mini1013 commited on
Commit
4db72b3
1 Parent(s): d8aa68b

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 타공판닷컴 세계지도 대형 월드맵 세계지도03_600x900 (주)오빌
14
+ - text: 스프링 제본 PDF 흑백 고품질 레이저 출력 - 흑백 양면인쇄 모조지80g 50p 스프링 흑백양면●●_모조지100g_167~170 page
15
+ 도서출판 법현
16
+ - text: '[달페이퍼] 달페이퍼 미니미니 6종 엽서 postcard 인테리어엽서 6 미니미니 일하는 주식회사 천유닷컴'
17
+ - text: 환갑 현수막 회갑 생신 잔치 플랜카드 C00 네임 소형100x70cm C22 얼쑤(남자)-자유문구포토형_소형 100x70cm (주)엔비웨일인터렉티브
18
+ - text: 스프링 제본 PDF 흑백 고품질 레이저 출력 - 흑백 양면인쇄 모조지80g 50p 스프링 흑백단면●_모조지80g_179~182 page
19
+ 도서출판 법현
20
+ inference: true
21
+ model-index:
22
+ - name: SetFit with mini1013/master_domain
23
+ results:
24
+ - task:
25
+ type: text-classification
26
+ name: Text Classification
27
+ dataset:
28
+ name: Unknown
29
+ type: unknown
30
+ split: test
31
+ metrics:
32
+ - type: metric
33
+ value: 0.964332367808258
34
+ name: Metric
35
+ ---
36
+
37
+ # SetFit with mini1013/master_domain
38
+
39
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
40
+
41
+ The model has been trained using an efficient few-shot learning technique that involves:
42
+
43
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
44
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
45
+
46
+ ## Model Details
47
+
48
+ ### Model Description
49
+ - **Model Type:** SetFit
50
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
51
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
52
+ - **Maximum Sequence Length:** 512 tokens
53
+ - **Number of Classes:** 17 classes
54
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
55
+ <!-- - **Language:** Unknown -->
56
+ <!-- - **License:** Unknown -->
57
+
58
+ ### Model Sources
59
+
60
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
61
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
62
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
63
+
64
+ ### Model Labels
65
+ | Label | Examples |
66
+ |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
67
+ | 6.0 | <ul><li>'명함 당일제작 소량 심플한 고급 인쇄 카페쿠폰 예쁜 부동산 회사 단면 비코팅 200매 ==질감있는 재질(▼아래에서 선택▼)== 주식회사 오투디자인그룹'</li><li>'전단지 소량 인쇄 제작 A5 단면 컬러 스노우지150 팜플렛 리플렛 당일 B5양면(16절)_아트지200 프린팅팩토리'</li><li>'잉크젯 - 컬러 출력 제본 - A5 백색80g 양면 A3(420×297㎜) - 제본불가_백색 80g 복사지_컬러양면△△ (페이지X권수=전체 쪽수 입력) 임프레스'</li></ul> |
68
+ | 2.0 | <ul><li>'[3개부터 제작] 백색페트 와블러 댕글러 쇼카드 가격표 POP 자유모양 재단 100x100mm_A형(사각/원형/라운드)_260장 (주)여름기획'</li><li>'휴대용 다이어트 피팅 허리 옷 의류 신체 줄자 1.5m 이잡스2'</li><li>'편안해 데스크매트 책상매트 패드 가죽 덮개 깔개 깔판 S6030 L90X45_블랙 편안한오늘'</li></ul> |
69
+ | 5.0 | <ul><li>'카시오 계산기 MS-20UC 미니 귀여운 컬러 전자계산기 공식스토어 MS-20UC_퍼플 주식회사 행남통상'</li><li>'[팝콘게임즈] 프리미엄 포토카드 슬리브 하드 50매 56x87 포안'</li><li>'펠로우즈 문서 세단기 P-30C 4x34mm 꽃가루형 파쇄기 세절기 폐지함 15L 블랙 블랙 두레샵'</li></ul> |
70
+ | 13.0 | <ul><li>'에이든 세계지도 극세사 러그 100×150cm 사계절- 아이방 놀이방 키즈 매트 카페트 아이보리_100×150cm 주식회사 타블라라사'</li><li>'유럽지도 한글영문 코팅 - 영국 프랑스 여행 세계전도 포스터 대형(210x150cm) (주)나우맵소프트'</li><li>'한국 100대 명산 여권 대한민국 산림청 백대명산 정상석 수첩 등산여권 기록 여권+스탬프 추억거리'</li></ul> |
71
+ | 11.0 | <ul><li>'크리스마스 선물 커트러리 스푼 포크 세트 4 개/6 개, 엘크 트리 장식 디저트 과일 커피 01 A 성운물산'</li><li>'유어캔들 파티 케익촛불 생일초 대용량 벨류팩 싱글 100입 01.싱글 핑크 주식회사 조앤인터내셔널'</li><li>'[텐바이텐] 제기(색상랜덤발송) 제로찬스'</li></ul> |
72
+ | 10.0 | <ul><li>'라벨지 A4라벨지 스티커라벨 투명 방수 라벨 레이저용 1칸(전지) 20장 흰색방수(Laser)_8칸(2X4) 10장 (주)유퍼스트'</li><li>'종이나라 코팅필름 A3 100mic 100매 대진교육 주식회사'</li><li>'더블에이 A4 복사용지 75g 2000매 제이앤에스(J&S)'</li></ul> |
73
+ | 4.0 | <ul><li>'마그네틱 자석 보드 29cm x 56cm 주문제작 그레이_380x760 세운정밀'</li><li>'호이지보드 LCD전자노트 메모보드 드로잉패드 스마트 메모장 8.5인치(컬러글씨)_핑크 호이지보드(Howeasy Board)'</li><li>'노베젤 화이트유리칠판 1200x800mm 럭시 벽걸이 글라스보드 1200x800mm 일반 주식회사 럭시글라스'</li></ul> |
74
+ | 0.0 | <ul><li>'스누피 인덱스노트 그레이(도트) 뭉뭉방구'</li><li>'3M 포스트잇 653-20A 대용량팩 일반 점착 접착용 노트 51x38mm 정비공톡'</li><li>'임산부 손목보호대 손목아대 블랙_S 블루마켓'</li></ul> |
75
+ | 14.0 | <ul><li>'백광 검은색 검정봉투 흰색비닐봉투 검정_6호[20리터](36x60+14/200매) 백광비닐산업'</li><li>'비닐닷컴 각대봉투 종이봉투 카페 크라프트 빵포장 180x110x350 200매 종이쇼핑백/플랫(납작끈)_백색 감광지_대/310x125x420/50매 비닐닷컴'</li><li>'[쿠베르] 감성 인테리어 엽서, 파리 A 미니 포스터 사진 촬영 소품 5.로마_로마 4장 쿠베르(COUVERT)'</li></ul> |
76
+ | 7.0 | <ul><li>'레드스탬프 인감 도장 가벽조레이저 십장생 띠 아기 이름 직인 단체 도장 만들기 한글고인체 선택 01 - 가벽조레이저_원앙_한자초서체 레드스탬프'</li><li>'자동 번호 넘버링 스탬프 마킹 날짜 가격표 찍는 도장 수동 3 자리 수 자동_4 LIN SHUZHEN'</li><li>'에이플렉스 씰링 스탬프 글루건 실링왁스 11mm 글루왁스1번(글루) 글루 왁스 34번(글루) 에이플렉스(Aflex)'</li></ul> |
77
+ | 16.0 | <ul><li>'블루칩 인형필통 폴리에스테르 대용량 14세이상사용 인형필통(오리디자인) 에이스 무역'</li><li>'모나미 매직 캡 적색 라인'</li><li>'모나미 보드마카 리퀴드 생잉크 220 흑 주식회사 에스에이치몰'</li></ul> |
78
+ | 15.0 | <ul><li>'프리미엄 악보 파일 10매~60매 밴드화일 메모 가능 40매_블루(뮤직)_추가 다다다기업'</li><li>'A4파일 클립보드 A4파일철 결재판 세로형 가로형_그린 살림 마녀'</li><li>'[다나 코퍼레이션] A4 파일 철 파일케이스 그레이 다나 코퍼레이션'</li></ul> |
79
+ | 9.0 | <ul><li>'아워모티프 포카바인더 6공 포토카드 바인더 A5 A5_블랙_바인더 월간문구'</li><li>'마이러브 초음파앨범 꾸미기 뱀띠 아기 각인 사진정리 셀프포토북 앨범 단품 크림 앨범 + 꾸미기 세트_마이러브앨범: B급크림 / 주수스티커: 컬러_토끼띠 + 프로필 스티커 커플러스'</li><li>'아워모티프 포카바인더 6공 포토카드 바인더 A5 A6_올리브_바인더 월간문구'</li></ul> |
80
+ | 12.0 | <ul><li>'롤 트레싱지 롤 트레이싱지 idem 플로터 반투명종이 A1 하이비즈코리아'</li><li>'신한 삼원 트레싱지 A4 A3 80g 85g 트레이싱지 삼원 A3 100매 디포스타'</li><li>'롤 트레싱지 롤 트레이싱지 idem 플로터 반투명종이 A3 10. 12인치x50야드(흰색) 하이비즈코리아'</li></ul> |
81
+ | 3.0 | <ul><li>'종이나라 비비드 마블링물감 12색 (1개) 바이포비'</li><li>'네오디움 자석 원형 고리 막대 사각 네오디뮴 초강력자석 2 x 1mm 선택.4 네오디움 사각자석_★ 모든치수의 단위는 mm 입니다★ 유마그네트'</li><li>'도루코 S 커터날 10매 칼날 커터칼 사무용칼 S커터날 10입 에이치티비 트레이드'</li></ul> |
82
+ | 1.0 | <ul><li>'2025 양지 다이어리 유즈어리 25A 로고 인쇄 수첩&포켓다이어리_인스타일48_그레이 주식회사 제이에프샵'</li><li>'2025 아르디움 먼슬리 플래너 화이트 데이드림 지웨이컨텐츠(JIWAY Contents)'</li><li>'홍보용 새해 벽걸이 달력 특별2절 숫자판 70모조 1부 제작 숫자판 캘린더 주문 인쇄 벽걸이달력_2-1 2절숫자판70모조_200부 제작 1부 단가 총무나라 주식회사'</li></ul> |
83
+ | 8.0 | <ul><li>'신일 SINIL 박스테이프 경포장 투명 택배 포장 OPP 고점착 테이프 80m 40개 SINIL 중포장 투명_50M 50개 주식회사 신일'</li><li>'3M 스카치 투명양면테이프 리필 017R 017D 본품 좋은사람문구유통'</li><li>'우림 박스 테이프 L3 50M 50개 경포장 투명 OPP 포장용 러버테이프(겨울용/냉동용)_S시리즈_(겨울용)S1-러버(40Mx50개)황색 우림 강서지사'</li></ul> |
84
+
85
+ ## Evaluation
86
+
87
+ ### Metrics
88
+ | Label | Metric |
89
+ |:--------|:-------|
90
+ | **all** | 0.9643 |
91
+
92
+ ## Uses
93
+
94
+ ### Direct Use for Inference
95
+
96
+ First install the SetFit library:
97
+
98
+ ```bash
99
+ pip install setfit
100
+ ```
101
+
102
+ Then you can load this model and run inference.
103
+
104
+ ```python
105
+ from setfit import SetFitModel
106
+
107
+ # Download from the 🤗 Hub
108
+ model = SetFitModel.from_pretrained("mini1013/master_cate_lh8")
109
+ # Run inference
110
+ preds = model("타공판닷컴 세계지도 대형 월드맵 세계지도03_600x900 (주)오빌")
111
+ ```
112
+
113
+ <!--
114
+ ### Downstream Use
115
+
116
+ *List how someone could finetune this model on their own dataset.*
117
+ -->
118
+
119
+ <!--
120
+ ### Out-of-Scope Use
121
+
122
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
123
+ -->
124
+
125
+ <!--
126
+ ## Bias, Risks and Limitations
127
+
128
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
129
+ -->
130
+
131
+ <!--
132
+ ### Recommendations
133
+
134
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
135
+ -->
136
+
137
+ ## Training Details
138
+
139
+ ### Training Set Metrics
140
+ | Training set | Min | Median | Max |
141
+ |:-------------|:----|:--------|:----|
142
+ | Word count | 4 | 11.1176 | 26 |
143
+
144
+ | Label | Training Sample Count |
145
+ |:------|:----------------------|
146
+ | 0.0 | 50 |
147
+ | 1.0 | 50 |
148
+ | 2.0 | 50 |
149
+ | 3.0 | 50 |
150
+ | 4.0 | 50 |
151
+ | 5.0 | 50 |
152
+ | 6.0 | 50 |
153
+ | 7.0 | 50 |
154
+ | 8.0 | 50 |
155
+ | 9.0 | 50 |
156
+ | 10.0 | 50 |
157
+ | 11.0 | 50 |
158
+ | 12.0 | 50 |
159
+ | 13.0 | 50 |
160
+ | 14.0 | 50 |
161
+ | 15.0 | 50 |
162
+ | 16.0 | 50 |
163
+
164
+ ### Training Hyperparameters
165
+ - batch_size: (512, 512)
166
+ - num_epochs: (20, 20)
167
+ - max_steps: -1
168
+ - sampling_strategy: oversampling
169
+ - num_iterations: 40
170
+ - body_learning_rate: (2e-05, 2e-05)
171
+ - head_learning_rate: 2e-05
172
+ - loss: CosineSimilarityLoss
173
+ - distance_metric: cosine_distance
174
+ - margin: 0.25
175
+ - end_to_end: False
176
+ - use_amp: False
177
+ - warmup_proportion: 0.1
178
+ - seed: 42
179
+ - eval_max_steps: -1
180
+ - load_best_model_at_end: False
181
+
182
+ ### Training Results
183
+ | Epoch | Step | Training Loss | Validation Loss |
184
+ |:-------:|:----:|:-------------:|:---------------:|
185
+ | 0.0075 | 1 | 0.4622 | - |
186
+ | 0.3759 | 50 | 0.3276 | - |
187
+ | 0.7519 | 100 | 0.2741 | - |
188
+ | 1.1278 | 150 | 0.167 | - |
189
+ | 1.5038 | 200 | 0.082 | - |
190
+ | 1.8797 | 250 | 0.0368 | - |
191
+ | 2.2556 | 300 | 0.0406 | - |
192
+ | 2.6316 | 350 | 0.0331 | - |
193
+ | 3.0075 | 400 | 0.0282 | - |
194
+ | 3.3835 | 450 | 0.0144 | - |
195
+ | 3.7594 | 500 | 0.005 | - |
196
+ | 4.1353 | 550 | 0.0036 | - |
197
+ | 4.5113 | 600 | 0.0036 | - |
198
+ | 4.8872 | 650 | 0.0005 | - |
199
+ | 5.2632 | 700 | 0.0003 | - |
200
+ | 5.6391 | 750 | 0.0003 | - |
201
+ | 6.0150 | 800 | 0.0002 | - |
202
+ | 6.3910 | 850 | 0.0003 | - |
203
+ | 6.7669 | 900 | 0.0002 | - |
204
+ | 7.1429 | 950 | 0.0002 | - |
205
+ | 7.5188 | 1000 | 0.0001 | - |
206
+ | 7.8947 | 1050 | 0.0001 | - |
207
+ | 8.2707 | 1100 | 0.0001 | - |
208
+ | 8.6466 | 1150 | 0.0001 | - |
209
+ | 9.0226 | 1200 | 0.0001 | - |
210
+ | 9.3985 | 1250 | 0.0001 | - |
211
+ | 9.7744 | 1300 | 0.0001 | - |
212
+ | 10.1504 | 1350 | 0.0001 | - |
213
+ | 10.5263 | 1400 | 0.0001 | - |
214
+ | 10.9023 | 1450 | 0.0001 | - |
215
+ | 11.2782 | 1500 | 0.0001 | - |
216
+ | 11.6541 | 1550 | 0.0001 | - |
217
+ | 12.0301 | 1600 | 0.0001 | - |
218
+ | 12.4060 | 1650 | 0.0001 | - |
219
+ | 12.7820 | 1700 | 0.0001 | - |
220
+ | 13.1579 | 1750 | 0.0001 | - |
221
+ | 13.5338 | 1800 | 0.0001 | - |
222
+ | 13.9098 | 1850 | 0.0001 | - |
223
+ | 14.2857 | 1900 | 0.0001 | - |
224
+ | 14.6617 | 1950 | 0.0001 | - |
225
+ | 15.0376 | 2000 | 0.0001 | - |
226
+ | 15.4135 | 2050 | 0.0001 | - |
227
+ | 15.7895 | 2100 | 0.0001 | - |
228
+ | 16.1654 | 2150 | 0.0001 | - |
229
+ | 16.5414 | 2200 | 0.0001 | - |
230
+ | 16.9173 | 2250 | 0.0001 | - |
231
+ | 17.2932 | 2300 | 0.0001 | - |
232
+ | 17.6692 | 2350 | 0.0001 | - |
233
+ | 18.0451 | 2400 | 0.0001 | - |
234
+ | 18.4211 | 2450 | 0.0001 | - |
235
+ | 18.7970 | 2500 | 0.0001 | - |
236
+ | 19.1729 | 2550 | 0.0001 | - |
237
+ | 19.5489 | 2600 | 0.0001 | - |
238
+ | 19.9248 | 2650 | 0.0001 | - |
239
+
240
+ ### Framework Versions
241
+ - Python: 3.10.12
242
+ - SetFit: 1.1.0.dev0
243
+ - Sentence Transformers: 3.1.1
244
+ - Transformers: 4.46.1
245
+ - PyTorch: 2.4.0+cu121
246
+ - Datasets: 2.20.0
247
+ - Tokenizers: 0.20.0
248
+
249
+ ## Citation
250
+
251
+ ### BibTeX
252
+ ```bibtex
253
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
254
+ doi = {10.48550/ARXIV.2209.11055},
255
+ url = {https://arxiv.org/abs/2209.11055},
256
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
257
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
258
+ title = {Efficient Few-Shot Learning Without Prompts},
259
+ publisher = {arXiv},
260
+ year = {2022},
261
+ copyright = {Creative Commons Attribution 4.0 International}
262
+ }
263
+ ```
264
+
265
+ <!--
266
+ ## Glossary
267
+
268
+ *Clearly define terms in order to be accessible across audiences.*
269
+ -->
270
+
271
+ <!--
272
+ ## Model Card Authors
273
+
274
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
275
+ -->
276
+
277
+ <!--
278
+ ## Model Card Contact
279
+
280
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
281
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_lh",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:776fdc7ee24947f4124868416ff5bee965b975af785488d35d0a9198f27da420
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3422de92dc986cd99e4c762752aac44573bd010c4120eeda64b9eecab8536048
3
+ size 105535
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff