Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +263 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mini1013/master_domain
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- metric
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: ipTIME AX3000M WiFi 6 기가비트 와이파이 공유기 메시 무선 유무선 인터넷 애플준웍스
|
14 |
+
- text: 솔텍 SFC200-SCSW/A 광 컨버터 싱글모드 WDM 1코어 파워네트정보통신(주)
|
15 |
+
- text: 7102KVM-4K (주)이지넷유비쿼터스
|
16 |
+
- text: 아이피타임 데스크탑 무선 랜카드 PCI-E Wi-Fi 6 기가 인터넷 와이파이 수신기 11AX 3000PX 주식회사 디앤에스티
|
17 |
+
- text: '[공식 인증 판매점] IPTIME EFM네트웍스 아이피타임 Extender-A3MU WiFi 와이파이 듀얼밴드 무선AP 증폭기 확장기 (주)거북선비젼'
|
18 |
+
inference: true
|
19 |
+
model-index:
|
20 |
+
- name: SetFit with mini1013/master_domain
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-classification
|
24 |
+
name: Text Classification
|
25 |
+
dataset:
|
26 |
+
name: Unknown
|
27 |
+
type: unknown
|
28 |
+
split: test
|
29 |
+
metrics:
|
30 |
+
- type: metric
|
31 |
+
value: 0.9336257647466236
|
32 |
+
name: Metric
|
33 |
+
---
|
34 |
+
|
35 |
+
# SetFit with mini1013/master_domain
|
36 |
+
|
37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
38 |
+
|
39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
40 |
+
|
41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** SetFit
|
48 |
+
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
|
49 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
50 |
+
- **Maximum Sequence Length:** 512 tokens
|
51 |
+
- **Number of Classes:** 16 classes
|
52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
+
|
62 |
+
### Model Labels
|
63 |
+
| Label | Examples |
|
64 |
+
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
+
| 15 | <ul><li>'이지넷 NEXT-AV2303 HDMI to AV 오디오 추출기 [KF] 주식회사 케이에프컴퍼니'</li><li>'이지넷유비쿼터스 넥스트 NEXT-2000GSCS 디메이드 (DMADE)'</li><li>'ATEN UC3002A C타입 to VGA 변환 컨버터 레알몰'</li></ul> |
|
66 |
+
| 5 | <ul><li>'티피링크 TL-SM331T RJ45 SFP+ 지원 변환 TX모듈 광모듈 케이브몰'</li><li>'대흥정보기술 SPARROW SFP-1G-RJ45 광모듈 컴튜브 주식회사'</li><li>'티피링크 SM321B-2 주식회사 동행하기'</li></ul> |
|
67 |
+
| 4 | <ul><li>'MBF) RJ-45 커넥터 CAT5E UTP 투명 100개 MBF-RJ45 교이노베이션'</li><li>'w 넥스트 NEXT-RJ45 CAT.5e 모듈러 커넥터 (100개) (주)원영씨앤씨'</li><li>'Coms 커플러(RJ45) I형 8P8C BT228 (주)라니아씨앤씨'</li></ul> |
|
68 |
+
| 2 | <ul><li>'KM-021N USB3.0 KM 데이터 통신 컨버터(키보드/마우스 공유) 서준전자'</li><li>'USB3.0 KM LINK 케이블 JUC500 우노'</li><li>'NEXT-JUC500 USB 3.0 KM 스위치 Windows-Android 키보드&마우스 공유, 파일 공유 주식회사 토다스(todas Co., Ltd)'</li></ul> |
|
69 |
+
| 12 | <ul><li>'EFM ipTIME BT53XR 품위 주식회사 품위'</li><li>'크리에이티브 BT-W3 초록샵'</li><li>'[NEXI] NX1420 블루투스 V5.4 동글(NX-BT54) (주)클루웨어'</li></ul> |
|
70 |
+
| 3 | <ul><li>'IPTIME A3008-MU 기가 유무선 공유기 인터넷 와이파이 식당 매장 가정용 사무실 원룸 김윤자'</li><li>'(EFM) IPTIME RING-MINI2 AC1300 MU-MIMO WI-FI Mesh ㅅ 드림체이서'</li><li>'넥스트유 듀얼 밴드 무선 WiFi 확장기 NEXT-1204AC-AP (주)이지넷유비쿼터스'</li></ul> |
|
71 |
+
| 8 | <ul><li>'이지넷유비쿼터스 넥스트 NEXT-3100K EX 와이지컴퍼니'</li><li>'티피링크 Archer T4U Plus 주식회사 영은정보'</li><li>'EFM ipTIME A3000U 무선랜카드 (주)위젤'</li></ul> |
|
72 |
+
| 10 | <ul><li>'[랜장비] NST NSB-200 ADSL 랜모뎀 전화선으로 1Km (13/26Mbps) (주)랜장비'</li><li>'(IPD) NST 엔에스티정보통신 NSB-200 ADSL 랜모뎀 전화선으로 1Km (NSB-1000, NSB-260 후속모델) (주)아이피드림'</li><li>'엔에스티정보통신 NSB-200 모뎀 (주)원영씨앤씨'</li></ul> |
|
73 |
+
| 7 | <ul><li>'MikroTik 마이크로틱 L009UiGS-RM 방화벽 Router 컴튜브 주식회사'</li><li>'w 티피링크 TP-LINK ER7412-M2 라우터 (주)원영씨앤씨'</li><li>'MikroTik 마이크로틱 L009UiGS-RM 라우터 태성에프앤비(주)'</li></ul> |
|
74 |
+
| 14 | <ul><li>'EFM ipTIME 아이피타임 N007 안테나 (주)엠티에프시스템'</li><li>'ipTIME N007 외장형 N타입 안테나 듀얼밴드 5G 2.4G 7dbi 케이블길이 약1.5M 무상보증 1년 / 주말영업 / 방문수령 가능 / 재고보유 (주)티오피컴'</li><li>'이에프엠 ipTIME N007 무선안테나 연장안테나 (주)엘제이컴퍼니'</li></ul> |
|
75 |
+
| 1 | <ul><li>'NEXTU NEXT-1020KVM-IP 에스앤와이'</li><li>'ATEN KL1516AM 17인치 16포트 Cat 5 듀얼레일 LCD KVM 스위치 (주)아이웍스'</li><li>'에이텐 KE8950T KVM over IP 매트릭스 시스템 (수신기) 1년 보증연장 (주)퍼니케이블'</li></ul> |
|
76 |
+
| 13 | <ul><li>'아이피타임 ipTIME H705 스위치허브 에스온코리아 주식회사'</li><li>'아이피타임 H705 스위칭허브 컴온씨앤씨(주)'</li><li>'아이피타임 H6008 8포트 기가비트 스위치허브 (주)엠티에프시스템'</li></ul> |
|
77 |
+
| 6 | <ul><li>'NEXT-868LTT /랜테스터기 UTP/동축라인길이/케이블탐지 (주)엘제이컴퍼니'</li><li>'인네트워크 탐지용 멀티 테스터기IN-468R 디메이드 (DMADE)'</li><li>'MBF T1 분리형 랜테스터기 조은 정보'</li></ul> |
|
78 |
+
| 9 | <ul><li>'이지넷 산업용 POE+ 리피터 NEXT-POE201EX 최대300M/RJ-45 [KF] 주식회사 케이에프컴퍼니'</li><li>'이지넷유비쿼터스 넥스트 산업용 USB 2.0 리피터 50m (NEXT-USB404) 주식회사 조이쿨'</li><li>'넥시 HDMI 리피터 송수신기 세트 50M NX-HR50 NX509 하나샵'</li></ul> |
|
79 |
+
| 11 | <ul><li>'[랜장비] NST NSB-230S SDSL 랜모뎀, 모뎀에서 전화선으로 최대 4.5km 까지 데이타 전송 (주)랜장비'</li><li>'(IPD) NST 엔에스티정보통신 NSB-230S SDSL 랜모뎀, 모뎀에서 전화선으로 최대 4.5km 까지 데이타 전송 (주)아이피드림'</li><li>'TL-POE10R 티피링크 [PoE 스플리터] 1000Mbps IEEE 802.3af 전압 조절스위치 5V 9V 12V 선택 가능 전송거리 100M 지원 비전네트워크'</li></ul> |
|
80 |
+
| 0 | <ul><li>'EFM ipTIME Ring-AX 무선확장기 디에스큐브스토어'</li><li>'1300K 유무선공유기 AX1800 빔포밍 MU MIMO 기가비트 듀얼밴드 [0001]단일상품 CJONSTYLE'</li><li>'ipTIME Ring-AX WiFi 6 PoE 무선AP 기가 메시 와이파이확장기 증폭기 중계기 애플준웍스'</li></ul> |
|
81 |
+
|
82 |
+
## Evaluation
|
83 |
+
|
84 |
+
### Metrics
|
85 |
+
| Label | Metric |
|
86 |
+
|:--------|:-------|
|
87 |
+
| **all** | 0.9336 |
|
88 |
+
|
89 |
+
## Uses
|
90 |
+
|
91 |
+
### Direct Use for Inference
|
92 |
+
|
93 |
+
First install the SetFit library:
|
94 |
+
|
95 |
+
```bash
|
96 |
+
pip install setfit
|
97 |
+
```
|
98 |
+
|
99 |
+
Then you can load this model and run inference.
|
100 |
+
|
101 |
+
```python
|
102 |
+
from setfit import SetFitModel
|
103 |
+
|
104 |
+
# Download from the 🤗 Hub
|
105 |
+
model = SetFitModel.from_pretrained("mini1013/master_cate_el5")
|
106 |
+
# Run inference
|
107 |
+
preds = model("7102KVM-4K (주)이지넷유비쿼터스")
|
108 |
+
```
|
109 |
+
|
110 |
+
<!--
|
111 |
+
### Downstream Use
|
112 |
+
|
113 |
+
*List how someone could finetune this model on their own dataset.*
|
114 |
+
-->
|
115 |
+
|
116 |
+
<!--
|
117 |
+
### Out-of-Scope Use
|
118 |
+
|
119 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
120 |
+
-->
|
121 |
+
|
122 |
+
<!--
|
123 |
+
## Bias, Risks and Limitations
|
124 |
+
|
125 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
126 |
+
-->
|
127 |
+
|
128 |
+
<!--
|
129 |
+
### Recommendations
|
130 |
+
|
131 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
132 |
+
-->
|
133 |
+
|
134 |
+
## Training Details
|
135 |
+
|
136 |
+
### Training Set Metrics
|
137 |
+
| Training set | Min | Median | Max |
|
138 |
+
|:-------------|:----|:-------|:----|
|
139 |
+
| Word count | 3 | 8.8470 | 24 |
|
140 |
+
|
141 |
+
| Label | Training Sample Count |
|
142 |
+
|:------|:----------------------|
|
143 |
+
| 0 | 4 |
|
144 |
+
| 1 | 50 |
|
145 |
+
| 2 | 26 |
|
146 |
+
| 3 | 50 |
|
147 |
+
| 4 | 50 |
|
148 |
+
| 5 | 50 |
|
149 |
+
| 6 | 50 |
|
150 |
+
| 7 | 32 |
|
151 |
+
| 8 | 50 |
|
152 |
+
| 9 | 50 |
|
153 |
+
| 10 | 6 |
|
154 |
+
| 11 | 3 |
|
155 |
+
| 12 | 50 |
|
156 |
+
| 13 | 50 |
|
157 |
+
| 14 | 50 |
|
158 |
+
| 15 | 50 |
|
159 |
+
|
160 |
+
### Training Hyperparameters
|
161 |
+
- batch_size: (512, 512)
|
162 |
+
- num_epochs: (20, 20)
|
163 |
+
- max_steps: -1
|
164 |
+
- sampling_strategy: oversampling
|
165 |
+
- num_iterations: 40
|
166 |
+
- body_learning_rate: (2e-05, 2e-05)
|
167 |
+
- head_learning_rate: 2e-05
|
168 |
+
- loss: CosineSimilarityLoss
|
169 |
+
- distance_metric: cosine_distance
|
170 |
+
- margin: 0.25
|
171 |
+
- end_to_end: False
|
172 |
+
- use_amp: False
|
173 |
+
- warmup_proportion: 0.1
|
174 |
+
- seed: 42
|
175 |
+
- eval_max_steps: -1
|
176 |
+
- load_best_model_at_end: False
|
177 |
+
|
178 |
+
### Training Results
|
179 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
180 |
+
|:-------:|:----:|:-------------:|:---------------:|
|
181 |
+
| 0.0102 | 1 | 0.4967 | - |
|
182 |
+
| 0.5102 | 50 | 0.3039 | - |
|
183 |
+
| 1.0204 | 100 | 0.1904 | - |
|
184 |
+
| 1.5306 | 150 | 0.0492 | - |
|
185 |
+
| 2.0408 | 200 | 0.0328 | - |
|
186 |
+
| 2.5510 | 250 | 0.0146 | - |
|
187 |
+
| 3.0612 | 300 | 0.0101 | - |
|
188 |
+
| 3.5714 | 350 | 0.0137 | - |
|
189 |
+
| 4.0816 | 400 | 0.0023 | - |
|
190 |
+
| 4.5918 | 450 | 0.0002 | - |
|
191 |
+
| 5.1020 | 500 | 0.0001 | - |
|
192 |
+
| 5.6122 | 550 | 0.0001 | - |
|
193 |
+
| 6.1224 | 600 | 0.0037 | - |
|
194 |
+
| 6.6327 | 650 | 0.0001 | - |
|
195 |
+
| 7.1429 | 700 | 0.0001 | - |
|
196 |
+
| 7.6531 | 750 | 0.0001 | - |
|
197 |
+
| 8.1633 | 800 | 0.0039 | - |
|
198 |
+
| 8.6735 | 850 | 0.0039 | - |
|
199 |
+
| 9.1837 | 900 | 0.002 | - |
|
200 |
+
| 9.6939 | 950 | 0.0007 | - |
|
201 |
+
| 10.2041 | 1000 | 0.0001 | - |
|
202 |
+
| 10.7143 | 1050 | 0.0001 | - |
|
203 |
+
| 11.2245 | 1100 | 0.0001 | - |
|
204 |
+
| 11.7347 | 1150 | 0.0 | - |
|
205 |
+
| 12.2449 | 1200 | 0.0 | - |
|
206 |
+
| 12.7551 | 1250 | 0.0002 | - |
|
207 |
+
| 13.2653 | 1300 | 0.0001 | - |
|
208 |
+
| 13.7755 | 1350 | 0.0001 | - |
|
209 |
+
| 14.2857 | 1400 | 0.0 | - |
|
210 |
+
| 14.7959 | 1450 | 0.0 | - |
|
211 |
+
| 15.3061 | 1500 | 0.0002 | - |
|
212 |
+
| 15.8163 | 1550 | 0.0 | - |
|
213 |
+
| 16.3265 | 1600 | 0.0001 | - |
|
214 |
+
| 16.8367 | 1650 | 0.0023 | - |
|
215 |
+
| 17.3469 | 1700 | 0.0 | - |
|
216 |
+
| 17.8571 | 1750 | 0.0001 | - |
|
217 |
+
| 18.3673 | 1800 | 0.0001 | - |
|
218 |
+
| 18.8776 | 1850 | 0.0 | - |
|
219 |
+
| 19.3878 | 1900 | 0.0 | - |
|
220 |
+
| 19.8980 | 1950 | 0.0 | - |
|
221 |
+
|
222 |
+
### Framework Versions
|
223 |
+
- Python: 3.10.12
|
224 |
+
- SetFit: 1.1.0.dev0
|
225 |
+
- Sentence Transformers: 3.1.1
|
226 |
+
- Transformers: 4.46.1
|
227 |
+
- PyTorch: 2.4.0+cu121
|
228 |
+
- Datasets: 2.20.0
|
229 |
+
- Tokenizers: 0.20.0
|
230 |
+
|
231 |
+
## Citation
|
232 |
+
|
233 |
+
### BibTeX
|
234 |
+
```bibtex
|
235 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
236 |
+
doi = {10.48550/ARXIV.2209.11055},
|
237 |
+
url = {https://arxiv.org/abs/2209.11055},
|
238 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
239 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
240 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
241 |
+
publisher = {arXiv},
|
242 |
+
year = {2022},
|
243 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
244 |
+
}
|
245 |
+
```
|
246 |
+
|
247 |
+
<!--
|
248 |
+
## Glossary
|
249 |
+
|
250 |
+
*Clearly define terms in order to be accessible across audiences.*
|
251 |
+
-->
|
252 |
+
|
253 |
+
<!--
|
254 |
+
## Model Card Authors
|
255 |
+
|
256 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
257 |
+
-->
|
258 |
+
|
259 |
+
<!--
|
260 |
+
## Model Card Contact
|
261 |
+
|
262 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
263 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mini1013/master_item_el",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.46.1",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.46.1",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:803b59d7213ba2e7c703021b878c1a00bd454e75623e1db361e436b056dbdd42
|
3 |
+
size 442494816
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:606a3aec0daead1d3ab2414ede61210b243217d053b590964e0172d73b067bfe
|
3 |
+
size 99399
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "[PAD]",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|