mini1013 commited on
Commit
1b2aaea
·
verified ·
1 Parent(s): 6a8f020

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: '[1300K] 국내생산 뉴니끄 후크랩 솔리드 수유 브라&드로즈팬티 세트 샌드베이지_브라(L)/팬티(M-L) 출산/육아 > 임부복 >
9
+ 임부속옷 > 수유브라'
10
+ - text: 반팔 부엉이레이스티 여성의류 임부복 임산부티셔츠 출산/육아 > 임부복 > 수유복
11
+ - text: 외출수유원피스 산후조리원복 산모복 수유외출복 그레이(L) 출산/육아 > 임부복 > 수유복
12
+ - text: My Bump 여성용 하이 웨이스트 바닥 길이 임산부 맥시 스커트 정품보장 X-Large_Mocha Sd 출산/육아 > 임부복 > 수유복
13
+ - text: 여성 임산부 운동복 쫄 바지 배꼽 아래 레깅스 선물 저렴한 요가복 부쫄 배꼽아래 부 임산 다크그레이 M 출산/육아 > 임부복 > 바지
14
+ metrics:
15
+ - accuracy
16
+ pipeline_tag: text-classification
17
+ library_name: setfit
18
+ inference: true
19
+ base_model: mini1013/master_domain
20
+ model-index:
21
+ - name: SetFit with mini1013/master_domain
22
+ results:
23
+ - task:
24
+ type: text-classification
25
+ name: Text Classification
26
+ dataset:
27
+ name: Unknown
28
+ type: unknown
29
+ split: test
30
+ metrics:
31
+ - type: accuracy
32
+ value: 1.0
33
+ name: Accuracy
34
+ ---
35
+
36
+ # SetFit with mini1013/master_domain
37
+
38
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
39
+
40
+ The model has been trained using an efficient few-shot learning technique that involves:
41
+
42
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
43
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** SetFit
49
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
50
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
51
+ - **Maximum Sequence Length:** 512 tokens
52
+ - **Number of Classes:** 7 classes
53
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
+
57
+ ### Model Sources
58
+
59
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
60
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
61
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
62
+
63
+ ### Model Labels
64
+ | Label | Examples |
65
+ |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
66
+ | 6.0 | <ul><li>'반팔퍼프 모노키니 임부복수영복 셔링비키니 빅사이즈 화이트, 블랙 (M,L,XL) 블랙_L 출산/육아 > 임부복 > 임부용수영복'</li><li>'2024 새로운 임산부 수영복 배꼽 커버 큰 연꽃 잎 가장자리 한 어깨 원피스 수영복 기초 잎_XXXL 출산/육아 > 임부복 > 임부용수영복'</li><li>'임산부래쉬가드 임산부수영복 체형커버 빅사이즈 만삭 블루_S 출산/육아 > 임부복 > 임부용수영복'</li></ul> |
67
+ | 4.0 | <ul><li>'보리맘 투투 반팔 원피스 세트 롱원피스 임부복 R414 출산/육아 > 임부복 > 원피스'</li><li>'고급스러운 카라 브이넥 부드러운 니트 페이크버튼 임산부원피스 임부복원피스 만삭임부복 블랙_Free 출산/육아 > 임부복 > 원피스'</li><li>'출산 전후 임산부 골반 복대 벨트 B_엘 출산/육아 > 임부복 > 원피스'</li></ul> |
68
+ | 3.0 | <ul><li>'9022 2023 용수철 여름 주름 임산부 스커트 신축성 허리 뱃살 의류 임산부 하의 출산/육아 > 임부복 > 스커트'</li><li>'가을 코디 투피스 니트 스커트 탑 스웨터 원피스 나른한 세트 임부스커트-블랙_L 출산/육아 > 임부복 > 스커트'</li><li>'임산부 스커트 임부복 치마 가을 겨울 벨벳 A 라인 빅사이즈 플리츠 편안한 블랙레귤러 스타일_XXL 출산/육아 > 임부복 > 스커트'</li></ul> |
69
+ | 1.0 | <ul><li>'임부복 썸머플리츠 ���산부반바지 출산/육아 > 임부복 > 바지'</li><li>'뉴니끄 임산부 빅사이즈 수유브라 수유나시 팬티 임산부내의 임산부 손목보호대 일반형(2p) 텐셀랩 임산부 드로즈팬티_파스텔블루_M-L 출산/육아 > 임부복 > 바지'</li><li>'AMPOSH 여성용 임산부운동복 바지 신축성 임신 조거 팬츠 보온츄리닝 트레이닝복 헤더버건디_XL 출산/육아 > 임부복 > 바지'</li></ul> |
70
+ | 0.0 | <ul><li>'임산부 원피스 임부복 배 지지 레깅스 출산/육아 > 임부복 > 레깅스'</li><li>'원피스 임산부 임부복 와이드 벨트 배 지지 레깅스 출산/육아 > 임부복 > 레깅스'</li><li>'임산부 겨울 레깅스 겨울용 두꺼운 임산부용 러블리 쇼 얇은 바지 파일 패브릭 510g 04 golden blue_03 XXL 출산/육아 > 임부복 > 레깅스'</li></ul> |
71
+ | 5.0 | <ul><li>'마마조이 심리스 에어 수유브라 그레이_L 출산/육아 > 임부복 > 임부속옷 > 수유브라'</li><li>'수유나시 원터치 임산부 임부 속옷 잠옷 수유복 산모 내의 블루_2XL 출산/육아 > 임부복 > 임부속옷 > 임부러닝'</li><li>'쌍방울 TRY 마더마인드 9부 면스판 임산부 내복 272 상하 1세트 TW9S272 피치_000 (Free) 출산/육아 > 임부복 > 임부속옷 > 임부내복'</li></ul> |
72
+ | 2.0 | <ul><li>'Summer Mae 임산부 수영복 원피스 수영복 버튼 넥 크로스 백 정품보장 Large_Purple 출산/육아 > 임부복 > 수유복'</li><li>'랭글러 Wrangler 여성용 레트로 Mae 임산부 부츠 컷 진 정품보장 Denim_0-34 출산/육아 > 임부복 > 수유복'</li><li>'반폴라 봄 축열덕융세트 레깅스 상의 티셔츠 이너 가을겨울 3XL[72.5-82.5kg 권장]_카멜반폴라[가을겨울 보온] 출산/육아 > 임부복 > 수유복'</li></ul> |
73
+
74
+ ## Evaluation
75
+
76
+ ### Metrics
77
+ | Label | Accuracy |
78
+ |:--------|:---------|
79
+ | **all** | 1.0 |
80
+
81
+ ## Uses
82
+
83
+ ### Direct Use for Inference
84
+
85
+ First install the SetFit library:
86
+
87
+ ```bash
88
+ pip install setfit
89
+ ```
90
+
91
+ Then you can load this model and run inference.
92
+
93
+ ```python
94
+ from setfit import SetFitModel
95
+
96
+ # Download from the 🤗 Hub
97
+ model = SetFitModel.from_pretrained("mini1013/master_cate_bc27")
98
+ # Run inference
99
+ preds = model("반팔 부엉이레이스티 여성의류 임부복 임산부티셔츠 출산/육아 > 임부복 > 수유복")
100
+ ```
101
+
102
+ <!--
103
+ ### Downstream Use
104
+
105
+ *List how someone could finetune this model on their own dataset.*
106
+ -->
107
+
108
+ <!--
109
+ ### Out-of-Scope Use
110
+
111
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
112
+ -->
113
+
114
+ <!--
115
+ ## Bias, Risks and Limitations
116
+
117
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
118
+ -->
119
+
120
+ <!--
121
+ ### Recommendations
122
+
123
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
124
+ -->
125
+
126
+ ## Training Details
127
+
128
+ ### Training Set Metrics
129
+ | Training set | Min | Median | Max |
130
+ |:-------------|:----|:--------|:----|
131
+ | Word count | 8 | 15.0776 | 33 |
132
+
133
+ | Label | Training Sample Count |
134
+ |:------|:----------------------|
135
+ | 0.0 | 70 |
136
+ | 1.0 | 70 |
137
+ | 2.0 | 70 |
138
+ | 3.0 | 70 |
139
+ | 4.0 | 70 |
140
+ | 5.0 | 70 |
141
+ | 6.0 | 70 |
142
+
143
+ ### Training Hyperparameters
144
+ - batch_size: (256, 256)
145
+ - num_epochs: (30, 30)
146
+ - max_steps: -1
147
+ - sampling_strategy: oversampling
148
+ - num_iterations: 50
149
+ - body_learning_rate: (2e-05, 1e-05)
150
+ - head_learning_rate: 0.01
151
+ - loss: CosineSimilarityLoss
152
+ - distance_metric: cosine_distance
153
+ - margin: 0.25
154
+ - end_to_end: False
155
+ - use_amp: False
156
+ - warmup_proportion: 0.1
157
+ - l2_weight: 0.01
158
+ - seed: 42
159
+ - eval_max_steps: -1
160
+ - load_best_model_at_end: False
161
+
162
+ ### Training Results
163
+ | Epoch | Step | Training Loss | Validation Loss |
164
+ |:-------:|:----:|:-------------:|:---------------:|
165
+ | 0.0104 | 1 | 0.4946 | - |
166
+ | 0.5208 | 50 | 0.4988 | - |
167
+ | 1.0417 | 100 | 0.348 | - |
168
+ | 1.5625 | 150 | 0.1457 | - |
169
+ | 2.0833 | 200 | 0.0479 | - |
170
+ | 2.6042 | 250 | 0.0175 | - |
171
+ | 3.125 | 300 | 0.0002 | - |
172
+ | 3.6458 | 350 | 0.0001 | - |
173
+ | 4.1667 | 400 | 0.0001 | - |
174
+ | 4.6875 | 450 | 0.0 | - |
175
+ | 5.2083 | 500 | 0.0 | - |
176
+ | 5.7292 | 550 | 0.0 | - |
177
+ | 6.25 | 600 | 0.0 | - |
178
+ | 6.7708 | 650 | 0.0 | - |
179
+ | 7.2917 | 700 | 0.0 | - |
180
+ | 7.8125 | 750 | 0.0 | - |
181
+ | 8.3333 | 800 | 0.0 | - |
182
+ | 8.8542 | 850 | 0.0 | - |
183
+ | 9.375 | 900 | 0.0 | - |
184
+ | 9.8958 | 950 | 0.0 | - |
185
+ | 10.4167 | 1000 | 0.0 | - |
186
+ | 10.9375 | 1050 | 0.0 | - |
187
+ | 11.4583 | 1100 | 0.0 | - |
188
+ | 11.9792 | 1150 | 0.0 | - |
189
+ | 12.5 | 1200 | 0.0 | - |
190
+ | 13.0208 | 1250 | 0.0 | - |
191
+ | 13.5417 | 1300 | 0.0 | - |
192
+ | 14.0625 | 1350 | 0.0 | - |
193
+ | 14.5833 | 1400 | 0.0 | - |
194
+ | 15.1042 | 1450 | 0.0 | - |
195
+ | 15.625 | 1500 | 0.0 | - |
196
+ | 16.1458 | 1550 | 0.0 | - |
197
+ | 16.6667 | 1600 | 0.0 | - |
198
+ | 17.1875 | 1650 | 0.0 | - |
199
+ | 17.7083 | 1700 | 0.0 | - |
200
+ | 18.2292 | 1750 | 0.0 | - |
201
+ | 18.75 | 1800 | 0.0 | - |
202
+ | 19.2708 | 1850 | 0.0 | - |
203
+ | 19.7917 | 1900 | 0.0 | - |
204
+ | 20.3125 | 1950 | 0.0 | - |
205
+ | 20.8333 | 2000 | 0.0 | - |
206
+ | 21.3542 | 2050 | 0.0 | - |
207
+ | 21.875 | 2100 | 0.0 | - |
208
+ | 22.3958 | 2150 | 0.0 | - |
209
+ | 22.9167 | 2200 | 0.0 | - |
210
+ | 23.4375 | 2250 | 0.0 | - |
211
+ | 23.9583 | 2300 | 0.0 | - |
212
+ | 24.4792 | 2350 | 0.0 | - |
213
+ | 25.0 | 2400 | 0.0 | - |
214
+ | 25.5208 | 2450 | 0.0 | - |
215
+ | 26.0417 | 2500 | 0.0 | - |
216
+ | 26.5625 | 2550 | 0.0 | - |
217
+ | 27.0833 | 2600 | 0.0 | - |
218
+ | 27.6042 | 2650 | 0.0 | - |
219
+ | 28.125 | 2700 | 0.0 | - |
220
+ | 28.6458 | 2750 | 0.0 | - |
221
+ | 29.1667 | 2800 | 0.0 | - |
222
+ | 29.6875 | 2850 | 0.0 | - |
223
+
224
+ ### Framework Versions
225
+ - Python: 3.10.12
226
+ - SetFit: 1.1.0
227
+ - Sentence Transformers: 3.3.1
228
+ - Transformers: 4.44.2
229
+ - PyTorch: 2.2.0a0+81ea7a4
230
+ - Datasets: 3.2.0
231
+ - Tokenizers: 0.19.1
232
+
233
+ ## Citation
234
+
235
+ ### BibTeX
236
+ ```bibtex
237
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
238
+ doi = {10.48550/ARXIV.2209.11055},
239
+ url = {https://arxiv.org/abs/2209.11055},
240
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
241
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
242
+ title = {Efficient Few-Shot Learning Without Prompts},
243
+ publisher = {arXiv},
244
+ year = {2022},
245
+ copyright = {Creative Commons Attribution 4.0 International}
246
+ }
247
+ ```
248
+
249
+ <!--
250
+ ## Glossary
251
+
252
+ *Clearly define terms in order to be accessible across audiences.*
253
+ -->
254
+
255
+ <!--
256
+ ## Model Card Authors
257
+
258
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
259
+ -->
260
+
261
+ <!--
262
+ ## Model Card Contact
263
+
264
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
265
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_bc",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a084c915a703d7fa8097a1b00ba65aab57af6add0ec22b5447447e73786509c
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1597f933229d7aa33a8e419c621efa222a0a12f808ca2f3cea530b6fe7f3656
3
+ size 43935
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff