mini1013 commited on
Commit
b4676b4
·
verified ·
1 Parent(s): 50add9e

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: klue/roberta-base
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 닥터 브로너스 그린티 퓨어 캐스틸 바솝 140g 3개 옵션없음 (주)엠아이인터내셔널
14
+ - text: 에치앤지 코스노리 아이래쉬 틴팅 세럼 9g 옵션없음 탑서비스
15
+ - text: '[VT] 피디알엔 리들샷 옵션없음 (주)지에스리테일 홈쇼핑'
16
+ - text: 1950년대 영국체어 옵션없음 4Umall (포유몰)
17
+ - text: Tip Top 팁탑 포마드 오리지널 120g [한정수량할인] 바르노 포마드_01 바르노 오리지널(수성) 주식회사 설빈
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with klue/roberta-base
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: metric
31
+ value: 0.8909090909090909
32
+ name: Metric
33
+ ---
34
+
35
+ # SetFit with klue/roberta-base
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [klue/roberta-base](https://huggingface.co/klue/roberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [klue/roberta-base](https://huggingface.co/klue/roberta-base)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 13 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 1 | <ul><li>'바디콕 발톱솔루션 문제성 발톱 영양제 손발톱 강화제 진정 손톱 케어제 큐어유 [갯수한정] 3개월분 ⭐패밀리 패키지⭐ 주식회사 씨앤알커머스'</li><li>'요거트젤 젤라또 파스텔시럽젤 9종 [단품] S29 네일컴퍼니'</li><li>'그라시아 크레이지 탑 띠크 25g 크레이지탑젤 스탠다드 40g 지구글로벌 스토어'</li></ul> |
66
+ | 6 | <ul><li>'래쉬홀릭 3D 속눈썹 영양제 옵션없음 뷰티맨이야'</li><li>'키치캐치 치키 컬러 밤 (8 Colors) PLAYFUL 주식회사 링크스'</li><li>'입큰 플러피 듀얼 립 펜슬 라이너 1호 미닝피치 X 2개 옵션없음 비엔엠코리아'</li></ul> |
67
+ | 8 | <ul><li>'에스트라 아스트라 아토베리어 로션 MD 200ml 1개 옵션없음 케이니크'</li><li>'Alpinestars 넥 튜브블랙 레드 플루오 블랙 레드_One 사이즈 브릭스썬'</li><li>'테라로직 정상가 38000원 펜타마이드 리얼 브라이트닝 10C 앰플 50ml 옵션없음 엠비즈에이'</li></ul> |
68
+ | 2 | <ul><li>'토시도 아이존 시트 20매 / 면 눈가 전용 아이 시트지 부직포 옵션없음 페이즈'</li><li>'[NEW] 해서린 포어 멜팅 와이드 슈링코팩 4매 옵션없음 휴리빙'</li><li>'하비언니X노모크 수면팩 48구 주식회사 디스토리'</li></ul> |
69
+ | 7 | <ul><li>'바나나보트 에프터썬 알로에젤 수딩젤 473ml 3개입 바나나보트 알로에젤 473ml/3개입 스테디세일러'</li><li>'코레스 코코넛-아몬드 키즈 컴포트 썬 스프레이 SPF50 150ml / KORRES 옵션없음 Minsun Kim'</li><li>'바이오가 수딩젤 피토스핑고신 스쿠알렌 글루세린 250ML 1개 바이오가 수딩젤 피토스핑고신 250ML 1�� 레몽샵'</li></ul> |
70
+ | 5 | <ul><li>'쌍테 누드스킨 슬림형 쌍커풀테이프 쌍커플테이프 쌍거풀테이프 옵션없음 셀렉트림'</li><li>'새로핸즈 스프레이 투명 유리 검정캡 10ml (스크류타입) 옵션없음 (주)새로핸즈'</li><li>'원씽 원형 빅 패드 70매입 옵션없음 (주)원씽'</li></ul> |
71
+ | 3 | <ul><li>'Lush Silky Underwear Dusting Powder 러쉬 실키 언더웨어 더스트 더스팅 파우더 60g 2팩 옵션없음 이펄 Effal2'</li><li>'다이나믹스킨 왁싱재료 왁싱부직포 100매 무슬린천 옵션없음 코리안집시'</li><li>'누리네 때비누 황토/쑥 누리네 때비누 황토 주식회사 억조상사'</li></ul> |
72
+ | 0 | <ul><li>'니베아 립케어 립밤 5.5ml 모이스처 옵션없음 삼성메디원'</li><li>'라끄베르 옴므 리:차지 2종세트 옵션없음 뷰티트리'</li><li>'피지오겔 DMT 크림150 옵션없음 (주)지에스리테일 홈쇼핑'</li></ul> |
73
+ | 4 | <ul><li>'에이지투웨니스 블랙 골드 팩트 본품+리필+커피쿠폰 23호 미디움 베이지+커피쿠폰 주식회사 아이홀릭'</li><li>'입생로랑 NEW 메쉬 핑크 쿠션 12g 리필 B25 옵션없음 쇼핑사거리'</li><li>'힌스 세컨 스킨 메쉬 매트 쿠션(본품+리필) [본품+리필] 17 포슬린 하늘바다너머'</li></ul> |
74
+ | 9 | <ul><li>'[본사제품최신제조] 인셀덤 엑티브 클린업 파우더 90g 폼 클렌징 가루 효소 세안제 옵션없음 미라클'</li><li>'[제로이드] 인텐시브 페이셜 크림 클렌저 180ml 옵션없음 주식회사 트리티스'</li><li>'라미 라피네 야채 딥 300ml 옵션없음 행복이'</li></ul> |
75
+ | 11 | <ul><li>'미쟝센 스타일 케어 프로 스트롱 홀드 스프레이 300ml/ (2개이상 복수구매시 추가할인) 옵션없음 다판다'</li><li>'웰라프로페셔널 일루미나 컬러 염색약 80g 산화제미포함 일루미나산화제미포함_웰라 일루미나 블로썸-6 [80g] 티비'</li><li>'아모스 에센셜 시스테인 펌 150ml + 150ml 시스테인펌제 옵션없음 티비'</li></ul> |
76
+ | 12 | <ul><li>'이브로셰 라즈베리 헤어식초 400ml 8750943 옵션없음 비티엘파트너'</li><li>'이브로쉐 리프레쉬 헤어식초(모링가) 400ml 옵션없음 스루치로 유한책임회사'</li><li>'[우신] R&B(알앤비) 아로마 pH 컨트롤 500ml 피에이치 컨트롤 컬강화제 옵션없음 송이뷰티'</li></ul> |
77
+ | 10 | <ul><li>'지미추 플로럴 EDT 40ml+랜덤쇼핑백 옵션없음 아이스큐브'</li><li>'라벤더 프렌치 유기농 에센셜오일 100ml 대용량 고농축 허브 아로마오일 불면증에좋은 숙면 테라피 디퓨저 옵션없음 마이소르 주식회사'</li><li>'조말론 블랙베리 앤 베이 오 드 코롱 50ml 옵션없음 블랑블랑'</li></ul> |
78
+
79
+ ## Evaluation
80
+
81
+ ### Metrics
82
+ | Label | Metric |
83
+ |:--------|:-------|
84
+ | **all** | 0.8909 |
85
+
86
+ ## Uses
87
+
88
+ ### Direct Use for Inference
89
+
90
+ First install the SetFit library:
91
+
92
+ ```bash
93
+ pip install setfit
94
+ ```
95
+
96
+ Then you can load this model and run inference.
97
+
98
+ ```python
99
+ from setfit import SetFitModel
100
+
101
+ # Download from the 🤗 Hub
102
+ model = SetFitModel.from_pretrained("setfit_model_id")
103
+ # Run inference
104
+ preds = model("1950년대 영국체어 옵션없음 4Umall (포유몰)")
105
+ ```
106
+
107
+ <!--
108
+ ### Downstream Use
109
+
110
+ *List how someone could finetune this model on their own dataset.*
111
+ -->
112
+
113
+ <!--
114
+ ### Out-of-Scope Use
115
+
116
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
117
+ -->
118
+
119
+ <!--
120
+ ## Bias, Risks and Limitations
121
+
122
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
123
+ -->
124
+
125
+ <!--
126
+ ### Recommendations
127
+
128
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
129
+ -->
130
+
131
+ ## Training Details
132
+
133
+ ### Training Set Metrics
134
+ | Training set | Min | Median | Max |
135
+ |:-------------|:----|:-------|:----|
136
+ | Word count | 3 | 9.8008 | 33 |
137
+
138
+ | Label | Training Sample Count |
139
+ |:------|:----------------------|
140
+ | 0 | 1281 |
141
+ | 1 | 582 |
142
+ | 2 | 681 |
143
+ | 3 | 1592 |
144
+ | 4 | 587 |
145
+ | 5 | 706 |
146
+ | 6 | 1206 |
147
+ | 7 | 587 |
148
+ | 8 | 1081 |
149
+ | 9 | 1077 |
150
+ | 10 | 224 |
151
+ | 11 | 567 |
152
+ | 12 | 699 |
153
+
154
+ ### Training Hyperparameters
155
+ - batch_size: (512, 512)
156
+ - num_epochs: (10, 10)
157
+ - max_steps: -1
158
+ - sampling_strategy: oversampling
159
+ - num_iterations: 20
160
+ - body_learning_rate: (2e-05, 2e-05)
161
+ - head_learning_rate: 2e-05
162
+ - loss: CosineSimilarityLoss
163
+ - distance_metric: cosine_distance
164
+ - margin: 0.25
165
+ - end_to_end: False
166
+ - use_amp: False
167
+ - warmup_proportion: 0.1
168
+ - seed: 42
169
+ - eval_max_steps: -1
170
+ - load_best_model_at_end: False
171
+
172
+ ### Training Results
173
+ | Epoch | Step | Training Loss | Validation Loss |
174
+ |:------:|:----:|:-------------:|:---------------:|
175
+ | 0.0012 | 1 | 0.4342 | - |
176
+ | 0.0588 | 50 | 0.3693 | - |
177
+ | 0.1176 | 100 | 0.3229 | - |
178
+ | 0.1765 | 150 | 0.2888 | - |
179
+ | 0.2353 | 200 | 0.2413 | - |
180
+ | 0.2941 | 250 | 0.2136 | - |
181
+ | 0.3529 | 300 | 0.1925 | - |
182
+ | 0.4118 | 350 | 0.1672 | - |
183
+ | 0.4706 | 400 | 0.1529 | - |
184
+ | 0.5294 | 450 | 0.13 | - |
185
+ | 0.5882 | 500 | 0.1112 | - |
186
+ | 0.6471 | 550 | 0.0979 | - |
187
+ | 0.7059 | 600 | 0.0873 | - |
188
+ | 0.7647 | 650 | 0.0575 | - |
189
+ | 0.8235 | 700 | 0.0482 | - |
190
+ | 0.8824 | 750 | 0.0729 | - |
191
+ | 0.9412 | 800 | 0.0411 | - |
192
+ | 1.0 | 850 | 0.0542 | - |
193
+ | 1.0588 | 900 | 0.0626 | - |
194
+ | 1.1176 | 950 | 0.0385 | - |
195
+ | 1.1765 | 1000 | 0.0373 | - |
196
+ | 1.2353 | 1050 | 0.0276 | - |
197
+ | 1.2941 | 1100 | 0.0205 | - |
198
+ | 1.3529 | 1150 | 0.0275 | - |
199
+ | 1.4118 | 1200 | 0.0226 | - |
200
+ | 1.4706 | 1250 | 0.0231 | - |
201
+ | 1.5294 | 1300 | 0.0273 | - |
202
+ | 1.5882 | 1350 | 0.0183 | - |
203
+ | 1.6471 | 1400 | 0.0158 | - |
204
+ | 1.7059 | 1450 | 0.0112 | - |
205
+ | 1.7647 | 1500 | 0.0068 | - |
206
+ | 1.8235 | 1550 | 0.0098 | - |
207
+ | 1.8824 | 1600 | 0.0047 | - |
208
+ | 1.9412 | 1650 | 0.0053 | - |
209
+ | 2.0 | 1700 | 0.0027 | - |
210
+ | 2.0588 | 1750 | 0.0007 | - |
211
+ | 2.1176 | 1800 | 0.0015 | - |
212
+ | 2.1765 | 1850 | 0.0042 | - |
213
+ | 2.2353 | 1900 | 0.002 | - |
214
+ | 2.2941 | 1950 | 0.0018 | - |
215
+ | 2.3529 | 2000 | 0.0023 | - |
216
+ | 2.4118 | 2050 | 0.0025 | - |
217
+ | 2.4706 | 2100 | 0.0014 | - |
218
+ | 2.5294 | 2150 | 0.0007 | - |
219
+ | 2.5882 | 2200 | 0.0005 | - |
220
+ | 2.6471 | 2250 | 0.0042 | - |
221
+ | 2.7059 | 2300 | 0.0022 | - |
222
+ | 2.7647 | 2350 | 0.0028 | - |
223
+ | 2.8235 | 2400 | 0.0004 | - |
224
+ | 2.8824 | 2450 | 0.0003 | - |
225
+ | 2.9412 | 2500 | 0.0009 | - |
226
+ | 3.0 | 2550 | 0.0002 | - |
227
+ | 3.0588 | 2600 | 0.0011 | - |
228
+ | 3.1176 | 2650 | 0.001 | - |
229
+ | 3.1765 | 2700 | 0.0003 | - |
230
+ | 3.2353 | 2750 | 0.0006 | - |
231
+ | 3.2941 | 2800 | 0.0034 | - |
232
+ | 3.3529 | 2850 | 0.0002 | - |
233
+ | 3.4118 | 2900 | 0.0012 | - |
234
+ | 3.4706 | 2950 | 0.0004 | - |
235
+ | 3.5294 | 3000 | 0.0004 | - |
236
+ | 3.5882 | 3050 | 0.0002 | - |
237
+ | 3.6471 | 3100 | 0.0002 | - |
238
+ | 3.7059 | 3150 | 0.0002 | - |
239
+ | 3.7647 | 3200 | 0.0001 | - |
240
+ | 3.8235 | 3250 | 0.002 | - |
241
+ | 3.8824 | 3300 | 0.0026 | - |
242
+ | 3.9412 | 3350 | 0.0001 | - |
243
+ | 4.0 | 3400 | 0.0001 | - |
244
+ | 4.0588 | 3450 | 0.0001 | - |
245
+ | 4.1176 | 3500 | 0.0003 | - |
246
+ | 4.1765 | 3550 | 0.0001 | - |
247
+ | 4.2353 | 3600 | 0.0005 | - |
248
+ | 4.2941 | 3650 | 0.0002 | - |
249
+ | 4.3529 | 3700 | 0.0003 | - |
250
+ | 4.4118 | 3750 | 0.0001 | - |
251
+ | 4.4706 | 3800 | 0.0025 | - |
252
+ | 4.5294 | 3850 | 0.0003 | - |
253
+ | 4.5882 | 3900 | 0.0003 | - |
254
+ | 4.6471 | 3950 | 0.0002 | - |
255
+ | 4.7059 | 4000 | 0.0005 | - |
256
+ | 4.7647 | 4050 | 0.0002 | - |
257
+ | 4.8235 | 4100 | 0.0022 | - |
258
+ | 4.8824 | 4150 | 0.0001 | - |
259
+ | 4.9412 | 4200 | 0.0001 | - |
260
+ | 5.0 | 4250 | 0.0009 | - |
261
+ | 5.0588 | 4300 | 0.0001 | - |
262
+ | 5.1176 | 4350 | 0.0001 | - |
263
+ | 5.1765 | 4400 | 0.0002 | - |
264
+ | 5.2353 | 4450 | 0.0002 | - |
265
+ | 5.2941 | 4500 | 0.0013 | - |
266
+ | 5.3529 | 4550 | 0.0005 | - |
267
+ | 5.4118 | 4600 | 0.0003 | - |
268
+ | 5.4706 | 4650 | 0.0001 | - |
269
+ | 5.5294 | 4700 | 0.0001 | - |
270
+ | 5.5882 | 4750 | 0.0003 | - |
271
+ | 5.6471 | 4800 | 0.0002 | - |
272
+ | 5.7059 | 4850 | 0.0002 | - |
273
+ | 5.7647 | 4900 | 0.0001 | - |
274
+ | 5.8235 | 4950 | 0.0001 | - |
275
+ | 5.8824 | 5000 | 0.0001 | - |
276
+ | 5.9412 | 5050 | 0.0001 | - |
277
+ | 6.0 | 5100 | 0.0001 | - |
278
+ | 6.0588 | 5150 | 0.0001 | - |
279
+ | 6.1176 | 5200 | 0.0009 | - |
280
+ | 6.1765 | 5250 | 0.0017 | - |
281
+ | 6.2353 | 5300 | 0.0 | - |
282
+ | 6.2941 | 5350 | 0.0016 | - |
283
+ | 6.3529 | 5400 | 0.0001 | - |
284
+ | 6.4118 | 5450 | 0.0004 | - |
285
+ | 6.4706 | 5500 | 0.0001 | - |
286
+ | 6.5294 | 5550 | 0.0011 | - |
287
+ | 6.5882 | 5600 | 0.0001 | - |
288
+ | 6.6471 | 5650 | 0.0016 | - |
289
+ | 6.7059 | 5700 | 0.0008 | - |
290
+ | 6.7647 | 5750 | 0.0001 | - |
291
+ | 6.8235 | 5800 | 0.0 | - |
292
+ | 6.8824 | 5850 | 0.0 | - |
293
+ | 6.9412 | 5900 | 0.0001 | - |
294
+ | 7.0 | 5950 | 0.0001 | - |
295
+ | 7.0588 | 6000 | 0.0001 | - |
296
+ | 7.1176 | 6050 | 0.0001 | - |
297
+ | 7.1765 | 6100 | 0.0001 | - |
298
+ | 7.2353 | 6150 | 0.0 | - |
299
+ | 7.2941 | 6200 | 0.0001 | - |
300
+ | 7.3529 | 6250 | 0.0 | - |
301
+ | 7.4118 | 6300 | 0.0008 | - |
302
+ | 7.4706 | 6350 | 0.0 | - |
303
+ | 7.5294 | 6400 | 0.0 | - |
304
+ | 7.5882 | 6450 | 0.0 | - |
305
+ | 7.6471 | 6500 | 0.0 | - |
306
+ | 7.7059 | 6550 | 0.0004 | - |
307
+ | 7.7647 | 6600 | 0.0 | - |
308
+ | 7.8235 | 6650 | 0.0 | - |
309
+ | 7.8824 | 6700 | 0.0 | - |
310
+ | 7.9412 | 6750 | 0.0001 | - |
311
+ | 8.0 | 6800 | 0.0 | - |
312
+ | 8.0588 | 6850 | 0.0 | - |
313
+ | 8.1176 | 6900 | 0.0 | - |
314
+ | 8.1765 | 6950 | 0.0 | - |
315
+ | 8.2353 | 7000 | 0.0 | - |
316
+ | 8.2941 | 7050 | 0.0001 | - |
317
+ | 8.3529 | 7100 | 0.0001 | - |
318
+ | 8.4118 | 7150 | 0.0 | - |
319
+ | 8.4706 | 7200 | 0.0 | - |
320
+ | 8.5294 | 7250 | 0.0 | - |
321
+ | 8.5882 | 7300 | 0.0 | - |
322
+ | 8.6471 | 7350 | 0.0 | - |
323
+ | 8.7059 | 7400 | 0.0 | - |
324
+ | 8.7647 | 7450 | 0.0 | - |
325
+ | 8.8235 | 7500 | 0.0 | - |
326
+ | 8.8824 | 7550 | 0.0 | - |
327
+ | 8.9412 | 7600 | 0.0 | - |
328
+ | 9.0 | 7650 | 0.0 | - |
329
+ | 9.0588 | 7700 | 0.0 | - |
330
+ | 9.1176 | 7750 | 0.0 | - |
331
+ | 9.1765 | 7800 | 0.0 | - |
332
+ | 9.2353 | 7850 | 0.0 | - |
333
+ | 9.2941 | 7900 | 0.0002 | - |
334
+ | 9.3529 | 7950 | 0.0 | - |
335
+ | 9.4118 | 8000 | 0.0 | - |
336
+ | 9.4706 | 8050 | 0.0 | - |
337
+ | 9.5294 | 8100 | 0.0 | - |
338
+ | 9.5882 | 8150 | 0.0 | - |
339
+ | 9.6471 | 8200 | 0.0 | - |
340
+ | 9.7059 | 8250 | 0.0 | - |
341
+ | 9.7647 | 8300 | 0.0 | - |
342
+ | 9.8235 | 8350 | 0.0001 | - |
343
+ | 9.8824 | 8400 | 0.0 | - |
344
+ | 9.9412 | 8450 | 0.0 | - |
345
+ | 10.0 | 8500 | 0.0 | - |
346
+
347
+ ### Framework Versions
348
+ - Python: 3.10.12
349
+ - SetFit: 1.1.0.dev0
350
+ - Sentence Transformers: 3.1.1
351
+ - Transformers: 4.45.1
352
+ - PyTorch: 2.4.0+cu121
353
+ - Datasets: 2.20.0
354
+ - Tokenizers: 0.20.0
355
+
356
+ ## Citation
357
+
358
+ ### BibTeX
359
+ ```bibtex
360
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
361
+ doi = {10.48550/ARXIV.2209.11055},
362
+ url = {https://arxiv.org/abs/2209.11055},
363
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
364
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
365
+ title = {Efficient Few-Shot Learning Without Prompts},
366
+ publisher = {arXiv},
367
+ year = {2022},
368
+ copyright = {Creative Commons Attribution 4.0 International}
369
+ }
370
+ ```
371
+
372
+ <!--
373
+ ## Glossary
374
+
375
+ *Clearly define terms in order to be accessible across audiences.*
376
+ -->
377
+
378
+ <!--
379
+ ## Model Card Authors
380
+
381
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
382
+ -->
383
+
384
+ <!--
385
+ ## Model Card Contact
386
+
387
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
388
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/setfit_robeta_base_s_domain",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.45.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af9d5e77f1082baee6c1a4be2931e9b5f86cc9c976be71a6629fb8597f241637
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:400eb1a4e1c6288a2ae0eb8e287456cbbc5fef8fa13a0d284a860da90af94c47
3
+ size 80927
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff