Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +377 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mini1013/master_domain
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: 필리밀리 데일리 아이래쉬 대용량 (1~2호) 데일리 아이래쉬2호(3set) (#M)홈>미용소품>얼굴소품>속눈썹 OLIVEYOUNG
|
14 |
+
> 미용소품 > 얼굴소품 > 전체
|
15 |
+
- text: 더툴랩 더스타일래쉬 4종리얼/내츄럴/볼륨/맥스 중 택1 003 볼륨 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 >
|
16 |
+
속눈썹관리 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 속눈썹관리
|
17 |
+
- text: 아리따움 아이돌래쉬 속눈썹 베이직/프리미엄/대용량 베이직 2호 쁘띠 볼륨 (#M)홈>뷰티 Naverstore > 화장품/미용 > 뷰티소품
|
18 |
+
> 아이소품 > 속눈썹/속눈썹펌제
|
19 |
+
- text: 더툴랩 속눈썹 해피림 아이래쉬 내추럴 가닥속눈썹 1pack 11.5N (#M)홈>화장품/미용>뷰티소품>아이소품>속눈썹/속눈썹펌제 Naverstore
|
20 |
+
> 화장품/미용 > 뷰티소품 > 아이소품 > 속눈썹/속눈썹펌제
|
21 |
+
- text: '[에뛰드] 마이뷰티툴 속눈썹 1ea 4호 홈>화장소품;홈>TOOL;(#M)홈>배송비 절약템 🛒 Naverstore > 화장품/미용
|
22 |
+
> 뷰티소품 > 아이소품 > 속눈썹/속눈썹펌제'
|
23 |
+
inference: true
|
24 |
+
model-index:
|
25 |
+
- name: SetFit with mini1013/master_domain
|
26 |
+
results:
|
27 |
+
- task:
|
28 |
+
type: text-classification
|
29 |
+
name: Text Classification
|
30 |
+
dataset:
|
31 |
+
name: Unknown
|
32 |
+
type: unknown
|
33 |
+
split: test
|
34 |
+
metrics:
|
35 |
+
- type: accuracy
|
36 |
+
value: 0.9726224783861671
|
37 |
+
name: Accuracy
|
38 |
+
---
|
39 |
+
|
40 |
+
# SetFit with mini1013/master_domain
|
41 |
+
|
42 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
43 |
+
|
44 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
45 |
+
|
46 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
47 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
48 |
+
|
49 |
+
## Model Details
|
50 |
+
|
51 |
+
### Model Description
|
52 |
+
- **Model Type:** SetFit
|
53 |
+
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
|
54 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
55 |
+
- **Maximum Sequence Length:** 512 tokens
|
56 |
+
- **Number of Classes:** 5 classes
|
57 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
58 |
+
<!-- - **Language:** Unknown -->
|
59 |
+
<!-- - **License:** Unknown -->
|
60 |
+
|
61 |
+
### Model Sources
|
62 |
+
|
63 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
64 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
65 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
66 |
+
|
67 |
+
### Model Labels
|
68 |
+
| Label | Examples |
|
69 |
+
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
70 |
+
| 4 | <ul><li>'6줄리뉴얼 엘스몰 대용량 A형속눈썹 인조속눈썹 연장부분아이돌가닥속눈썹 E형_8-8-9-9-10-10mm 홈>화장품/미용>뷰티소품>아이소품>속눈썹/속눈썹펌제;(#M)홈>속눈썹 상품 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 속눈썹/속눈썹펌제'</li><li>'[에뛰드] 마이뷰티툴 속눈썹 1ea 5호 홈>화장소품;홈>TOOL;(#M)홈>배송비 절약템 🛒 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 속눈썹/속눈썹펌제'</li><li>'에뛰드하우스 마이뷰티툴 속눈썹 6종/인조속눈썹 6호 볼륨 업 (#M)11st>뷰티소품>메이크업소품>메이크업소품 11st > 뷰티 > 뷰티소품 > 메이크업소품'</li></ul> |
|
71 |
+
| 1 | <ul><li>'트위저맨 Studio Collection 브로우 쉐이핑 가위 브러쉬 NEW 정품 LotteOn > 뷰티 > 메이크업 > 메이크업세트 LotteOn > 뷰티 > 메이크업 > 메이크업세트'</li><li>'트위저맨 Tweezerman 스테인리스 브��우 쉐이핑 가위 및 브러시 521626 (#M)홈>화장품/미용>뷰티소품>헤어소품>미용가위 Naverstore > 화장품/미용 > 뷰티소품 > 헤어소품 > 미용가위'</li><li>'트위저맨 스테인리스 브로우 셰이핑 시져 브러쉬 70238 LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 베이스/프라이머 LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 베이스/프라이머'</li></ul> |
|
72 |
+
| 0 | <ul><li>'BL 옵티모 글루 속눈썹 연장 글루 접착제 5g (#M)홈>속눈썹펌&연장🎀>속눈썹연장글루&리무버 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 기타아이소품'</li><li>'필리밀리 속눈썹 접착제 (블랙) 필리밀리 속눈썹 접착제 (블랙) 홈>미용소품>얼굴소품>속눈썹;(#M)홈>미용소품>아이>속눈썹/쌍꺼풀 OLIVEYOUNG > 미용소품 > 아이 > 속눈썹/쌍꺼풀'</li><li>'에뛰드하우스 마이뷰티툴 쌍꺼풀 액속눈썹 접착제 MinSellAmount (#M)화장품/향수>이미용소품>쌍꺼풀 Gmarket > 뷰티 > 화장품/향수 > 이미용소품 > 쌍꺼풀'</li></ul> |
|
73 |
+
| 2 | <ul><li>'Tweezerman 로즈 골드 클래식 속눈썹 뷰러 1035-RGR104536 (#M)홈>화장품/미용>뷰티소품>아이소품>눈썹칼 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 눈썹칼'</li><li>'크리스챤 디올 디올 백스테이지 아이래쉬 컬러 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 브러쉬 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 브러쉬'</li><li>'[CHANEL] 르 르쿠르브 실 드 샤넬 (속눈썹 뷰러/ 선물포장가능) (#M)홈>화장품/미용>뷰티소품>아이소품>뷰러 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 뷰러'</li></ul> |
|
74 |
+
| 3 | <ul><li>'e.l.f. 듀얼 펜슬 샤프너 3세트 (#M)쿠팡 홈>뷰티>뷰티소품>아이소품>족집게/샤프너 Coupang > 뷰티 > 뷰티소품 > 아이소품'</li><li>'샤프너 펜슬 단품없음 LotteOn > 뷰티 > 뷰티기기 > 액세서리/소모품 LotteOn > 뷰티 > 뷰티기기 > 액세서리/소모품'</li><li>'샤프너 펜슬 ssg > 뷰티 > 미용기기/소품 > 거울/용기/기타소품 ssg > 뷰티 > 미용기기/소품 > 거울/용기/기타소품'</li></ul> |
|
75 |
+
|
76 |
+
## Evaluation
|
77 |
+
|
78 |
+
### Metrics
|
79 |
+
| Label | Accuracy |
|
80 |
+
|:--------|:---------|
|
81 |
+
| **all** | 0.9726 |
|
82 |
+
|
83 |
+
## Uses
|
84 |
+
|
85 |
+
### Direct Use for Inference
|
86 |
+
|
87 |
+
First install the SetFit library:
|
88 |
+
|
89 |
+
```bash
|
90 |
+
pip install setfit
|
91 |
+
```
|
92 |
+
|
93 |
+
Then you can load this model and run inference.
|
94 |
+
|
95 |
+
```python
|
96 |
+
from setfit import SetFitModel
|
97 |
+
|
98 |
+
# Download from the 🤗 Hub
|
99 |
+
model = SetFitModel.from_pretrained("mini1013/master_cate_top_bt6_3_test_flat")
|
100 |
+
# Run inference
|
101 |
+
preds = model("필리밀리 데일리 아이래쉬 대용량 (1~2호) 데일리 아이래쉬2호(3set) (#M)홈>미용소품>얼굴소품>속눈썹 OLIVEYOUNG > 미용소품 > 얼굴소품 > 전체")
|
102 |
+
```
|
103 |
+
|
104 |
+
<!--
|
105 |
+
### Downstream Use
|
106 |
+
|
107 |
+
*List how someone could finetune this model on their own dataset.*
|
108 |
+
-->
|
109 |
+
|
110 |
+
<!--
|
111 |
+
### Out-of-Scope Use
|
112 |
+
|
113 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
114 |
+
-->
|
115 |
+
|
116 |
+
<!--
|
117 |
+
## Bias, Risks and Limitations
|
118 |
+
|
119 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
120 |
+
-->
|
121 |
+
|
122 |
+
<!--
|
123 |
+
### Recommendations
|
124 |
+
|
125 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
126 |
+
-->
|
127 |
+
|
128 |
+
## Training Details
|
129 |
+
|
130 |
+
### Training Set Metrics
|
131 |
+
| Training set | Min | Median | Max |
|
132 |
+
|:-------------|:----|:--------|:----|
|
133 |
+
| Word count | 13 | 19.3591 | 47 |
|
134 |
+
|
135 |
+
| Label | Training Sample Count |
|
136 |
+
|:------|:----------------------|
|
137 |
+
| 0 | 50 |
|
138 |
+
| 1 | 9 |
|
139 |
+
| 2 | 50 |
|
140 |
+
| 3 | 22 |
|
141 |
+
| 4 | 50 |
|
142 |
+
|
143 |
+
### Training Hyperparameters
|
144 |
+
- batch_size: (64, 64)
|
145 |
+
- num_epochs: (30, 30)
|
146 |
+
- max_steps: -1
|
147 |
+
- sampling_strategy: oversampling
|
148 |
+
- num_iterations: 100
|
149 |
+
- body_learning_rate: (2e-05, 1e-05)
|
150 |
+
- head_learning_rate: 0.01
|
151 |
+
- loss: CosineSimilarityLoss
|
152 |
+
- distance_metric: cosine_distance
|
153 |
+
- margin: 0.25
|
154 |
+
- end_to_end: False
|
155 |
+
- use_amp: False
|
156 |
+
- warmup_proportion: 0.1
|
157 |
+
- l2_weight: 0.01
|
158 |
+
- seed: 42
|
159 |
+
- eval_max_steps: -1
|
160 |
+
- load_best_model_at_end: False
|
161 |
+
|
162 |
+
### Training Results
|
163 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
164 |
+
|:-------:|:----:|:-------------:|:---------------:|
|
165 |
+
| 0.0035 | 1 | 0.4429 | - |
|
166 |
+
| 0.1767 | 50 | 0.4197 | - |
|
167 |
+
| 0.3534 | 100 | 0.3579 | - |
|
168 |
+
| 0.5300 | 150 | 0.2926 | - |
|
169 |
+
| 0.7067 | 200 | 0.2247 | - |
|
170 |
+
| 0.8834 | 250 | 0.1077 | - |
|
171 |
+
| 1.0601 | 300 | 0.0253 | - |
|
172 |
+
| 1.2367 | 350 | 0.0025 | - |
|
173 |
+
| 1.4134 | 400 | 0.0016 | - |
|
174 |
+
| 1.5901 | 450 | 0.0008 | - |
|
175 |
+
| 1.7668 | 500 | 0.0005 | - |
|
176 |
+
| 1.9435 | 550 | 0.0002 | - |
|
177 |
+
| 2.1201 | 600 | 0.0002 | - |
|
178 |
+
| 2.2968 | 650 | 0.0002 | - |
|
179 |
+
| 2.4735 | 700 | 0.0003 | - |
|
180 |
+
| 2.6502 | 750 | 0.0002 | - |
|
181 |
+
| 2.8269 | 800 | 0.0007 | - |
|
182 |
+
| 3.0035 | 850 | 0.0164 | - |
|
183 |
+
| 3.1802 | 900 | 0.0009 | - |
|
184 |
+
| 3.3569 | 950 | 0.0002 | - |
|
185 |
+
| 3.5336 | 1000 | 0.0 | - |
|
186 |
+
| 3.7102 | 1050 | 0.0 | - |
|
187 |
+
| 3.8869 | 1100 | 0.0 | - |
|
188 |
+
| 4.0636 | 1150 | 0.0002 | - |
|
189 |
+
| 4.2403 | 1200 | 0.0 | - |
|
190 |
+
| 4.4170 | 1250 | 0.0 | - |
|
191 |
+
| 4.5936 | 1300 | 0.0 | - |
|
192 |
+
| 4.7703 | 1350 | 0.0 | - |
|
193 |
+
| 4.9470 | 1400 | 0.0 | - |
|
194 |
+
| 5.1237 | 1450 | 0.0 | - |
|
195 |
+
| 5.3004 | 1500 | 0.0 | - |
|
196 |
+
| 5.4770 | 1550 | 0.0 | - |
|
197 |
+
| 5.6537 | 1600 | 0.0 | - |
|
198 |
+
| 5.8304 | 1650 | 0.0 | - |
|
199 |
+
| 6.0071 | 1700 | 0.0006 | - |
|
200 |
+
| 6.1837 | 1750 | 0.0001 | - |
|
201 |
+
| 6.3604 | 1800 | 0.0 | - |
|
202 |
+
| 6.5371 | 1850 | 0.0 | - |
|
203 |
+
| 6.7138 | 1900 | 0.0 | - |
|
204 |
+
| 6.8905 | 1950 | 0.0 | - |
|
205 |
+
| 7.0671 | 2000 | 0.0 | - |
|
206 |
+
| 7.2438 | 2050 | 0.0 | - |
|
207 |
+
| 7.4205 | 2100 | 0.0 | - |
|
208 |
+
| 7.5972 | 2150 | 0.0 | - |
|
209 |
+
| 7.7739 | 2200 | 0.0 | - |
|
210 |
+
| 7.9505 | 2250 | 0.0 | - |
|
211 |
+
| 8.1272 | 2300 | 0.0 | - |
|
212 |
+
| 8.3039 | 2350 | 0.0 | - |
|
213 |
+
| 8.4806 | 2400 | 0.0023 | - |
|
214 |
+
| 8.6572 | 2450 | 0.0 | - |
|
215 |
+
| 8.8339 | 2500 | 0.0 | - |
|
216 |
+
| 9.0106 | 2550 | 0.0 | - |
|
217 |
+
| 9.1873 | 2600 | 0.0 | - |
|
218 |
+
| 9.3640 | 2650 | 0.0 | - |
|
219 |
+
| 9.5406 | 2700 | 0.0 | - |
|
220 |
+
| 9.7173 | 2750 | 0.0 | - |
|
221 |
+
| 9.8940 | 2800 | 0.0 | - |
|
222 |
+
| 10.0707 | 2850 | 0.0 | - |
|
223 |
+
| 10.2473 | 2900 | 0.0 | - |
|
224 |
+
| 10.4240 | 2950 | 0.0 | - |
|
225 |
+
| 10.6007 | 3000 | 0.0 | - |
|
226 |
+
| 10.7774 | 3050 | 0.0 | - |
|
227 |
+
| 10.9541 | 3100 | 0.0 | - |
|
228 |
+
| 11.1307 | 3150 | 0.0 | - |
|
229 |
+
| 11.3074 | 3200 | 0.0 | - |
|
230 |
+
| 11.4841 | 3250 | 0.0 | - |
|
231 |
+
| 11.6608 | 3300 | 0.0 | - |
|
232 |
+
| 11.8375 | 3350 | 0.0 | - |
|
233 |
+
| 12.0141 | 3400 | 0.0 | - |
|
234 |
+
| 12.1908 | 3450 | 0.0 | - |
|
235 |
+
| 12.3675 | 3500 | 0.0 | - |
|
236 |
+
| 12.5442 | 3550 | 0.0 | - |
|
237 |
+
| 12.7208 | 3600 | 0.0 | - |
|
238 |
+
| 12.8975 | 3650 | 0.0 | - |
|
239 |
+
| 13.0742 | 3700 | 0.0 | - |
|
240 |
+
| 13.2509 | 3750 | 0.0 | - |
|
241 |
+
| 13.4276 | 3800 | 0.0 | - |
|
242 |
+
| 13.6042 | 3850 | 0.0 | - |
|
243 |
+
| 13.7809 | 3900 | 0.0 | - |
|
244 |
+
| 13.9576 | 3950 | 0.0 | - |
|
245 |
+
| 14.1343 | 4000 | 0.0 | - |
|
246 |
+
| 14.3110 | 4050 | 0.0 | - |
|
247 |
+
| 14.4876 | 4100 | 0.0 | - |
|
248 |
+
| 14.6643 | 4150 | 0.0 | - |
|
249 |
+
| 14.8410 | 4200 | 0.0 | - |
|
250 |
+
| 15.0177 | 4250 | 0.0 | - |
|
251 |
+
| 15.1943 | 4300 | 0.0 | - |
|
252 |
+
| 15.3710 | 4350 | 0.0 | - |
|
253 |
+
| 15.5477 | 4400 | 0.0 | - |
|
254 |
+
| 15.7244 | 4450 | 0.0 | - |
|
255 |
+
| 15.9011 | 4500 | 0.0 | - |
|
256 |
+
| 16.0777 | 4550 | 0.0 | - |
|
257 |
+
| 16.2544 | 4600 | 0.0 | - |
|
258 |
+
| 16.4311 | 4650 | 0.0 | - |
|
259 |
+
| 16.6078 | 4700 | 0.0 | - |
|
260 |
+
| 16.7845 | 4750 | 0.0 | - |
|
261 |
+
| 16.9611 | 4800 | 0.0 | - |
|
262 |
+
| 17.1378 | 4850 | 0.0 | - |
|
263 |
+
| 17.3145 | 4900 | 0.0 | - |
|
264 |
+
| 17.4912 | 4950 | 0.0 | - |
|
265 |
+
| 17.6678 | 5000 | 0.0 | - |
|
266 |
+
| 17.8445 | 5050 | 0.0 | - |
|
267 |
+
| 18.0212 | 5100 | 0.0 | - |
|
268 |
+
| 18.1979 | 5150 | 0.0 | - |
|
269 |
+
| 18.3746 | 5200 | 0.0 | - |
|
270 |
+
| 18.5512 | 5250 | 0.0 | - |
|
271 |
+
| 18.7279 | 5300 | 0.0 | - |
|
272 |
+
| 18.9046 | 5350 | 0.0 | - |
|
273 |
+
| 19.0813 | 5400 | 0.0 | - |
|
274 |
+
| 19.2580 | 5450 | 0.0 | - |
|
275 |
+
| 19.4346 | 5500 | 0.0 | - |
|
276 |
+
| 19.6113 | 5550 | 0.0 | - |
|
277 |
+
| 19.7880 | 5600 | 0.0 | - |
|
278 |
+
| 19.9647 | 5650 | 0.0 | - |
|
279 |
+
| 20.1413 | 5700 | 0.0 | - |
|
280 |
+
| 20.3180 | 5750 | 0.0 | - |
|
281 |
+
| 20.4947 | 5800 | 0.0 | - |
|
282 |
+
| 20.6714 | 5850 | 0.0 | - |
|
283 |
+
| 20.8481 | 5900 | 0.0 | - |
|
284 |
+
| 21.0247 | 5950 | 0.0 | - |
|
285 |
+
| 21.2014 | 6000 | 0.0 | - |
|
286 |
+
| 21.3781 | 6050 | 0.0 | - |
|
287 |
+
| 21.5548 | 6100 | 0.0 | - |
|
288 |
+
| 21.7314 | 6150 | 0.0 | - |
|
289 |
+
| 21.9081 | 6200 | 0.0 | - |
|
290 |
+
| 22.0848 | 6250 | 0.0 | - |
|
291 |
+
| 22.2615 | 6300 | 0.0 | - |
|
292 |
+
| 22.4382 | 6350 | 0.0 | - |
|
293 |
+
| 22.6148 | 6400 | 0.0 | - |
|
294 |
+
| 22.7915 | 6450 | 0.0 | - |
|
295 |
+
| 22.9682 | 6500 | 0.0 | - |
|
296 |
+
| 23.1449 | 6550 | 0.0 | - |
|
297 |
+
| 23.3216 | 6600 | 0.0 | - |
|
298 |
+
| 23.4982 | 6650 | 0.0 | - |
|
299 |
+
| 23.6749 | 6700 | 0.0 | - |
|
300 |
+
| 23.8516 | 6750 | 0.0 | - |
|
301 |
+
| 24.0283 | 6800 | 0.0 | - |
|
302 |
+
| 24.2049 | 6850 | 0.0 | - |
|
303 |
+
| 24.3816 | 6900 | 0.0 | - |
|
304 |
+
| 24.5583 | 6950 | 0.0 | - |
|
305 |
+
| 24.7350 | 7000 | 0.0 | - |
|
306 |
+
| 24.9117 | 7050 | 0.0 | - |
|
307 |
+
| 25.0883 | 7100 | 0.0 | - |
|
308 |
+
| 25.2650 | 7150 | 0.0 | - |
|
309 |
+
| 25.4417 | 7200 | 0.0 | - |
|
310 |
+
| 25.6184 | 7250 | 0.0 | - |
|
311 |
+
| 25.7951 | 7300 | 0.0 | - |
|
312 |
+
| 25.9717 | 7350 | 0.0 | - |
|
313 |
+
| 26.1484 | 7400 | 0.0 | - |
|
314 |
+
| 26.3251 | 7450 | 0.0 | - |
|
315 |
+
| 26.5018 | 7500 | 0.0 | - |
|
316 |
+
| 26.6784 | 7550 | 0.0 | - |
|
317 |
+
| 26.8551 | 7600 | 0.0 | - |
|
318 |
+
| 27.0318 | 7650 | 0.0 | - |
|
319 |
+
| 27.2085 | 7700 | 0.0 | - |
|
320 |
+
| 27.3852 | 7750 | 0.0 | - |
|
321 |
+
| 27.5618 | 7800 | 0.0 | - |
|
322 |
+
| 27.7385 | 7850 | 0.0 | - |
|
323 |
+
| 27.9152 | 7900 | 0.0 | - |
|
324 |
+
| 28.0919 | 7950 | 0.0 | - |
|
325 |
+
| 28.2686 | 8000 | 0.0 | - |
|
326 |
+
| 28.4452 | 8050 | 0.0 | - |
|
327 |
+
| 28.6219 | 8100 | 0.0 | - |
|
328 |
+
| 28.7986 | 8150 | 0.0 | - |
|
329 |
+
| 28.9753 | 8200 | 0.0 | - |
|
330 |
+
| 29.1519 | 8250 | 0.0 | - |
|
331 |
+
| 29.3286 | 8300 | 0.0 | - |
|
332 |
+
| 29.5053 | 8350 | 0.0 | - |
|
333 |
+
| 29.6820 | 8400 | 0.0 | - |
|
334 |
+
| 29.8587 | 8450 | 0.0 | - |
|
335 |
+
|
336 |
+
### Framework Versions
|
337 |
+
- Python: 3.10.12
|
338 |
+
- SetFit: 1.1.0
|
339 |
+
- Sentence Transformers: 3.3.1
|
340 |
+
- Transformers: 4.44.2
|
341 |
+
- PyTorch: 2.2.0a0+81ea7a4
|
342 |
+
- Datasets: 3.2.0
|
343 |
+
- Tokenizers: 0.19.1
|
344 |
+
|
345 |
+
## Citation
|
346 |
+
|
347 |
+
### BibTeX
|
348 |
+
```bibtex
|
349 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
350 |
+
doi = {10.48550/ARXIV.2209.11055},
|
351 |
+
url = {https://arxiv.org/abs/2209.11055},
|
352 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
353 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
354 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
355 |
+
publisher = {arXiv},
|
356 |
+
year = {2022},
|
357 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
358 |
+
}
|
359 |
+
```
|
360 |
+
|
361 |
+
<!--
|
362 |
+
## Glossary
|
363 |
+
|
364 |
+
*Clearly define terms in order to be accessible across audiences.*
|
365 |
+
-->
|
366 |
+
|
367 |
+
<!--
|
368 |
+
## Model Card Authors
|
369 |
+
|
370 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
371 |
+
-->
|
372 |
+
|
373 |
+
<!--
|
374 |
+
## Model Card Contact
|
375 |
+
|
376 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
377 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mini1013/master_item_bt_test_flat_top_flat",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.44.2",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.2.0a0+81ea7a4"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": null
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:257200195343716bfb3bcfe88e844ca154313613b5916e4f14403e96a69bde76
|
3 |
+
size 442494816
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b106b7541f0099dcf5c04f6afd8b0121e3b73c974f74a7fb18b8ac0f45160f5f
|
3 |
+
size 31647
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "[PAD]",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|