mini1013 commited on
Commit
9e88ece
·
verified ·
1 Parent(s): a5e23b2

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,377 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 필리밀리 데일리 아이래쉬 대용량 (1~2호) 데일리 아이래쉬2호(3set) (#M)홈>미용소품>얼굴소품>속눈썹 OLIVEYOUNG
14
+ > 미용소품 > 얼굴소품 > 전체
15
+ - text: 더툴랩 더스타일래쉬 4종리얼/내츄럴/볼륨/맥스 중 택1 003 볼륨 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 >
16
+ 속눈썹관리 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 속눈썹관리
17
+ - text: 아리따움 아이돌래쉬 속눈썹 베이직/프리미엄/대용량 베이직 2호 쁘띠 볼륨 (#M)홈>뷰티 Naverstore > 화장품/미용 > 뷰티소품
18
+ > 아이소품 > 속눈썹/속눈썹펌제
19
+ - text: 더툴랩 속눈썹 해피림 아이래쉬 내추럴 가닥속눈썹 1pack 11.5N (#M)홈>화장품/미용>뷰티소품>아이소품>속눈썹/속눈썹펌제 Naverstore
20
+ > 화장품/미용 > 뷰티소품 > 아이소품 > 속눈썹/속눈썹펌제
21
+ - text: '[에뛰드] 마이뷰티툴 속눈썹 1ea 4호 홈>화장소품;홈>TOOL;(#M)홈>배송비 절약템 🛒 Naverstore > 화장품/미용
22
+ > 뷰티소품 > 아이소품 > 속눈썹/속눈썹펌제'
23
+ inference: true
24
+ model-index:
25
+ - name: SetFit with mini1013/master_domain
26
+ results:
27
+ - task:
28
+ type: text-classification
29
+ name: Text Classification
30
+ dataset:
31
+ name: Unknown
32
+ type: unknown
33
+ split: test
34
+ metrics:
35
+ - type: accuracy
36
+ value: 0.9726224783861671
37
+ name: Accuracy
38
+ ---
39
+
40
+ # SetFit with mini1013/master_domain
41
+
42
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
43
+
44
+ The model has been trained using an efficient few-shot learning technique that involves:
45
+
46
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
47
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
48
+
49
+ ## Model Details
50
+
51
+ ### Model Description
52
+ - **Model Type:** SetFit
53
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
54
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
55
+ - **Maximum Sequence Length:** 512 tokens
56
+ - **Number of Classes:** 5 classes
57
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
58
+ <!-- - **Language:** Unknown -->
59
+ <!-- - **License:** Unknown -->
60
+
61
+ ### Model Sources
62
+
63
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
64
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
65
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
66
+
67
+ ### Model Labels
68
+ | Label | Examples |
69
+ |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
70
+ | 4 | <ul><li>'6줄리뉴얼 엘스몰 대용량 A형속눈썹 인조속눈썹 연장부분아이돌가닥속눈썹 E형_8-8-9-9-10-10mm 홈>화장품/미용>뷰티소품>아이소품>속눈썹/속눈썹펌제;(#M)홈>속눈썹 상품 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 속눈썹/속눈썹펌제'</li><li>'[에뛰드] 마이뷰티툴 속눈썹 1ea 5호 홈>화장소품;홈>TOOL;(#M)홈>배송비 절약템 🛒 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 속눈썹/속눈썹펌제'</li><li>'에뛰드하우스 마이뷰티툴 속눈썹 6종/인조속눈썹 6호 볼륨 업 (#M)11st>뷰티소품>메이크업소품>메이크업소품 11st > 뷰티 > 뷰티소품 > 메이크업소품'</li></ul> |
71
+ | 1 | <ul><li>'트위저맨 Studio Collection 브로우 쉐이핑 가위 브러쉬 NEW 정품 LotteOn > 뷰티 > 메이크업 > 메이크업세트 LotteOn > 뷰티 > 메이크업 > 메이크업세트'</li><li>'트위저맨 Tweezerman 스테인리스 브��우 쉐이핑 가위 및 브러시 521626 (#M)홈>화장품/미용>뷰티소품>헤어소품>미용가위 Naverstore > 화장품/미용 > 뷰티소품 > 헤어소품 > 미용가위'</li><li>'트위저맨 스테인리스 브로우 셰이핑 시져 브러쉬 70238 LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 베이스/프라이머 LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 베이스/프라이머'</li></ul> |
72
+ | 0 | <ul><li>'BL 옵티모 글루 속눈썹 연장 글루 접착제 5g (#M)홈>속눈썹펌&연장🎀>속눈썹연장글루&리무버 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 기타아이소품'</li><li>'필리밀리 속눈썹 접착제 (블랙) 필리밀리 속눈썹 접착제 (블랙) 홈>미용소품>얼굴소품>속눈썹;(#M)홈>미용소품>아이>속눈썹/쌍꺼풀 OLIVEYOUNG > 미용소품 > 아이 > 속눈썹/쌍꺼풀'</li><li>'에뛰드하우스 마이뷰티툴 쌍꺼풀 액속눈썹 접착제 MinSellAmount (#M)화장품/향수>이미용소품>쌍꺼풀 Gmarket > 뷰티 > 화장품/향수 > 이미용소품 > 쌍꺼풀'</li></ul> |
73
+ | 2 | <ul><li>'Tweezerman 로즈 골드 클래식 속눈썹 뷰러 1035-RGR104536 (#M)홈>화장품/미용>뷰티소품>아이소품>눈썹칼 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 눈썹칼'</li><li>'크리스챤 디올 디올 백스테이지 아이래쉬 컬러 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 브러쉬 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 브러쉬'</li><li>'[CHANEL] 르 르쿠르브 실 드 샤넬 (속눈썹 뷰러/ 선물포장가능) (#M)홈>화장품/미용>뷰티소품>아이소품>뷰러 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 뷰러'</li></ul> |
74
+ | 3 | <ul><li>'e.l.f. 듀얼 펜슬 샤프너 3세트 (#M)쿠팡 홈>뷰티>뷰티소품>아이소품>족집게/샤프너 Coupang > 뷰티 > 뷰티소품 > 아이소품'</li><li>'샤프너 펜슬 단품없음 LotteOn > 뷰티 > 뷰티기기 > 액세서리/소모품 LotteOn > 뷰티 > 뷰티기기 > 액세서리/소모품'</li><li>'샤프너 펜슬 ssg > 뷰티 > 미용기기/소품 > 거울/용기/기타소품 ssg > 뷰티 > 미용기기/소품 > 거울/용기/기타소품'</li></ul> |
75
+
76
+ ## Evaluation
77
+
78
+ ### Metrics
79
+ | Label | Accuracy |
80
+ |:--------|:---------|
81
+ | **all** | 0.9726 |
82
+
83
+ ## Uses
84
+
85
+ ### Direct Use for Inference
86
+
87
+ First install the SetFit library:
88
+
89
+ ```bash
90
+ pip install setfit
91
+ ```
92
+
93
+ Then you can load this model and run inference.
94
+
95
+ ```python
96
+ from setfit import SetFitModel
97
+
98
+ # Download from the 🤗 Hub
99
+ model = SetFitModel.from_pretrained("mini1013/master_cate_top_bt6_3_test_flat")
100
+ # Run inference
101
+ preds = model("필리밀리 데일리 아이래쉬 대용량 (1~2호) 데일리 아이래쉬2호(3set) (#M)홈>미용소품>얼굴소품>속눈썹 OLIVEYOUNG > 미용소품 > 얼굴소품 > 전체")
102
+ ```
103
+
104
+ <!--
105
+ ### Downstream Use
106
+
107
+ *List how someone could finetune this model on their own dataset.*
108
+ -->
109
+
110
+ <!--
111
+ ### Out-of-Scope Use
112
+
113
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
114
+ -->
115
+
116
+ <!--
117
+ ## Bias, Risks and Limitations
118
+
119
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
120
+ -->
121
+
122
+ <!--
123
+ ### Recommendations
124
+
125
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
126
+ -->
127
+
128
+ ## Training Details
129
+
130
+ ### Training Set Metrics
131
+ | Training set | Min | Median | Max |
132
+ |:-------------|:----|:--------|:----|
133
+ | Word count | 13 | 19.3591 | 47 |
134
+
135
+ | Label | Training Sample Count |
136
+ |:------|:----------------------|
137
+ | 0 | 50 |
138
+ | 1 | 9 |
139
+ | 2 | 50 |
140
+ | 3 | 22 |
141
+ | 4 | 50 |
142
+
143
+ ### Training Hyperparameters
144
+ - batch_size: (64, 64)
145
+ - num_epochs: (30, 30)
146
+ - max_steps: -1
147
+ - sampling_strategy: oversampling
148
+ - num_iterations: 100
149
+ - body_learning_rate: (2e-05, 1e-05)
150
+ - head_learning_rate: 0.01
151
+ - loss: CosineSimilarityLoss
152
+ - distance_metric: cosine_distance
153
+ - margin: 0.25
154
+ - end_to_end: False
155
+ - use_amp: False
156
+ - warmup_proportion: 0.1
157
+ - l2_weight: 0.01
158
+ - seed: 42
159
+ - eval_max_steps: -1
160
+ - load_best_model_at_end: False
161
+
162
+ ### Training Results
163
+ | Epoch | Step | Training Loss | Validation Loss |
164
+ |:-------:|:----:|:-------------:|:---------------:|
165
+ | 0.0035 | 1 | 0.4429 | - |
166
+ | 0.1767 | 50 | 0.4197 | - |
167
+ | 0.3534 | 100 | 0.3579 | - |
168
+ | 0.5300 | 150 | 0.2926 | - |
169
+ | 0.7067 | 200 | 0.2247 | - |
170
+ | 0.8834 | 250 | 0.1077 | - |
171
+ | 1.0601 | 300 | 0.0253 | - |
172
+ | 1.2367 | 350 | 0.0025 | - |
173
+ | 1.4134 | 400 | 0.0016 | - |
174
+ | 1.5901 | 450 | 0.0008 | - |
175
+ | 1.7668 | 500 | 0.0005 | - |
176
+ | 1.9435 | 550 | 0.0002 | - |
177
+ | 2.1201 | 600 | 0.0002 | - |
178
+ | 2.2968 | 650 | 0.0002 | - |
179
+ | 2.4735 | 700 | 0.0003 | - |
180
+ | 2.6502 | 750 | 0.0002 | - |
181
+ | 2.8269 | 800 | 0.0007 | - |
182
+ | 3.0035 | 850 | 0.0164 | - |
183
+ | 3.1802 | 900 | 0.0009 | - |
184
+ | 3.3569 | 950 | 0.0002 | - |
185
+ | 3.5336 | 1000 | 0.0 | - |
186
+ | 3.7102 | 1050 | 0.0 | - |
187
+ | 3.8869 | 1100 | 0.0 | - |
188
+ | 4.0636 | 1150 | 0.0002 | - |
189
+ | 4.2403 | 1200 | 0.0 | - |
190
+ | 4.4170 | 1250 | 0.0 | - |
191
+ | 4.5936 | 1300 | 0.0 | - |
192
+ | 4.7703 | 1350 | 0.0 | - |
193
+ | 4.9470 | 1400 | 0.0 | - |
194
+ | 5.1237 | 1450 | 0.0 | - |
195
+ | 5.3004 | 1500 | 0.0 | - |
196
+ | 5.4770 | 1550 | 0.0 | - |
197
+ | 5.6537 | 1600 | 0.0 | - |
198
+ | 5.8304 | 1650 | 0.0 | - |
199
+ | 6.0071 | 1700 | 0.0006 | - |
200
+ | 6.1837 | 1750 | 0.0001 | - |
201
+ | 6.3604 | 1800 | 0.0 | - |
202
+ | 6.5371 | 1850 | 0.0 | - |
203
+ | 6.7138 | 1900 | 0.0 | - |
204
+ | 6.8905 | 1950 | 0.0 | - |
205
+ | 7.0671 | 2000 | 0.0 | - |
206
+ | 7.2438 | 2050 | 0.0 | - |
207
+ | 7.4205 | 2100 | 0.0 | - |
208
+ | 7.5972 | 2150 | 0.0 | - |
209
+ | 7.7739 | 2200 | 0.0 | - |
210
+ | 7.9505 | 2250 | 0.0 | - |
211
+ | 8.1272 | 2300 | 0.0 | - |
212
+ | 8.3039 | 2350 | 0.0 | - |
213
+ | 8.4806 | 2400 | 0.0023 | - |
214
+ | 8.6572 | 2450 | 0.0 | - |
215
+ | 8.8339 | 2500 | 0.0 | - |
216
+ | 9.0106 | 2550 | 0.0 | - |
217
+ | 9.1873 | 2600 | 0.0 | - |
218
+ | 9.3640 | 2650 | 0.0 | - |
219
+ | 9.5406 | 2700 | 0.0 | - |
220
+ | 9.7173 | 2750 | 0.0 | - |
221
+ | 9.8940 | 2800 | 0.0 | - |
222
+ | 10.0707 | 2850 | 0.0 | - |
223
+ | 10.2473 | 2900 | 0.0 | - |
224
+ | 10.4240 | 2950 | 0.0 | - |
225
+ | 10.6007 | 3000 | 0.0 | - |
226
+ | 10.7774 | 3050 | 0.0 | - |
227
+ | 10.9541 | 3100 | 0.0 | - |
228
+ | 11.1307 | 3150 | 0.0 | - |
229
+ | 11.3074 | 3200 | 0.0 | - |
230
+ | 11.4841 | 3250 | 0.0 | - |
231
+ | 11.6608 | 3300 | 0.0 | - |
232
+ | 11.8375 | 3350 | 0.0 | - |
233
+ | 12.0141 | 3400 | 0.0 | - |
234
+ | 12.1908 | 3450 | 0.0 | - |
235
+ | 12.3675 | 3500 | 0.0 | - |
236
+ | 12.5442 | 3550 | 0.0 | - |
237
+ | 12.7208 | 3600 | 0.0 | - |
238
+ | 12.8975 | 3650 | 0.0 | - |
239
+ | 13.0742 | 3700 | 0.0 | - |
240
+ | 13.2509 | 3750 | 0.0 | - |
241
+ | 13.4276 | 3800 | 0.0 | - |
242
+ | 13.6042 | 3850 | 0.0 | - |
243
+ | 13.7809 | 3900 | 0.0 | - |
244
+ | 13.9576 | 3950 | 0.0 | - |
245
+ | 14.1343 | 4000 | 0.0 | - |
246
+ | 14.3110 | 4050 | 0.0 | - |
247
+ | 14.4876 | 4100 | 0.0 | - |
248
+ | 14.6643 | 4150 | 0.0 | - |
249
+ | 14.8410 | 4200 | 0.0 | - |
250
+ | 15.0177 | 4250 | 0.0 | - |
251
+ | 15.1943 | 4300 | 0.0 | - |
252
+ | 15.3710 | 4350 | 0.0 | - |
253
+ | 15.5477 | 4400 | 0.0 | - |
254
+ | 15.7244 | 4450 | 0.0 | - |
255
+ | 15.9011 | 4500 | 0.0 | - |
256
+ | 16.0777 | 4550 | 0.0 | - |
257
+ | 16.2544 | 4600 | 0.0 | - |
258
+ | 16.4311 | 4650 | 0.0 | - |
259
+ | 16.6078 | 4700 | 0.0 | - |
260
+ | 16.7845 | 4750 | 0.0 | - |
261
+ | 16.9611 | 4800 | 0.0 | - |
262
+ | 17.1378 | 4850 | 0.0 | - |
263
+ | 17.3145 | 4900 | 0.0 | - |
264
+ | 17.4912 | 4950 | 0.0 | - |
265
+ | 17.6678 | 5000 | 0.0 | - |
266
+ | 17.8445 | 5050 | 0.0 | - |
267
+ | 18.0212 | 5100 | 0.0 | - |
268
+ | 18.1979 | 5150 | 0.0 | - |
269
+ | 18.3746 | 5200 | 0.0 | - |
270
+ | 18.5512 | 5250 | 0.0 | - |
271
+ | 18.7279 | 5300 | 0.0 | - |
272
+ | 18.9046 | 5350 | 0.0 | - |
273
+ | 19.0813 | 5400 | 0.0 | - |
274
+ | 19.2580 | 5450 | 0.0 | - |
275
+ | 19.4346 | 5500 | 0.0 | - |
276
+ | 19.6113 | 5550 | 0.0 | - |
277
+ | 19.7880 | 5600 | 0.0 | - |
278
+ | 19.9647 | 5650 | 0.0 | - |
279
+ | 20.1413 | 5700 | 0.0 | - |
280
+ | 20.3180 | 5750 | 0.0 | - |
281
+ | 20.4947 | 5800 | 0.0 | - |
282
+ | 20.6714 | 5850 | 0.0 | - |
283
+ | 20.8481 | 5900 | 0.0 | - |
284
+ | 21.0247 | 5950 | 0.0 | - |
285
+ | 21.2014 | 6000 | 0.0 | - |
286
+ | 21.3781 | 6050 | 0.0 | - |
287
+ | 21.5548 | 6100 | 0.0 | - |
288
+ | 21.7314 | 6150 | 0.0 | - |
289
+ | 21.9081 | 6200 | 0.0 | - |
290
+ | 22.0848 | 6250 | 0.0 | - |
291
+ | 22.2615 | 6300 | 0.0 | - |
292
+ | 22.4382 | 6350 | 0.0 | - |
293
+ | 22.6148 | 6400 | 0.0 | - |
294
+ | 22.7915 | 6450 | 0.0 | - |
295
+ | 22.9682 | 6500 | 0.0 | - |
296
+ | 23.1449 | 6550 | 0.0 | - |
297
+ | 23.3216 | 6600 | 0.0 | - |
298
+ | 23.4982 | 6650 | 0.0 | - |
299
+ | 23.6749 | 6700 | 0.0 | - |
300
+ | 23.8516 | 6750 | 0.0 | - |
301
+ | 24.0283 | 6800 | 0.0 | - |
302
+ | 24.2049 | 6850 | 0.0 | - |
303
+ | 24.3816 | 6900 | 0.0 | - |
304
+ | 24.5583 | 6950 | 0.0 | - |
305
+ | 24.7350 | 7000 | 0.0 | - |
306
+ | 24.9117 | 7050 | 0.0 | - |
307
+ | 25.0883 | 7100 | 0.0 | - |
308
+ | 25.2650 | 7150 | 0.0 | - |
309
+ | 25.4417 | 7200 | 0.0 | - |
310
+ | 25.6184 | 7250 | 0.0 | - |
311
+ | 25.7951 | 7300 | 0.0 | - |
312
+ | 25.9717 | 7350 | 0.0 | - |
313
+ | 26.1484 | 7400 | 0.0 | - |
314
+ | 26.3251 | 7450 | 0.0 | - |
315
+ | 26.5018 | 7500 | 0.0 | - |
316
+ | 26.6784 | 7550 | 0.0 | - |
317
+ | 26.8551 | 7600 | 0.0 | - |
318
+ | 27.0318 | 7650 | 0.0 | - |
319
+ | 27.2085 | 7700 | 0.0 | - |
320
+ | 27.3852 | 7750 | 0.0 | - |
321
+ | 27.5618 | 7800 | 0.0 | - |
322
+ | 27.7385 | 7850 | 0.0 | - |
323
+ | 27.9152 | 7900 | 0.0 | - |
324
+ | 28.0919 | 7950 | 0.0 | - |
325
+ | 28.2686 | 8000 | 0.0 | - |
326
+ | 28.4452 | 8050 | 0.0 | - |
327
+ | 28.6219 | 8100 | 0.0 | - |
328
+ | 28.7986 | 8150 | 0.0 | - |
329
+ | 28.9753 | 8200 | 0.0 | - |
330
+ | 29.1519 | 8250 | 0.0 | - |
331
+ | 29.3286 | 8300 | 0.0 | - |
332
+ | 29.5053 | 8350 | 0.0 | - |
333
+ | 29.6820 | 8400 | 0.0 | - |
334
+ | 29.8587 | 8450 | 0.0 | - |
335
+
336
+ ### Framework Versions
337
+ - Python: 3.10.12
338
+ - SetFit: 1.1.0
339
+ - Sentence Transformers: 3.3.1
340
+ - Transformers: 4.44.2
341
+ - PyTorch: 2.2.0a0+81ea7a4
342
+ - Datasets: 3.2.0
343
+ - Tokenizers: 0.19.1
344
+
345
+ ## Citation
346
+
347
+ ### BibTeX
348
+ ```bibtex
349
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
350
+ doi = {10.48550/ARXIV.2209.11055},
351
+ url = {https://arxiv.org/abs/2209.11055},
352
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
353
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
354
+ title = {Efficient Few-Shot Learning Without Prompts},
355
+ publisher = {arXiv},
356
+ year = {2022},
357
+ copyright = {Creative Commons Attribution 4.0 International}
358
+ }
359
+ ```
360
+
361
+ <!--
362
+ ## Glossary
363
+
364
+ *Clearly define terms in order to be accessible across audiences.*
365
+ -->
366
+
367
+ <!--
368
+ ## Model Card Authors
369
+
370
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
371
+ -->
372
+
373
+ <!--
374
+ ## Model Card Contact
375
+
376
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
377
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_bt_test_flat_top_flat",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:257200195343716bfb3bcfe88e844ca154313613b5916e4f14403e96a69bde76
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b106b7541f0099dcf5c04f6afd8b0121e3b73c974f74a7fb18b8ac0f45160f5f
3
+ size 31647
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff