mini1013 commited on
Commit
e4800ac
1 Parent(s): 6458105

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: '[저소음 미세입자] 오므론 네블라이저 NE-C803 꿈꾸는약국'
14
+ - text: 일동제약 케어리브 밴드 M 중형 10매입 약국용 3_중형 M 50매 이웃사랑팜
15
+ - text: 퀸사이즈 병원침대/환자용침대 매트리스/고탄성 병원용 접이식 마사지 지압 의료용 매트 두께 7cm_베이지색 평매트리스_1400mm X
16
+ 2000mm(더블사이즈) 메디칼베드마트
17
+ - text: 일동제약 케어리브 밴드 중형 M 50매입 하이맘(중외제약)_하이맘밴드 아쿠아 혼합형 12매 테크노 제일약국
18
+ - text: '[하프클럽/제일케어]웰팜스 의료기기 - 의료용 가위 1개 하프클럽'
19
+ inference: true
20
+ model-index:
21
+ - name: SetFit with mini1013/master_domain
22
+ results:
23
+ - task:
24
+ type: text-classification
25
+ name: Text Classification
26
+ dataset:
27
+ name: Unknown
28
+ type: unknown
29
+ split: test
30
+ metrics:
31
+ - type: metric
32
+ value: 0.9570833333333333
33
+ name: Metric
34
+ ---
35
+
36
+ # SetFit with mini1013/master_domain
37
+
38
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
39
+
40
+ The model has been trained using an efficient few-shot learning technique that involves:
41
+
42
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
43
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** SetFit
49
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
50
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
51
+ - **Maximum Sequence Length:** 512 tokens
52
+ - **Number of Classes:** 5 classes
53
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
+
57
+ ### Model Sources
58
+
59
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
60
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
61
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
62
+
63
+ ### Model Labels
64
+ | Label | Examples |
65
+ |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
66
+ | 2.0 | <ul><li>'세운 네라톤카테타 #1116 라텍스 멸균 100개 팩 6번 12fr 4.0mm0 트리비즈니스'</li><li>'세운 바로박(Barovac) PS200C 단위:1개 (주)엠디오씨'</li><li>'의무실 성인용 고무밴드 네블라이저 마스크 호흡기 흡입마스크 기관지 인사이트쇼핑몰'</li></ul> |
67
+ | 1.0 | <ul><li>'JW중외제약 하이맘밴드 프리미엄 2매 이지덤(대웅제약)_이지덤씬 2매(+가위) 테크노 제일약국'</li><li>'메디폼 친수성 폼드레싱 10x10cm (5mm) (2mm) 10매입 1박스 5mm 주식회사 엠퍼러'</li><li>'메나리니 더마틱스 울트라 겔 15g 1개. 릴리뷰티'</li></ul> |
68
+ | 0.0 | <ul><li>'약국 에탄올스왑 일회용 알콜솜 에프에이 이올스왑 알콜스왑 소독솜 1박스 다팜메디'</li><li>'[유한양행] 해피홈 소독용 알콜스왑알콜솜 100매입 2개 [0001]기본상품 CJONSTYLE'</li><li>'일회용 알콜솜 알콜스왑 소독 약국 바른케어 개별포장100매 바른케어 플러스 알콜솜 100매 로그엠(LOGM)'</li></ul> |
69
+ | 4.0 | <ul><li>'가주 비멸균 설압자 1통(100개) 혀누르개 목설압자 의료용 병원용 더블세이프 MinSellAmount 이원헬스케어'</li><li>'의료용 겸자 12.5cm /곡 모스키토 켈리 포셉 SJ헬스케어'</li><li>'개부밧드6절(뚜껑있는밧드)소독통/개무밧드/사각트레이/트레이밧드/거어즈캔 신동방메디칼'</li></ul> |
70
+ | 3.0 | <ul><li>'일회용 베드 위생시트 부직포시트 침대커버 1롤 50장 80x180cm 비방수(고급형) 80x180 50장/롤 심비오시스'</li><li>'부직포자루,육수보자기,다시백,거름망 45x50-300장 봉제 지우씨'</li><li>'병원침대/환자용침대 매트리스/고탄성 접이식 마사지 지압 의료용 매트 두께 9cm_밤색 평매트리스_900mm X 1900mm 메디칼베드마트'</li></ul> |
71
+
72
+ ## Evaluation
73
+
74
+ ### Metrics
75
+ | Label | Metric |
76
+ |:--------|:-------|
77
+ | **all** | 0.9571 |
78
+
79
+ ## Uses
80
+
81
+ ### Direct Use for Inference
82
+
83
+ First install the SetFit library:
84
+
85
+ ```bash
86
+ pip install setfit
87
+ ```
88
+
89
+ Then you can load this model and run inference.
90
+
91
+ ```python
92
+ from setfit import SetFitModel
93
+
94
+ # Download from the 🤗 Hub
95
+ model = SetFitModel.from_pretrained("mini1013/master_cate_lh19")
96
+ # Run inference
97
+ preds = model("[저소음 미세입자] 오므론 네블라이저 NE-C803 꿈꾸는약국")
98
+ ```
99
+
100
+ <!--
101
+ ### Downstream Use
102
+
103
+ *List how someone could finetune this model on their own dataset.*
104
+ -->
105
+
106
+ <!--
107
+ ### Out-of-Scope Use
108
+
109
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
110
+ -->
111
+
112
+ <!--
113
+ ## Bias, Risks and Limitations
114
+
115
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
116
+ -->
117
+
118
+ <!--
119
+ ### Recommendations
120
+
121
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
122
+ -->
123
+
124
+ ## Training Details
125
+
126
+ ### Training Set Metrics
127
+ | Training set | Min | Median | Max |
128
+ |:-------------|:----|:-------|:----|
129
+ | Word count | 3 | 10.084 | 20 |
130
+
131
+ | Label | Training Sample Count |
132
+ |:------|:----------------------|
133
+ | 0.0 | 50 |
134
+ | 1.0 | 50 |
135
+ | 2.0 | 50 |
136
+ | 3.0 | 50 |
137
+ | 4.0 | 50 |
138
+
139
+ ### Training Hyperparameters
140
+ - batch_size: (512, 512)
141
+ - num_epochs: (20, 20)
142
+ - max_steps: -1
143
+ - sampling_strategy: oversampling
144
+ - num_iterations: 40
145
+ - body_learning_rate: (2e-05, 2e-05)
146
+ - head_learning_rate: 2e-05
147
+ - loss: CosineSimilarityLoss
148
+ - distance_metric: cosine_distance
149
+ - margin: 0.25
150
+ - end_to_end: False
151
+ - use_amp: False
152
+ - warmup_proportion: 0.1
153
+ - seed: 42
154
+ - eval_max_steps: -1
155
+ - load_best_model_at_end: False
156
+
157
+ ### Training Results
158
+ | Epoch | Step | Training Loss | Validation Loss |
159
+ |:-----:|:----:|:-------------:|:---------------:|
160
+ | 0.025 | 1 | 0.4162 | - |
161
+ | 1.25 | 50 | 0.2435 | - |
162
+ | 2.5 | 100 | 0.0066 | - |
163
+ | 3.75 | 150 | 0.0054 | - |
164
+ | 5.0 | 200 | 0.0001 | - |
165
+ | 6.25 | 250 | 0.0 | - |
166
+ | 7.5 | 300 | 0.0 | - |
167
+ | 8.75 | 350 | 0.0 | - |
168
+ | 10.0 | 400 | 0.0 | - |
169
+ | 11.25 | 450 | 0.0 | - |
170
+ | 12.5 | 500 | 0.0 | - |
171
+ | 13.75 | 550 | 0.0 | - |
172
+ | 15.0 | 600 | 0.0 | - |
173
+ | 16.25 | 650 | 0.0 | - |
174
+ | 17.5 | 700 | 0.0 | - |
175
+ | 18.75 | 750 | 0.0 | - |
176
+ | 20.0 | 800 | 0.0 | - |
177
+
178
+ ### Framework Versions
179
+ - Python: 3.10.12
180
+ - SetFit: 1.1.0.dev0
181
+ - Sentence Transformers: 3.1.1
182
+ - Transformers: 4.46.1
183
+ - PyTorch: 2.4.0+cu121
184
+ - Datasets: 2.20.0
185
+ - Tokenizers: 0.20.0
186
+
187
+ ## Citation
188
+
189
+ ### BibTeX
190
+ ```bibtex
191
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
192
+ doi = {10.48550/ARXIV.2209.11055},
193
+ url = {https://arxiv.org/abs/2209.11055},
194
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
195
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
196
+ title = {Efficient Few-Shot Learning Without Prompts},
197
+ publisher = {arXiv},
198
+ year = {2022},
199
+ copyright = {Creative Commons Attribution 4.0 International}
200
+ }
201
+ ```
202
+
203
+ <!--
204
+ ## Glossary
205
+
206
+ *Clearly define terms in order to be accessible across audiences.*
207
+ -->
208
+
209
+ <!--
210
+ ## Model Card Authors
211
+
212
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
213
+ -->
214
+
215
+ <!--
216
+ ## Model Card Contact
217
+
218
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
219
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_lh",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:944eae2eccbffd546678a700c9edf6b53eb7f2bdfa463fcd08003da9d6b414d0
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0fc000d2282c4f197c5b4aecb2fc8d080010995f24884d1412ce65b87e13880
3
+ size 31615
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff