mini1013 commited on
Commit
a94e850
1 Parent(s): abf60df

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 핸드자키 미니 전기 지게차 트럭 스태커 1 톤 15 1500kg 용량 4 륜 피치본
14
+ - text: 영원/욕창방지 에어 매트리스/MARK-II GREEN 향누리
15
+ - text: 지팡이의자 어르신 노인 휴대용 경량 접이식 스틱 지팡이 의자 미끄럼 방지 스틱 스툴 스카이 블루 업그레이드 145-18 매니몰
16
+ - text: 오토바이 휠체어 경사로 계단 안전발판 상가 문턱 진입판 DO.높이 7.2cm 고무 에스제이몰
17
+ - text: 고품질 장애인 화장실 손잡이 안전바 변기 안전손잡이 노인 화장실안전바 안전바(화이트 30cm) 우주방위사령부
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: metric
31
+ value: 0.880607050235328
32
+ name: Metric
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 9 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 6.0 | <ul><li>'가하 영원메디칼 욕창 클리어뷰 에어매트 요양병원침대매트 KH-1 AD1200 메디트리'</li><li>'삼각 베개 욕창방지 자세변환용구 복지용구 실버용품 SW-J3 일반구매 (장기요양등급 대상자가 아닌 경우) 케이에이치라이프(KHLife)'</li><li>'[복지용구]자세변환용구 젤패드 LBP-01 본인부담율15% 우리의료기'</li></ul> |
66
+ | 3.0 | <ul><li>'샤이닝 DS-EX 프로 3D 레이저 구강 스캐너, 휴대용 이어몰드 보청기 01 DS-EX pro 로얄트레이딩'</li><li>'골전도보청기 노인 귀걸이형 블루투스 보청기 증폭기 1_레드 손소독제'</li><li>'일본 리오네트 포켓형 보청기 HA-20DX 이화메디케어(보청기)'</li></ul> |
67
+ | 4.0 | <ul><li>'청려장 노인 지팡이 목발 나무 걷기보조기구 선물 M 직구202'</li><li>'노인용지팡이 연수목 도사 나무 우드 목재 지팡이 A타입 88cm 한발(165-175사용)4발판 지금상점'</li><li>'세비앙 CV100 안전손잡이 봉형 기둥형 안전바 천정 부착식 봉 안전봉 노인복지용구 일반구매 (A+) 늘찬 복지용구'</li></ul> |
68
+ | 7.0 | <ul><li>'납골당 봉안당 소품 미니어쳐 강아지 꾸미기 JXK치와와 2034C(그레이) 하니준한진'</li><li>'국산 보자기 유골 흰색 함보 흰보자기 유골함 흰색보자기 블루매거진'</li><li>'애견유골함 도자기 납골함 꽃 세라믹 진공 밀폐 수국 - 삼원병 영맨'</li></ul> |
69
+ | 2.0 | <ul><li>'공사장 화장실 현장용 이동식 화징실 휴게소 캠핑장 샤워가 있는 1.1x1.1x2.3 직선 행 차이엘리'</li><li>'이동식 샤워실 간이화장실 건설현장 조립식 야외 임시 거름 상자 포함 1.1x1.1x2.3 마구팜'</li><li>'화장실 변기안전손잡이 MSH-103 좌변기 보조대 지지대 양변기 안전바 노인 복지용구 고급형 부식방지 MSH-502(스테인리스)_노인장기요양등급 구입(본인부담금 6%) (A+) 늘찬 복지용구'</li></ul> |
70
+ | 1.0 | <ul><li>'헤어 워시 접이식 바스켓 CareFree H-1004 핑크 블루 미루카'</li><li>'손목보호대 커버 샤워 깁스 통깁스 붕대 보호대 방수포 상품선택_발목 제이프로젝트'</li><li>'CareFree H-1004 헤어 워시 접이식 바스켓 핑크 블루 (주)이마켓'</li></ul> |
71
+ | 0.0 | <ul><li>'Coms 납땜 LED 확대경 스탠드 2LED OE792 마트천'</li><li>'독서 확대경 스탠드 LED 조명 대형 돋보기 확대기 제이티컴퍼니'</li><li>'오토스 OTOS 용접확대경(돋보기) 산업안전용품 안전용품 안면보호구 용접용품 2.50 스위치컴퍼니'</li></ul> |
72
+ | 5.0 | <ul><li>'할머니유모차 노인 어르신 성인용 보행기 보행보조기 실버카 DS-379 DS-800 PLUS 800 (주)메디위'</li><li>'살졸 보행기 카본 롤레이터 노인 보행보조기 환자용 워커 할머니 워커기 어른유모차 복지용구 그린_미디움( 신장 : 170cm~200cm)_노인장기요양등급 구매(본인부담금 15%) (A+) 늘찬 복지용구'</li><li>'태양메디텍 해피웰리스 보행보조차 F-338 메디위'</li></ul> |
73
+ | 8.0 | <ul><li>'족욕통 정맥류 정맥 치료 적인 완화 혈관염 정맥염 거미줄 통증 05 Buy 10 get 13 free 율리시에'</li><li>'휠체어 바퀴 베어링 타이어 부품 22인치 교체 수동 22인치 (솔리드 타이어) - 그레이 하나누리'</li><li>'머리 받침 베개 노인 목받침대 환자 쿠션 악세사리 휠체어 헤드레스트 이동식 1. 블랙 패스트커머스'</li></ul> |
74
+
75
+ ## Evaluation
76
+
77
+ ### Metrics
78
+ | Label | Metric |
79
+ |:--------|:-------|
80
+ | **all** | 0.8806 |
81
+
82
+ ## Uses
83
+
84
+ ### Direct Use for Inference
85
+
86
+ First install the SetFit library:
87
+
88
+ ```bash
89
+ pip install setfit
90
+ ```
91
+
92
+ Then you can load this model and run inference.
93
+
94
+ ```python
95
+ from setfit import SetFitModel
96
+
97
+ # Download from the 🤗 Hub
98
+ model = SetFitModel.from_pretrained("mini1013/master_cate_lh16")
99
+ # Run inference
100
+ preds = model("영원/욕창방지 에어 매트리스/MARK-II GREEN 향누리")
101
+ ```
102
+
103
+ <!--
104
+ ### Downstream Use
105
+
106
+ *List how someone could finetune this model on their own dataset.*
107
+ -->
108
+
109
+ <!--
110
+ ### Out-of-Scope Use
111
+
112
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
113
+ -->
114
+
115
+ <!--
116
+ ## Bias, Risks and Limitations
117
+
118
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
119
+ -->
120
+
121
+ <!--
122
+ ### Recommendations
123
+
124
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
125
+ -->
126
+
127
+ ## Training Details
128
+
129
+ ### Training Set Metrics
130
+ | Training set | Min | Median | Max |
131
+ |:-------------|:----|:--------|:----|
132
+ | Word count | 3 | 10.4333 | 21 |
133
+
134
+ | Label | Training Sample Count |
135
+ |:------|:----------------------|
136
+ | 0.0 | 50 |
137
+ | 1.0 | 50 |
138
+ | 2.0 | 50 |
139
+ | 3.0 | 50 |
140
+ | 4.0 | 50 |
141
+ | 5.0 | 50 |
142
+ | 6.0 | 50 |
143
+ | 7.0 | 50 |
144
+ | 8.0 | 50 |
145
+
146
+ ### Training Hyperparameters
147
+ - batch_size: (512, 512)
148
+ - num_epochs: (20, 20)
149
+ - max_steps: -1
150
+ - sampling_strategy: oversampling
151
+ - num_iterations: 40
152
+ - body_learning_rate: (2e-05, 2e-05)
153
+ - head_learning_rate: 2e-05
154
+ - loss: CosineSimilarityLoss
155
+ - distance_metric: cosine_distance
156
+ - margin: 0.25
157
+ - end_to_end: False
158
+ - use_amp: False
159
+ - warmup_proportion: 0.1
160
+ - seed: 42
161
+ - eval_max_steps: -1
162
+ - load_best_model_at_end: False
163
+
164
+ ### Training Results
165
+ | Epoch | Step | Training Loss | Validation Loss |
166
+ |:-------:|:----:|:-------------:|:---------------:|
167
+ | 0.0141 | 1 | 0.4502 | - |
168
+ | 0.7042 | 50 | 0.3154 | - |
169
+ | 1.4085 | 100 | 0.0837 | - |
170
+ | 2.1127 | 150 | 0.0399 | - |
171
+ | 2.8169 | 200 | 0.0081 | - |
172
+ | 3.5211 | 250 | 0.0057 | - |
173
+ | 4.2254 | 300 | 0.0003 | - |
174
+ | 4.9296 | 350 | 0.0002 | - |
175
+ | 5.6338 | 400 | 0.0001 | - |
176
+ | 6.3380 | 450 | 0.0002 | - |
177
+ | 7.0423 | 500 | 0.0001 | - |
178
+ | 7.7465 | 550 | 0.0001 | - |
179
+ | 8.4507 | 600 | 0.0001 | - |
180
+ | 9.1549 | 650 | 0.0001 | - |
181
+ | 9.8592 | 700 | 0.0001 | - |
182
+ | 10.5634 | 750 | 0.0 | - |
183
+ | 11.2676 | 800 | 0.0001 | - |
184
+ | 11.9718 | 850 | 0.0 | - |
185
+ | 12.6761 | 900 | 0.0 | - |
186
+ | 13.3803 | 950 | 0.0 | - |
187
+ | 14.0845 | 1000 | 0.0001 | - |
188
+ | 14.7887 | 1050 | 0.0 | - |
189
+ | 15.4930 | 1100 | 0.0 | - |
190
+ | 16.1972 | 1150 | 0.0 | - |
191
+ | 16.9014 | 1200 | 0.0 | - |
192
+ | 17.6056 | 1250 | 0.0 | - |
193
+ | 18.3099 | 1300 | 0.0 | - |
194
+ | 19.0141 | 1350 | 0.0 | - |
195
+ | 19.7183 | 1400 | 0.0 | - |
196
+
197
+ ### Framework Versions
198
+ - Python: 3.10.12
199
+ - SetFit: 1.1.0.dev0
200
+ - Sentence Transformers: 3.1.1
201
+ - Transformers: 4.46.1
202
+ - PyTorch: 2.4.0+cu121
203
+ - Datasets: 2.20.0
204
+ - Tokenizers: 0.20.0
205
+
206
+ ## Citation
207
+
208
+ ### BibTeX
209
+ ```bibtex
210
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
211
+ doi = {10.48550/ARXIV.2209.11055},
212
+ url = {https://arxiv.org/abs/2209.11055},
213
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
214
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
215
+ title = {Efficient Few-Shot Learning Without Prompts},
216
+ publisher = {arXiv},
217
+ year = {2022},
218
+ copyright = {Creative Commons Attribution 4.0 International}
219
+ }
220
+ ```
221
+
222
+ <!--
223
+ ## Glossary
224
+
225
+ *Clearly define terms in order to be accessible across audiences.*
226
+ -->
227
+
228
+ <!--
229
+ ## Model Card Authors
230
+
231
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
232
+ -->
233
+
234
+ <!--
235
+ ## Model Card Contact
236
+
237
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
238
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_lh",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70e32f8f29169543817f07f8d8e98c60c19276feaea77f92c4e72ccf37000ddd
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abeaf2f19bc62df244695aa530d7dbe09e56d71e43e96255f3d9c4be1e378c28
3
+ size 56255
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff