model, tokenizer):
|
185 |
+
"""Train the model"""
|
186 |
+
if args.local_rank in [-1, 0]:
|
187 |
+
tb_writer = SummaryWriter()
|
188 |
+
|
189 |
+
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
|
190 |
+
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
|
191 |
+
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
|
192 |
+
|
193 |
+
if args.max_steps > 0:
|
194 |
+
t_total = args.max_steps
|
195 |
+
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
|
196 |
+
else:
|
197 |
+
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
|
198 |
+
|
199 |
+
# Prepare optimizer and schedule (linear warmup and decay)
|
200 |
+
no_decay = ["bias", "LayerNorm.weight"]
|
201 |
+
optimizer_grouped_parameters = [
|
202 |
+
{
|
203 |
+
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
204 |
+
"weight_decay": args.weight_decay,
|
205 |
+
},
|
206 |
+
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
|
207 |
+
]
|
208 |
+
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
|
209 |
+
scheduler = get_linear_schedule_with_warmup(
|
210 |
+
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
|
211 |
+
)
|
212 |
+
|
213 |
+
# Check if saved optimizer or scheduler states exist
|
214 |
+
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
|
215 |
+
os.path.join(args.model_name_or_path, "scheduler.pt")
|
216 |
+
):
|
217 |
+
# Load in optimizer and scheduler states
|
218 |
+
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
|
219 |
+
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
|
220 |
+
|
221 |
+
if args.fp16:
|
222 |
+
try:
|
223 |
+
from apex import amp
|
224 |
+
except ImportError:
|
225 |
+
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
|
226 |
+
|
227 |
+
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
|
228 |
+
|
229 |
+
# multi-gpu training (should be after apex fp16 initialization)
|
230 |
+
if args.n_gpu > 1:
|
231 |
+
model = torch.nn.DataParallel(model)
|
232 |
+
|
233 |
+
# Distributed training (should be after apex fp16 initialization)
|
234 |
+
if args.local_rank != -1:
|
235 |
+
model = torch.nn.parallel.DistributedDataParallel(
|
236 |
+
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
|
237 |
+
)
|
238 |
+
|
239 |
+
# Train!
|
240 |
+
logger.info("***** Running training *****")
|
241 |
+
logger.info(" Num examples = %d", len(train_dataset))
|
242 |
+
logger.info(" Num Epochs = %d", args.num_train_epochs)
|
243 |
+
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
|
244 |
+
logger.info(
|
245 |
+
" Total train batch size (w. parallel, distributed & accumulation) = %d",
|
246 |
+
args.train_batch_size
|
247 |
+
* args.gradient_accumulation_steps
|
248 |
+
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
|
249 |
+
)
|
250 |
+
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
|
251 |
+
logger.info(" Total optimization steps = %d", t_total)
|
252 |
+
|
253 |
+
global_step = 1
|
254 |
+
epochs_trained = 0
|
255 |
+
steps_trained_in_current_epoch = 0
|
256 |
+
# Check if continuing training from a checkpoint
|
257 |
+
if os.path.exists(args.model_name_or_path):
|
258 |
+
try:
|
259 |
+
# set global_step to gobal_step of last saved checkpoint from model path
|
260 |
+
checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]
|
261 |
+
global_step = int(checkpoint_suffix)
|
262 |
+
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
|
263 |
+
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
|
264 |
+
|
265 |
+
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
|
266 |
+
logger.info(" Continuing training from epoch %d", epochs_trained)
|
267 |
+
logger.info(" Continuing training from global step %d", global_step)
|
268 |
+
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
|
269 |
+
except ValueError:
|
270 |
+
logger.info(" Starting fine-tuning.")
|
271 |
+
|
272 |
+
tr_loss, logging_loss = 0.0, 0.0
|
273 |
+
model.zero_grad()
|
274 |
+
train_iterator = trange(
|
275 |
+
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
|
276 |
+
)
|
277 |
+
# Added here for reproductibility
|
278 |
+
set_seed(args)
|
279 |
+
|
280 |
+
for _ in train_iterator:
|
281 |
+
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
|
282 |
+
for step, batch in enumerate(epoch_iterator):
|
283 |
+
|
284 |
+
# Skip past any already trained steps if resuming training
|
285 |
+
if steps_trained_in_current_epoch > 0:
|
286 |
+
steps_trained_in_current_epoch -= 1
|
287 |
+
continue
|
288 |
+
|
289 |
+
model.train()
|
290 |
+
batch = tuple(t.to(args.device) for t in batch)
|
291 |
+
|
292 |
+
inputs = {
|
293 |
+
"input_ids": batch[0],
|
294 |
+
"attention_mask": batch[1],
|
295 |
+
"token_type_ids": batch[2],
|
296 |
+
"start_positions": batch[3],
|
297 |
+
"end_positions": batch[4],
|
298 |
+
}
|
299 |
+
|
300 |
+
if args.model_type in ["xlm", "roberta", "distilbert", "camembert", "bart", "longformer"]:
|
301 |
+
del inputs["token_type_ids"]
|
302 |
+
|
303 |
+
if args.model_type in ["xlnet", "xlm"]:
|
304 |
+
inputs.update({"cls_index": batch[5], "p_mask": batch[6]})
|
305 |
+
if args.version_2_with_negative:
|
306 |
+
inputs.update({"is_impossible": batch[7]})
|
307 |
+
if hasattr(model, "config") and hasattr(model.config, "lang2id"):
|
308 |
+
inputs.update(
|
309 |
+
{"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)}
|
310 |
+
)
|
311 |
+
|
312 |
+
outputs = model(**inputs)
|
313 |
+
# model outputs are always tuple in transformers (see doc)
|
314 |
+
loss = outputs[0]
|
315 |
+
|
316 |
+
if args.n_gpu > 1:
|
317 |
+
loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
|
318 |
+
if args.gradient_accumulation_steps > 1:
|
319 |
+
loss = loss / args.gradient_accumulation_steps
|
320 |
+
|
321 |
+
if args.fp16:
|
322 |
+
with amp.scale_loss(loss, optimizer) as scaled_loss:
|
323 |
+
scaled_loss.backward()
|
324 |
+
else:
|
325 |
+
loss.backward()
|
326 |
+
|
327 |
+
tr_loss += loss.item()
|
328 |
+
if (step + 1) % args.gradient_accumulation_steps == 0:
|
329 |
+
if args.fp16:
|
330 |
+
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
|
331 |
+
else:
|
332 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
|
333 |
+
|
334 |
+
optimizer.step()
|
335 |
+
scheduler.step() # Update learning rate schedule
|
336 |
+
model.zero_grad()
|
337 |
+
global_step += 1
|
338 |
+
|
339 |
+
# Log metrics
|
340 |
+
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
|
341 |
+
# Only evaluate when single GPU otherwise metrics may not average well
|
342 |
+
if args.local_rank == -1 and args.evaluate_during_training:
|
343 |
+
results = evaluate(args, model, tokenizer)
|
344 |
+
for key, value in results.items():
|
345 |
+
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
|
346 |
+
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
|
347 |
+
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
|
348 |
+
logging_loss = tr_loss
|
349 |
+
|
350 |
+
# Save model checkpoint
|
351 |
+
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
|
352 |
+
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
|
353 |
+
# Take care of distributed/parallel training
|
354 |
+
model_to_save = model.module if hasattr(model, "module") else model
|
355 |
+
model_to_save.save_pretrained(output_dir)
|
356 |
+
tokenizer.save_pretrained(output_dir)
|
357 |
+
|
358 |
+
torch.save(args, os.path.join(output_dir, "training_args.bin"))
|
359 |
+
logger.info("Saving model checkpoint to %s", output_dir)
|
360 |
+
|
361 |
+
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
|
362 |
+
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
|
363 |
+
logger.info("Saving optimizer and scheduler states to %s", output_dir)
|
364 |
+
|
365 |
+
if args.max_steps > 0 and global_step > args.max_steps:
|
366 |
+
epoch_iterator.close()
|
367 |
+
break
|
368 |
+
if args.max_steps > 0 and global_step > args.max_steps:
|
369 |
+
train_iterator.close()
|
370 |
+
break
|
371 |
+
|
372 |
+
if args.local_rank in [-1, 0]:
|
373 |
+
tb_writer.close()
|
374 |
+
|
375 |
+
return global_step, tr_loss / global_step
|
376 |
+
|
377 |
+
|
378 |
+
def evaluate(args, model, tokenizer, prefix=""):
|
379 |
+
dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)
|
380 |
+
|
381 |
+
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
|
382 |
+
os.makedirs(args.output_dir)
|
383 |
+
|
384 |
+
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
|
385 |
+
|
386 |
+
# Note that DistributedSampler samples randomly
|
387 |
+
eval_sampler = SequentialSampler(dataset)
|
388 |
+
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
389 |
+
|
390 |
+
# multi-gpu evaluate
|
391 |
+
if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
|
392 |
+
model = torch.nn.DataParallel(model)
|
393 |
+
|
394 |
+
# Eval!
|
395 |
+
logger.info("***** Running evaluation {} *****".format(prefix))
|
396 |
+
logger.info(" Num examples = %d", len(dataset))
|
397 |
+
logger.info(" Batch size = %d", args.eval_batch_size)
|
398 |
+
|
399 |
+
all_results = []
|
400 |
+
start_time = timeit.default_timer()
|
401 |
+
|
402 |
+
for batch in tqdm(eval_dataloader, desc="Evaluating"):
|
403 |
+
model.eval()
|
404 |
+
batch = tuple(t.to(args.device) for t in batch)
|
405 |
+
|
406 |
+
with torch.no_grad():
|
407 |
+
inputs = {
|
408 |
+
"input_ids": batch[0],
|
409 |
+
"attention_mask": batch[1],
|
410 |
+
"token_type_ids": batch[2],
|
411 |
+
}
|
412 |
+
|
413 |
+
if args.model_type in ["xlm", "roberta", "distilbert", "camembert", "bart", "longformer"]:
|
414 |
+
del inputs["token_type_ids"]
|
415 |
+
|
416 |
+
feature_indices = batch[3]
|
417 |
+
|
418 |
+
# XLNet and XLM use more arguments for their predictions
|
419 |
+
if args.model_type in ["xlnet", "xlm"]:
|
420 |
+
inputs.update({"cls_index": batch[4], "p_mask": batch[5]})
|
421 |
+
# for lang_id-sensitive xlm models
|
422 |
+
if hasattr(model, "config") and hasattr(model.config, "lang2id"):
|
423 |
+
inputs.update(
|
424 |
+
{"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)}
|
425 |
+
)
|
426 |
+
outputs = model(**inputs)
|
427 |
+
|
428 |
+
for i, feature_index in enumerate(feature_indices):
|
429 |
+
eval_feature = features[feature_index.item()]
|
430 |
+
unique_id = int(eval_feature.unique_id)
|
431 |
+
|
432 |
+
output = [to_list(output[i]) for output in outputs.to_tuple()]
|
433 |
+
|
434 |
+
# Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler"
|
435 |
+
# models only use two.
|
436 |
+
if len(output) >= 5:
|
437 |
+
start_logits = output[0]
|
438 |
+
start_top_index = output[1]
|
439 |
+
end_logits = output[2]
|
440 |
+
end_top_index = output[3]
|
441 |
+
cls_logits = output[4]
|
442 |
+
|
443 |
+
result = SquadResult(
|
444 |
+
unique_id,
|
445 |
+
start_logits,
|
446 |
+
end_logits,
|
447 |
+
start_top_index=start_top_index,
|
448 |
+
end_top_index=end_top_index,
|
449 |
+
cls_logits=cls_logits,
|
450 |
+
)
|
451 |
+
|
452 |
+
else:
|
453 |
+
start_logits, end_logits = output
|
454 |
+
result = SquadResult(unique_id, start_logits, end_logits)
|
455 |
+
|
456 |
+
all_results.append(result)
|
457 |
+
|
458 |
+
evalTime = timeit.default_timer() - start_time
|
459 |
+
logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))
|
460 |
+
|
461 |
+
# Compute predictions
|
462 |
+
output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
|
463 |
+
output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
|
464 |
+
|
465 |
+
if args.version_2_with_negative:
|
466 |
+
output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
|
467 |
+
else:
|
468 |
+
output_null_log_odds_file = None
|
469 |
+
|
470 |
+
# XLNet and XLM use a more complex post-processing procedure
|
471 |
+
if args.model_type in ["xlnet", "xlm"]:
|
472 |
+
start_n_top = model.config.start_n_top if hasattr(model, "config") else model.module.config.start_n_top
|
473 |
+
end_n_top = model.config.end_n_top if hasattr(model, "config") else model.module.config.end_n_top
|
474 |
+
|
475 |
+
predictions = compute_predictions_log_probs(
|
476 |
+
examples,
|
477 |
+
features,
|
478 |
+
all_results,
|
479 |
+
args.n_best_size,
|
480 |
+
args.max_answer_length,
|
481 |
+
output_prediction_file,
|
482 |
+
output_nbest_file,
|
483 |
+
output_null_log_odds_file,
|
484 |
+
start_n_top,
|
485 |
+
end_n_top,
|
486 |
+
args.version_2_with_negative,
|
487 |
+
tokenizer,
|
488 |
+
args.verbose_logging,
|
489 |
+
)
|
490 |
+
else:
|
491 |
+
predictions = compute_predictions_logits(
|
492 |
+
examples,
|
493 |
+
features,
|
494 |
+
all_results,
|
495 |
+
args.n_best_size,
|
496 |
+
args.max_answer_length,
|
497 |
+
args.do_lower_case,
|
498 |
+
output_prediction_file,
|
499 |
+
output_nbest_file,
|
500 |
+
output_null_log_odds_file,
|
501 |
+
args.verbose_logging,
|
502 |
+
args.version_2_with_negative,
|
503 |
+
args.null_score_diff_threshold,
|
504 |
+
tokenizer,
|
505 |
+
)
|
506 |
+
|
507 |
+
# Compute the F1 and exact scores.
|
508 |
+
results = squad_evaluate(examples, predictions)
|
509 |
+
return results
|
510 |
+
|
511 |
+
|
512 |
+
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
|
513 |
+
if args.local_rank not in [-1, 0] and not evaluate:
|
514 |
+
# Make sure only the first process in distributed training process the dataset, and the others will use the cache
|
515 |
+
torch.distributed.barrier()
|
516 |
+
|
517 |
+
# Load data features from cache or dataset file
|
518 |
+
input_dir = args.data_dir if args.data_dir else "."
|
519 |
+
cached_features_file = os.path.join(
|
520 |
+
input_dir,
|
521 |
+
"cached_{}_{}_{}".format(
|
522 |
+
"dev" if evaluate else "train",
|
523 |
+
list(filter(None, args.model_name_or_path.split("/"))).pop(),
|
524 |
+
str(args.max_seq_length),
|
525 |
+
),
|
526 |
+
)
|
527 |
+
|
528 |
+
# Init features and dataset from cache if it exists
|
529 |
+
if os.path.exists(cached_features_file) and not args.overwrite_cache:
|
530 |
+
logger.info("Loading features from cached file %s", cached_features_file)
|
531 |
+
features_and_dataset = torch.load(cached_features_file)
|
532 |
+
features, dataset, examples = (
|
533 |
+
features_and_dataset["features"],
|
534 |
+
features_and_dataset["dataset"],
|
535 |
+
features_and_dataset["examples"],
|
536 |
+
)
|
537 |
+
else:
|
538 |
+
logger.info("Creating features from dataset file at %s", input_dir)
|
539 |
+
|
540 |
+
if not args.data_dir and ((evaluate and not args.predict_file) or (not evaluate and not args.train_file)):
|
541 |
+
raise NotImplementedError()
|
542 |
+
else:
|
543 |
+
processor = NewsQAProcessor()
|
544 |
+
if evaluate:
|
545 |
+
examples = processor.get_dev_examples(args.data_dir, filename=args.predict_file)
|
546 |
+
else:
|
547 |
+
examples = processor.get_train_examples(args.data_dir, filename=args.train_file)
|
548 |
+
|
549 |
+
features, dataset = squad_convert_examples_to_features(
|
550 |
+
examples=examples,
|
551 |
+
tokenizer=tokenizer,
|
552 |
+
max_seq_length=args.max_seq_length,
|
553 |
+
doc_stride=args.doc_stride,
|
554 |
+
max_query_length=args.max_query_length,
|
555 |
+
is_training=not evaluate,
|
556 |
+
return_dataset="pt",
|
557 |
+
threads=args.threads,
|
558 |
+
)
|
559 |
+
|
560 |
+
if args.local_rank in [-1, 0]:
|
561 |
+
logger.info("Saving features into cached file %s", cached_features_file)
|
562 |
+
torch.save({"features": features, "dataset": dataset, "examples": examples}, cached_features_file)
|
563 |
+
|
564 |
+
if args.local_rank == 0 and not evaluate:
|
565 |
+
# Make sure only the first process in distributed training process the dataset, and the others will use the cache
|
566 |
+
torch.distributed.barrier()
|
567 |
+
|
568 |
+
if output_examples:
|
569 |
+
return dataset, examples, features
|
570 |
+
return dataset
|
571 |
+
|
572 |
+
|
573 |
+
def main():
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
|
576 |
+
# Required parameters
|
577 |
+
parser.add_argument(
|
578 |
+
"--model_type",
|
579 |
+
default=None,
|
580 |
+
type=str,
|
581 |
+
required=True,
|
582 |
+
help="Model type selected in the list: " + ", ".join(MODEL_TYPES),
|
583 |
+
)
|
584 |
+
parser.add_argument(
|
585 |
+
"--model_name_or_path",
|
586 |
+
default=None,
|
587 |
+
type=str,
|
588 |
+
required=True,
|
589 |
+
help="Path to pretrained model or model identifier from huggingface.co/models",
|
590 |
+
)
|
591 |
+
parser.add_argument(
|
592 |
+
"--output_dir",
|
593 |
+
default=None,
|
594 |
+
type=str,
|
595 |
+
required=True,
|
596 |
+
help="The output directory where the model checkpoints and predictions will be written.",
|
597 |
+
)
|
598 |
+
|
599 |
+
# Other parameters
|
600 |
+
parser.add_argument(
|
601 |
+
"--data_dir",
|
602 |
+
default=None,
|
603 |
+
type=str,
|
604 |
+
help="The input data dir. Should contain the .json files for the task."
|
605 |
+
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
|
606 |
+
)
|
607 |
+
parser.add_argument(
|
608 |
+
"--train_file",
|
609 |
+
default=None,
|
610 |
+
type=str,
|
611 |
+
help="The input training file. If a data dir is specified, will look for the file there"
|
612 |
+
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
|
613 |
+
)
|
614 |
+
parser.add_argument(
|
615 |
+
"--predict_file",
|
616 |
+
default=None,
|
617 |
+
type=str,
|
618 |
+
help="The input evaluation file. If a data dir is specified, will look for the file there"
|
619 |
+
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
|
620 |
+
)
|
621 |
+
parser.add_argument(
|
622 |
+
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
|
623 |
+
)
|
624 |
+
parser.add_argument(
|
625 |
+
"--tokenizer_name",
|
626 |
+
default="",
|
627 |
+
type=str,
|
628 |
+
help="Pretrained tokenizer name or path if not the same as model_name",
|
629 |
+
)
|
630 |
+
parser.add_argument(
|
631 |
+
"--cache_dir",
|
632 |
+
default="",
|
633 |
+
type=str,
|
634 |
+
help="Where do you want to store the pre-trained models downloaded from huggingface.co",
|
635 |
+
)
|
636 |
+
|
637 |
+
parser.add_argument(
|
638 |
+
"--version_2_with_negative",
|
639 |
+
action="store_true",
|
640 |
+
help="If true, the SQuAD examples contain some that do not have an answer.",
|
641 |
+
)
|
642 |
+
parser.add_argument(
|
643 |
+
"--null_score_diff_threshold",
|
644 |
+
type=float,
|
645 |
+
default=0.0,
|
646 |
+
help="If null_score - best_non_null is greater than the threshold predict null.",
|
647 |
+
)
|
648 |
+
|
649 |
+
parser.add_argument(
|
650 |
+
"--max_seq_length",
|
651 |
+
default=384,
|
652 |
+
type=int,
|
653 |
+
help="The maximum total input sequence length after WordPiece tokenization. Sequences "
|
654 |
+
"longer than this will be truncated, and sequences shorter than this will be padded.",
|
655 |
+
)
|
656 |
+
parser.add_argument(
|
657 |
+
"--doc_stride",
|
658 |
+
default=128,
|
659 |
+
type=int,
|
660 |
+
help="When splitting up a long document into chunks, how much stride to take between chunks.",
|
661 |
+
)
|
662 |
+
parser.add_argument(
|
663 |
+
"--max_query_length",
|
664 |
+
default=64,
|
665 |
+
type=int,
|
666 |
+
help="The maximum number of tokens for the question. Questions longer than this will "
|
667 |
+
"be truncated to this length.",
|
668 |
+
)
|
669 |
+
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
|
670 |
+
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
|
671 |
+
parser.add_argument(
|
672 |
+
"--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step."
|
673 |
+
)
|
674 |
+
parser.add_argument(
|
675 |
+
"--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
|
676 |
+
)
|
677 |
+
|
678 |
+
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
|
679 |
+
parser.add_argument(
|
680 |
+
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
|
681 |
+
)
|
682 |
+
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
|
683 |
+
parser.add_argument(
|
684 |
+
"--gradient_accumulation_steps",
|
685 |
+
type=int,
|
686 |
+
default=1,
|
687 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
688 |
+
)
|
689 |
+
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
|
690 |
+
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
|
691 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
692 |
+
parser.add_argument(
|
693 |
+
"--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
|
694 |
+
)
|
695 |
+
parser.add_argument(
|
696 |
+
"--max_steps",
|
697 |
+
default=-1,
|
698 |
+
type=int,
|
699 |
+
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
|
700 |
+
)
|
701 |
+
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
|
702 |
+
parser.add_argument(
|
703 |
+
"--n_best_size",
|
704 |
+
default=20,
|
705 |
+
type=int,
|
706 |
+
help="The total number of n-best predictions to generate in the nbest_predictions.json output file.",
|
707 |
+
)
|
708 |
+
parser.add_argument(
|
709 |
+
"--max_answer_length",
|
710 |
+
default=30,
|
711 |
+
type=int,
|
712 |
+
help="The maximum length of an answer that can be generated. This is needed because the start "
|
713 |
+
"and end predictions are not conditioned on one another.",
|
714 |
+
)
|
715 |
+
parser.add_argument(
|
716 |
+
"--verbose_logging",
|
717 |
+
action="store_true",
|
718 |
+
help="If true, all of the warnings related to data processing will be printed. "
|
719 |
+
"A number of warnings are expected for a normal SQuAD evaluation.",
|
720 |
+
)
|
721 |
+
parser.add_argument(
|
722 |
+
"--lang_id",
|
723 |
+
default=0,
|
724 |
+
type=int,
|
725 |
+
help="language id of input for language-specific xlm models (see tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)",
|
726 |
+
)
|
727 |
+
|
728 |
+
parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
|
729 |
+
parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
|
730 |
+
parser.add_argument(
|
731 |
+
"--eval_all_checkpoints",
|
732 |
+
action="store_true",
|
733 |
+
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
|
734 |
+
)
|
735 |
+
parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
|
736 |
+
parser.add_argument(
|
737 |
+
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
|
738 |
+
)
|
739 |
+
parser.add_argument(
|
740 |
+
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
|
741 |
+
)
|
742 |
+
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
|
743 |
+
|
744 |
+
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
|
745 |
+
parser.add_argument(
|
746 |
+
"--fp16",
|
747 |
+
action="store_true",
|
748 |
+
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
|
749 |
+
)
|
750 |
+
parser.add_argument(
|
751 |
+
"--fp16_opt_level",
|
752 |
+
type=str,
|
753 |
+
default="O1",
|
754 |
+
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
|
755 |
+
"See details at https://nvidia.github.io/apex/amp.html",
|
756 |
+
)
|
757 |
+
parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
|
758 |
+
parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
|
759 |
+
|
760 |
+
parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features")
|
761 |
+
args = parser.parse_args()
|
762 |
+
|
763 |
+
if args.doc_stride >= args.max_seq_length - args.max_query_length:
|
764 |
+
logger.warning(
|
765 |
+
"WARNING - You've set a doc stride which may be superior to the document length in some "
|
766 |
+
"examples. This could result in errors when building features from the examples. Please reduce the doc "
|
767 |
+
"stride or increase the maximum length to ensure the features are correctly built."
|
768 |
+
)
|
769 |
+
|
770 |
+
if (
|
771 |
+
os.path.exists(args.output_dir)
|
772 |
+
and os.listdir(args.output_dir)
|
773 |
+
and args.do_train
|
774 |
+
and not args.overwrite_output_dir
|
775 |
+
):
|
776 |
+
raise ValueError(
|
777 |
+
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
|
778 |
+
args.output_dir
|
779 |
+
)
|
780 |
+
)
|
781 |
+
|
782 |
+
# Setup distant debugging if needed
|
783 |
+
if args.server_ip and args.server_port:
|
784 |
+
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
|
785 |
+
import ptvsd
|
786 |
+
|
787 |
+
print("Waiting for debugger attach")
|
788 |
+
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
|
789 |
+
ptvsd.wait_for_attach()
|
790 |
+
|
791 |
+
# Setup CUDA, GPU & distributed training
|
792 |
+
if args.local_rank == -1 or args.no_cuda:
|
793 |
+
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
794 |
+
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
|
795 |
+
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
|
796 |
+
torch.cuda.set_device(args.local_rank)
|
797 |
+
device = torch.device("cuda", args.local_rank)
|
798 |
+
torch.distributed.init_process_group(backend="nccl")
|
799 |
+
args.n_gpu = 1
|
800 |
+
args.device = device
|
801 |
+
|
802 |
+
# Setup logging
|
803 |
+
logging.basicConfig(
|
804 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
805 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
806 |
+
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
|
807 |
+
)
|
808 |
+
logger.warning(
|
809 |
+
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
|
810 |
+
args.local_rank,
|
811 |
+
device,
|
812 |
+
args.n_gpu,
|
813 |
+
bool(args.local_rank != -1),
|
814 |
+
args.fp16,
|
815 |
+
)
|
816 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
817 |
+
if is_main_process(args.local_rank):
|
818 |
+
transformers.utils.logging.set_verbosity_info()
|
819 |
+
transformers.utils.logging.enable_default_handler()
|
820 |
+
transformers.utils.logging.enable_explicit_format()
|
821 |
+
# Set seed
|
822 |
+
set_seed(args)
|
823 |
+
|
824 |
+
# Load pretrained model and tokenizer
|
825 |
+
if args.local_rank not in [-1, 0]:
|
826 |
+
# Make sure only the first process in distributed training will download model & vocab
|
827 |
+
torch.distributed.barrier()
|
828 |
+
|
829 |
+
args.model_type = args.model_type.lower()
|
830 |
+
config = AutoConfig.from_pretrained(
|
831 |
+
args.config_name if args.config_name else args.model_name_or_path,
|
832 |
+
cache_dir=args.cache_dir if args.cache_dir else None,
|
833 |
+
)
|
834 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
835 |
+
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
|
836 |
+
do_lower_case=args.do_lower_case,
|
837 |
+
cache_dir=args.cache_dir if args.cache_dir else None,
|
838 |
+
use_fast=False, # SquadDataset is not compatible with Fast tokenizers which have a smarter overflow handeling
|
839 |
+
)
|
840 |
+
model = AutoModelForQuestionAnswering.from_pretrained(
|
841 |
+
args.model_name_or_path,
|
842 |
+
from_tf=bool(".ckpt" in args.model_name_or_path),
|
843 |
+
config=config,
|
844 |
+
cache_dir=args.cache_dir if args.cache_dir else None,
|
845 |
+
)
|
846 |
+
|
847 |
+
if args.local_rank == 0:
|
848 |
+
# Make sure only the first process in distributed training will download model & vocab
|
849 |
+
torch.distributed.barrier()
|
850 |
+
|
851 |
+
model.to(args.device)
|
852 |
+
|
853 |
+
logger.info("Training/evaluation parameters %s", args)
|
854 |
+
|
855 |
+
# Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
|
856 |
+
# Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
|
857 |
+
# remove the need for this code, but it is still valid.
|
858 |
+
if args.fp16:
|
859 |
+
try:
|
860 |
+
import apex
|
861 |
+
|
862 |
+
apex.amp.register_half_function(torch, "einsum")
|
863 |
+
except ImportError:
|
864 |
+
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
|
865 |
+
|
866 |
+
# Training
|
867 |
+
if args.do_train:
|
868 |
+
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
|
869 |
+
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
|
870 |
+
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
|
871 |
+
|
872 |
+
# Save the trained model and the tokenizer
|
873 |
+
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
|
874 |
+
logger.info("Saving model checkpoint to %s", args.output_dir)
|
875 |
+
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
|
876 |
+
# They can then be reloaded using `from_pretrained()`
|
877 |
+
# Take care of distributed/parallel training
|
878 |
+
model_to_save = model.module if hasattr(model, "module") else model
|
879 |
+
model_to_save.save_pretrained(args.output_dir)
|
880 |
+
tokenizer.save_pretrained(args.output_dir)
|
881 |
+
|
882 |
+
# Good practice: save your training arguments together with the trained model
|
883 |
+
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
|
884 |
+
|
885 |
+
# Load a trained model and vocabulary that you have fine-tuned
|
886 |
+
model = AutoModelForQuestionAnswering.from_pretrained(args.output_dir) # , force_download=True)
|
887 |
+
|
888 |
+
# SquadDataset is not compatible with Fast tokenizers which have a smarter overflow handeling
|
889 |
+
# So we use use_fast=False here for now until Fast-tokenizer-compatible-examples are out
|
890 |
+
tokenizer = AutoTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case, use_fast=False)
|
891 |
+
model.to(args.device)
|
892 |
+
|
893 |
+
# Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
|
894 |
+
results = {}
|
895 |
+
if args.do_eval and args.local_rank in [-1, 0]:
|
896 |
+
if args.do_train:
|
897 |
+
logger.info("Loading checkpoints saved during training for evaluation")
|
898 |
+
checkpoints = [args.output_dir]
|
899 |
+
if args.eval_all_checkpoints:
|
900 |
+
checkpoints = list(
|
901 |
+
os.path.dirname(c)
|
902 |
+
for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
|
903 |
+
)
|
904 |
+
|
905 |
+
else:
|
906 |
+
logger.info("Loading checkpoint %s for evaluation", args.model_name_or_path)
|
907 |
+
checkpoints = [args.model_name_or_path]
|
908 |
+
|
909 |
+
logger.info("Evaluate the following checkpoints: %s", checkpoints)
|
910 |
+
|
911 |
+
for checkpoint in checkpoints:
|
912 |
+
# Reload the model
|
913 |
+
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
|
914 |
+
model = AutoModelForQuestionAnswering.from_pretrained(checkpoint) # , force_download=True)
|
915 |
+
model.to(args.device)
|
916 |
+
|
917 |
+
# Evaluate
|
918 |
+
result = evaluate(args, model, tokenizer, prefix=global_step)
|
919 |
+
|
920 |
+
result = dict((k + ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items())
|
921 |
+
results.update(result)
|
922 |
+
|
923 |
+
logger.info("Results: {}".format(results))
|
924 |
+
|
925 |
+
return results
|
926 |
+
|
927 |
+
|
928 |
+
if __name__ == "__main__":
|
929 |
+
main()
|