mini1013 commited on
Commit
928ea9c
1 Parent(s): 67d43e2

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,263 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: ipTIME AX3000M WiFi 6 기가비트 와이파이 공유기 메시 무선 유무선 인터넷 애플준웍스
14
+ - text: 솔텍 SFC200-SCSW/A 광 컨버터 싱글모드 WDM 1코어 파워네트정보통신(주)
15
+ - text: 7102KVM-4K (주)이지넷유비쿼터스
16
+ - text: 아이피타임 데스크탑 무선 랜카드 PCI-E Wi-Fi 6 기가 인터넷 와이파이 수신기 11AX 3000PX 주식회사 디앤에스티
17
+ - text: '[공식 인증 판매점] IPTIME EFM네트웍스 아이피타임 Extender-A3MU WiFi 와이파이 듀얼밴드 무선AP 증폭기 확장기 (주)거북선비젼'
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: metric
31
+ value: 0.9336257647466236
32
+ name: Metric
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 16 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 15 | <ul><li>'이지넷 NEXT-AV2303 HDMI to AV 오디오 추출기 [KF] 주식회사 케이에프컴퍼니'</li><li>'이지넷유비쿼터스 넥스트 NEXT-2000GSCS 디메이드 (DMADE)'</li><li>'ATEN UC3002A C타입 to VGA 변환 컨버터 레알몰'</li></ul> |
66
+ | 5 | <ul><li>'티피링크 TL-SM331T RJ45 SFP+ 지원 변환 TX모듈 광모듈 케이브몰'</li><li>'대흥정보기술 SPARROW SFP-1G-RJ45 광모듈 컴튜브 주식회사'</li><li>'티피링크 SM321B-2 주식회사 동행하기'</li></ul> |
67
+ | 4 | <ul><li>'MBF) RJ-45 커넥터 CAT5E UTP 투명 100개 MBF-RJ45 교이노베이션'</li><li>'w 넥스트 NEXT-RJ45 CAT.5e 모듈러 커넥터 (100개) (주)원영씨앤씨'</li><li>'Coms 커플러(RJ45) I형 8P8C BT228 (주)라니아씨앤씨'</li></ul> |
68
+ | 2 | <ul><li>'KM-021N USB3.0 KM 데이터 통신 컨버터(키보드/마우스 공유) 서준전자'</li><li>'USB3.0 KM LINK 케이블 JUC500 우노'</li><li>'NEXT-JUC500 USB 3.0 KM 스위치 Windows-Android 키보드&마우스 공유, 파일 공유 주식회사 토다스(todas Co., Ltd)'</li></ul> |
69
+ | 12 | <ul><li>'EFM ipTIME BT53XR 품위 주식회사 품위'</li><li>'크리에이티브 BT-W3 초록샵'</li><li>'[NEXI] NX1420 블루투스 V5.4 동글(NX-BT54) (주)클루웨어'</li></ul> |
70
+ | 3 | <ul><li>'IPTIME A3008-MU 기가 유무선 공유기 인터넷 와이파이 식당 매장 가정용 사무실 원룸 김윤자'</li><li>'(EFM) IPTIME RING-MINI2 AC1300 MU-MIMO WI-FI Mesh ㅅ 드림체이서'</li><li>'넥스트유 듀얼 밴드 무선 WiFi 확장기 NEXT-1204AC-AP (주)이지넷유비쿼터스'</li></ul> |
71
+ | 8 | <ul><li>'이지넷유비쿼터스 넥스트 NEXT-3100K EX 와이지컴퍼니'</li><li>'티피링크 Archer T4U Plus 주식회사 영은정보'</li><li>'EFM ipTIME A3000U 무선랜카드 (주)위젤'</li></ul> |
72
+ | 10 | <ul><li>'[랜장비] NST NSB-200 ADSL 랜모뎀 전화선으로 1Km (13/26Mbps) (주)랜장비'</li><li>'(IPD) NST 엔에스티정보통신 NSB-200 ADSL 랜모뎀 전화선으로 1Km (NSB-1000, NSB-260 후속모델) (주)아이피드림'</li><li>'엔에스티정보통신 NSB-200 모뎀 (주)원영씨앤씨'</li></ul> |
73
+ | 7 | <ul><li>'MikroTik 마이크로틱 L009UiGS-RM 방화벽 Router 컴튜브 주식회사'</li><li>'w 티피링크 TP-LINK ER7412-M2 라우터 (주)원영씨앤씨'</li><li>'MikroTik 마이크로틱 L009UiGS-RM 라우터 태성에프앤비(주)'</li></ul> |
74
+ | 14 | <ul><li>'EFM ipTIME 아이피타임 N007 안테나 (주)엠티에프시스템'</li><li>'ipTIME N007 외장형 N타입 안테나 듀얼밴드 5G 2.4G 7dbi 케이블길이 약1.5M 무상보증 1년 / 주말영업 / 방문수령 가능 / 재고보유 (주)티오피컴'</li><li>'이에프엠 ipTIME N007 무선안테나 연장안테나 (주)엘제이컴퍼니'</li></ul> |
75
+ | 1 | <ul><li>'NEXTU NEXT-1020KVM-IP 에스앤와이'</li><li>'ATEN KL1516AM 17인치 16포트 Cat 5 듀얼레일 LCD KVM 스위치 (주)아이웍스'</li><li>'에이텐 KE8950T KVM over IP 매트릭스 시스템 (수신기) 1년 보증연장 (주)퍼니케이블'</li></ul> |
76
+ | 13 | <ul><li>'아이피타임 ipTIME H705 스위치허브 에스온코리아 주식회사'</li><li>'아이피타임 H705 스위칭허브 컴온씨앤씨(주)'</li><li>'아이피타임 H6008 8포트 기가비트 스위치허브 (주)엠티에프시스템'</li></ul> |
77
+ | 6 | <ul><li>'NEXT-868LTT /랜테스터기 UTP/동축라인길이/케이블탐지 (주)엘제이컴퍼니'</li><li>'인네트워크 탐지용 멀티 테스터기IN-468R 디메이드 (DMADE)'</li><li>'MBF T1 분리형 랜테스터기 조은 정보'</li></ul> |
78
+ | 9 | <ul><li>'이지넷 산업용 POE+ 리피터 NEXT-POE201EX 최대300M/RJ-45 [KF] 주식회사 케이에프컴퍼니'</li><li>'이지넷유비쿼터스 넥스트 산업용 USB 2.0 리피터 50m (NEXT-USB404) 주식회사 조이쿨'</li><li>'넥시 HDMI 리피터 송수신기 세트 50M NX-HR50 NX509 하나샵'</li></ul> |
79
+ | 11 | <ul><li>'[랜장비] NST NSB-230S SDSL 랜모뎀, 모뎀에서 전화선으로 최대 4.5km 까지 데이타 전송 (주)랜장비'</li><li>'(IPD) NST 엔에스티정보통신 NSB-230S SDSL 랜모뎀, 모뎀에서 전화선으로 최대 4.5km 까지 데이타 전송 (주)아이피드림'</li><li>'TL-POE10R 티피링크 [PoE 스플리터] 1000Mbps IEEE 802.3af 전압 조절스위치 5V 9V 12V 선택 가능 전송거리 100M 지원 비전네트워크'</li></ul> |
80
+ | 0 | <ul><li>'EFM ipTIME Ring-AX 무선확장기 디에스큐브스토어'</li><li>'1300K 유무선공유기 AX1800 빔포밍 MU MIMO 기가비트 듀얼밴드 [0001]단일상품 CJONSTYLE'</li><li>'ipTIME Ring-AX WiFi 6 PoE 무선AP 기가 메시 와이파이확장기 증폭기 중계기 애플준웍스'</li></ul> |
81
+
82
+ ## Evaluation
83
+
84
+ ### Metrics
85
+ | Label | Metric |
86
+ |:--------|:-------|
87
+ | **all** | 0.9336 |
88
+
89
+ ## Uses
90
+
91
+ ### Direct Use for Inference
92
+
93
+ First install the SetFit library:
94
+
95
+ ```bash
96
+ pip install setfit
97
+ ```
98
+
99
+ Then you can load this model and run inference.
100
+
101
+ ```python
102
+ from setfit import SetFitModel
103
+
104
+ # Download from the 🤗 Hub
105
+ model = SetFitModel.from_pretrained("mini1013/master_cate_el5")
106
+ # Run inference
107
+ preds = model("7102KVM-4K (주)이지넷유비쿼터스")
108
+ ```
109
+
110
+ <!--
111
+ ### Downstream Use
112
+
113
+ *List how someone could finetune this model on their own dataset.*
114
+ -->
115
+
116
+ <!--
117
+ ### Out-of-Scope Use
118
+
119
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
120
+ -->
121
+
122
+ <!--
123
+ ## Bias, Risks and Limitations
124
+
125
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
126
+ -->
127
+
128
+ <!--
129
+ ### Recommendations
130
+
131
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
132
+ -->
133
+
134
+ ## Training Details
135
+
136
+ ### Training Set Metrics
137
+ | Training set | Min | Median | Max |
138
+ |:-------------|:----|:-------|:----|
139
+ | Word count | 3 | 8.8470 | 24 |
140
+
141
+ | Label | Training Sample Count |
142
+ |:------|:----------------------|
143
+ | 0 | 4 |
144
+ | 1 | 50 |
145
+ | 2 | 26 |
146
+ | 3 | 50 |
147
+ | 4 | 50 |
148
+ | 5 | 50 |
149
+ | 6 | 50 |
150
+ | 7 | 32 |
151
+ | 8 | 50 |
152
+ | 9 | 50 |
153
+ | 10 | 6 |
154
+ | 11 | 3 |
155
+ | 12 | 50 |
156
+ | 13 | 50 |
157
+ | 14 | 50 |
158
+ | 15 | 50 |
159
+
160
+ ### Training Hyperparameters
161
+ - batch_size: (512, 512)
162
+ - num_epochs: (20, 20)
163
+ - max_steps: -1
164
+ - sampling_strategy: oversampling
165
+ - num_iterations: 40
166
+ - body_learning_rate: (2e-05, 2e-05)
167
+ - head_learning_rate: 2e-05
168
+ - loss: CosineSimilarityLoss
169
+ - distance_metric: cosine_distance
170
+ - margin: 0.25
171
+ - end_to_end: False
172
+ - use_amp: False
173
+ - warmup_proportion: 0.1
174
+ - seed: 42
175
+ - eval_max_steps: -1
176
+ - load_best_model_at_end: False
177
+
178
+ ### Training Results
179
+ | Epoch | Step | Training Loss | Validation Loss |
180
+ |:-------:|:----:|:-------------:|:---------------:|
181
+ | 0.0102 | 1 | 0.4967 | - |
182
+ | 0.5102 | 50 | 0.3039 | - |
183
+ | 1.0204 | 100 | 0.1904 | - |
184
+ | 1.5306 | 150 | 0.0492 | - |
185
+ | 2.0408 | 200 | 0.0328 | - |
186
+ | 2.5510 | 250 | 0.0146 | - |
187
+ | 3.0612 | 300 | 0.0101 | - |
188
+ | 3.5714 | 350 | 0.0137 | - |
189
+ | 4.0816 | 400 | 0.0023 | - |
190
+ | 4.5918 | 450 | 0.0002 | - |
191
+ | 5.1020 | 500 | 0.0001 | - |
192
+ | 5.6122 | 550 | 0.0001 | - |
193
+ | 6.1224 | 600 | 0.0037 | - |
194
+ | 6.6327 | 650 | 0.0001 | - |
195
+ | 7.1429 | 700 | 0.0001 | - |
196
+ | 7.6531 | 750 | 0.0001 | - |
197
+ | 8.1633 | 800 | 0.0039 | - |
198
+ | 8.6735 | 850 | 0.0039 | - |
199
+ | 9.1837 | 900 | 0.002 | - |
200
+ | 9.6939 | 950 | 0.0007 | - |
201
+ | 10.2041 | 1000 | 0.0001 | - |
202
+ | 10.7143 | 1050 | 0.0001 | - |
203
+ | 11.2245 | 1100 | 0.0001 | - |
204
+ | 11.7347 | 1150 | 0.0 | - |
205
+ | 12.2449 | 1200 | 0.0 | - |
206
+ | 12.7551 | 1250 | 0.0002 | - |
207
+ | 13.2653 | 1300 | 0.0001 | - |
208
+ | 13.7755 | 1350 | 0.0001 | - |
209
+ | 14.2857 | 1400 | 0.0 | - |
210
+ | 14.7959 | 1450 | 0.0 | - |
211
+ | 15.3061 | 1500 | 0.0002 | - |
212
+ | 15.8163 | 1550 | 0.0 | - |
213
+ | 16.3265 | 1600 | 0.0001 | - |
214
+ | 16.8367 | 1650 | 0.0023 | - |
215
+ | 17.3469 | 1700 | 0.0 | - |
216
+ | 17.8571 | 1750 | 0.0001 | - |
217
+ | 18.3673 | 1800 | 0.0001 | - |
218
+ | 18.8776 | 1850 | 0.0 | - |
219
+ | 19.3878 | 1900 | 0.0 | - |
220
+ | 19.8980 | 1950 | 0.0 | - |
221
+
222
+ ### Framework Versions
223
+ - Python: 3.10.12
224
+ - SetFit: 1.1.0.dev0
225
+ - Sentence Transformers: 3.1.1
226
+ - Transformers: 4.46.1
227
+ - PyTorch: 2.4.0+cu121
228
+ - Datasets: 2.20.0
229
+ - Tokenizers: 0.20.0
230
+
231
+ ## Citation
232
+
233
+ ### BibTeX
234
+ ```bibtex
235
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
236
+ doi = {10.48550/ARXIV.2209.11055},
237
+ url = {https://arxiv.org/abs/2209.11055},
238
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
239
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
240
+ title = {Efficient Few-Shot Learning Without Prompts},
241
+ publisher = {arXiv},
242
+ year = {2022},
243
+ copyright = {Creative Commons Attribution 4.0 International}
244
+ }
245
+ ```
246
+
247
+ <!--
248
+ ## Glossary
249
+
250
+ *Clearly define terms in order to be accessible across audiences.*
251
+ -->
252
+
253
+ <!--
254
+ ## Model Card Authors
255
+
256
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
257
+ -->
258
+
259
+ <!--
260
+ ## Model Card Contact
261
+
262
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
263
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_el",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:803b59d7213ba2e7c703021b878c1a00bd454e75623e1db361e436b056dbdd42
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:606a3aec0daead1d3ab2414ede61210b243217d053b590964e0172d73b067bfe
3
+ size 99399
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff