Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +236 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- setfit
|
4 |
+
- sentence-transformers
|
5 |
+
- text-classification
|
6 |
+
- generated_from_setfit_trainer
|
7 |
+
widget:
|
8 |
+
- text: 남자 후리스 점퍼 자켓 패딩 가을 겨울 남학생 고등학생 중학생 빅사이즈 3XL E_XXL 출산/육아 > 유아발육용품 > 점퍼루
|
9 |
+
- text: 부드러운 양말 스타 유아 워커 편안한 국민 미끄럼 신발 아기 부티 보행기 첫 따뜻한 방지 16=B315white_13-18달 출산/육아
|
10 |
+
> 유아발육용품 > 보행기
|
11 |
+
- text: 이븐플로 엑서쏘서 트리플펀 아마존 점프앤런 9종 택1 출산선물 조카선물 이븐플로 엑서쏘서_트리플펀 아마존 출산/육아 > 유아발육용품
|
12 |
+
> 쏘서
|
13 |
+
- text: 신생아 바운서 유아 용품 흔들 요람 침대 스마트 출산 카키 접이식 표준 엘리트 버전 출산/육아 > 유아발육용품 > 바운서/흔들침대
|
14 |
+
- text: 아기보행기 O자형 전복방지 카트탑승가능 보행기 4.하늘색 유아교육경음악발매트 출산/육아 > 유아발육용품 > 보행기
|
15 |
+
metrics:
|
16 |
+
- accuracy
|
17 |
+
pipeline_tag: text-classification
|
18 |
+
library_name: setfit
|
19 |
+
inference: true
|
20 |
+
base_model: mini1013/master_domain
|
21 |
+
model-index:
|
22 |
+
- name: SetFit with mini1013/master_domain
|
23 |
+
results:
|
24 |
+
- task:
|
25 |
+
type: text-classification
|
26 |
+
name: Text Classification
|
27 |
+
dataset:
|
28 |
+
name: Unknown
|
29 |
+
type: unknown
|
30 |
+
split: test
|
31 |
+
metrics:
|
32 |
+
- type: accuracy
|
33 |
+
value: 1.0
|
34 |
+
name: Accuracy
|
35 |
+
---
|
36 |
+
|
37 |
+
# SetFit with mini1013/master_domain
|
38 |
+
|
39 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
40 |
+
|
41 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
42 |
+
|
43 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
44 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
45 |
+
|
46 |
+
## Model Details
|
47 |
+
|
48 |
+
### Model Description
|
49 |
+
- **Model Type:** SetFit
|
50 |
+
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
|
51 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
52 |
+
- **Maximum Sequence Length:** 512 tokens
|
53 |
+
- **Number of Classes:** 4 classes
|
54 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
55 |
+
<!-- - **Language:** Unknown -->
|
56 |
+
<!-- - **License:** Unknown -->
|
57 |
+
|
58 |
+
### Model Sources
|
59 |
+
|
60 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
61 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
62 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
63 |
+
|
64 |
+
### Model Labels
|
65 |
+
| Label | Examples |
|
66 |
+
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
67 |
+
| 1.0 | <ul><li>'동물 자동차 당김 로프, 조기 교육 선물, 드래그 차량 딸랑이 158447 B2QD2SS901998-6 158447 B2QD2SS901998-4 출산/육아 > 유아발육용품 > 보행기'</li><li>'[대여] [보행기] NEW 뉴 스텝360 다기능 아기보행기 대여 렌탈 ①스텝360_3개월대여 출산/육아 > 유아발육용품 > 보행기'</li><li>'휴대용 접이식 신생아 걸음마 보행기 Egobaby 360 베이비 캐리어 다기능 통기성 유아 백팩 어린이 캐리지 아기 슬링 랩 멜빵 옴니 28 breeze black print 출산/육아 > 유아발육용품 > 보행기'</li></ul> |
|
68 |
+
| 2.0 | <ul><li>'이븐플로 엑서쏘서 트리플펀 아마존 점프앤런 9종 택1 출산선물 조카선물 이븐플로 엑서쏘서_사파리 친구들 점프&런 출산/육아 > 유아발육용품 > 쏘서'</li><li>'젤리캣 동물 인형 딸랑이 버니 퍼피 양 코끼리 유니콘 5종 유니콘 출산/육아 > 유아발육용품 > 쏘서'</li><li>'[대여][+10일연장] 바로가능 새상품입고 피아노 어라운드 위고 베이비아인슈타인/위고대여 중고판매상품_피아노어라운드위고 출산/육아 > 유아발육용품 > 쏘서'</li></ul> |
|
69 |
+
| 0.0 | <ul><li>'2021 new 스마트 흔들바운서 진동요람 (B타입)그린 출산/육아 > 유아발육용품 > 바운서/흔들침대'</li><li>'[개봉/미개봉] 베이비뵨 바운서 대여 렌탈 메쉬 저지 코튼 아기 신생아 컨디션A 05. 소프트코튼저지(개봉)_2개월+10일_랜덤발송 출산/육아 > 유아발육용품 > 바운서/흔들침대'</li><li>'[대여][+7일추가/왕복 ] 최신형 크래들스윙대여 피셔프라이스 [베이비노리터] 신형 버튼식 A급+이너시트(당일출고)_블루_한달대여+7일서비스 출산/육아 > 유아발육용품 > 바운서/흔들침대'</li></ul> |
|
70 |
+
| 3.0 | <ul><li>'여자 어린이 겨울 패딩 후드 잠바 다운 재킷 6. 2중후드 패딩 퍼플화이트_140cm 출산/육아 > 유아발육용품 > 점퍼루'</li><li>'[대여][미개봉새상품대여] 졸리점퍼 오리지널스탠드 슈퍼스탠드 점퍼루 쏘서 슈퍼 스탠드[+7일 추가]_2022입고 한달대여[+7일 추가] 출산/육아 > 유아발육용품 > 점퍼루'</li><li>'경량 패딩점퍼 오버핏 중년 여성롱패딩 빅사이즈 구스다운 퀄팅 롱패딩 블랙_XL 출산/육아 > 유아발육용품 > 점퍼루'</li></ul> |
|
71 |
+
|
72 |
+
## Evaluation
|
73 |
+
|
74 |
+
### Metrics
|
75 |
+
| Label | Accuracy |
|
76 |
+
|:--------|:---------|
|
77 |
+
| **all** | 1.0 |
|
78 |
+
|
79 |
+
## Uses
|
80 |
+
|
81 |
+
### Direct Use for Inference
|
82 |
+
|
83 |
+
First install the SetFit library:
|
84 |
+
|
85 |
+
```bash
|
86 |
+
pip install setfit
|
87 |
+
```
|
88 |
+
|
89 |
+
Then you can load this model and run inference.
|
90 |
+
|
91 |
+
```python
|
92 |
+
from setfit import SetFitModel
|
93 |
+
|
94 |
+
# Download from the 🤗 Hub
|
95 |
+
model = SetFitModel.from_pretrained("mini1013/master_cate_bc22")
|
96 |
+
# Run inference
|
97 |
+
preds = model("아기보행기 O자형 전복방지 카트탑승가능 보행기 4.하늘색 유아교육경음악발매트 출산/육아 > 유아발육용품 > 보행기")
|
98 |
+
```
|
99 |
+
|
100 |
+
<!--
|
101 |
+
### Downstream Use
|
102 |
+
|
103 |
+
*List how someone could finetune this model on their own dataset.*
|
104 |
+
-->
|
105 |
+
|
106 |
+
<!--
|
107 |
+
### Out-of-Scope Use
|
108 |
+
|
109 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
110 |
+
-->
|
111 |
+
|
112 |
+
<!--
|
113 |
+
## Bias, Risks and Limitations
|
114 |
+
|
115 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
116 |
+
-->
|
117 |
+
|
118 |
+
<!--
|
119 |
+
### Recommendations
|
120 |
+
|
121 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
122 |
+
-->
|
123 |
+
|
124 |
+
## Training Details
|
125 |
+
|
126 |
+
### Training Set Metrics
|
127 |
+
| Training set | Min | Median | Max |
|
128 |
+
|:-------------|:----|:--------|:----|
|
129 |
+
| Word count | 8 | 15.8643 | 35 |
|
130 |
+
|
131 |
+
| Label | Training Sample Count |
|
132 |
+
|:------|:----------------------|
|
133 |
+
| 0.0 | 70 |
|
134 |
+
| 1.0 | 70 |
|
135 |
+
| 2.0 | 70 |
|
136 |
+
| 3.0 | 70 |
|
137 |
+
|
138 |
+
### Training Hyperparameters
|
139 |
+
- batch_size: (256, 256)
|
140 |
+
- num_epochs: (30, 30)
|
141 |
+
- max_steps: -1
|
142 |
+
- sampling_strategy: oversampling
|
143 |
+
- num_iterations: 50
|
144 |
+
- body_learning_rate: (2e-05, 1e-05)
|
145 |
+
- head_learning_rate: 0.01
|
146 |
+
- loss: CosineSimilarityLoss
|
147 |
+
- distance_metric: cosine_distance
|
148 |
+
- margin: 0.25
|
149 |
+
- end_to_end: False
|
150 |
+
- use_amp: False
|
151 |
+
- warmup_proportion: 0.1
|
152 |
+
- l2_weight: 0.01
|
153 |
+
- seed: 42
|
154 |
+
- eval_max_steps: -1
|
155 |
+
- load_best_model_at_end: False
|
156 |
+
|
157 |
+
### Training Results
|
158 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
159 |
+
|:-------:|:----:|:-------------:|:---------------:|
|
160 |
+
| 0.0182 | 1 | 0.489 | - |
|
161 |
+
| 0.9091 | 50 | 0.4696 | - |
|
162 |
+
| 1.8182 | 100 | 0.1613 | - |
|
163 |
+
| 2.7273 | 150 | 0.0002 | - |
|
164 |
+
| 3.6364 | 200 | 0.0 | - |
|
165 |
+
| 4.5455 | 250 | 0.0 | - |
|
166 |
+
| 5.4545 | 300 | 0.0 | - |
|
167 |
+
| 6.3636 | 350 | 0.0 | - |
|
168 |
+
| 7.2727 | 400 | 0.0 | - |
|
169 |
+
| 8.1818 | 450 | 0.0 | - |
|
170 |
+
| 9.0909 | 500 | 0.0 | - |
|
171 |
+
| 10.0 | 550 | 0.0 | - |
|
172 |
+
| 10.9091 | 600 | 0.0 | - |
|
173 |
+
| 11.8182 | 650 | 0.0 | - |
|
174 |
+
| 12.7273 | 700 | 0.0 | - |
|
175 |
+
| 13.6364 | 750 | 0.0 | - |
|
176 |
+
| 14.5455 | 800 | 0.0 | - |
|
177 |
+
| 15.4545 | 850 | 0.0 | - |
|
178 |
+
| 16.3636 | 900 | 0.0 | - |
|
179 |
+
| 17.2727 | 950 | 0.0 | - |
|
180 |
+
| 18.1818 | 1000 | 0.0 | - |
|
181 |
+
| 19.0909 | 1050 | 0.0 | - |
|
182 |
+
| 20.0 | 1100 | 0.0 | - |
|
183 |
+
| 20.9091 | 1150 | 0.0 | - |
|
184 |
+
| 21.8182 | 1200 | 0.0 | - |
|
185 |
+
| 22.7273 | 1250 | 0.0 | - |
|
186 |
+
| 23.6364 | 1300 | 0.0 | - |
|
187 |
+
| 24.5455 | 1350 | 0.0 | - |
|
188 |
+
| 25.4545 | 1400 | 0.0 | - |
|
189 |
+
| 26.3636 | 1450 | 0.0 | - |
|
190 |
+
| 27.2727 | 1500 | 0.0 | - |
|
191 |
+
| 28.1818 | 1550 | 0.0 | - |
|
192 |
+
| 29.0909 | 1600 | 0.0 | - |
|
193 |
+
| 30.0 | 1650 | 0.0 | - |
|
194 |
+
|
195 |
+
### Framework Versions
|
196 |
+
- Python: 3.10.12
|
197 |
+
- SetFit: 1.1.0
|
198 |
+
- Sentence Transformers: 3.3.1
|
199 |
+
- Transformers: 4.44.2
|
200 |
+
- PyTorch: 2.2.0a0+81ea7a4
|
201 |
+
- Datasets: 3.2.0
|
202 |
+
- Tokenizers: 0.19.1
|
203 |
+
|
204 |
+
## Citation
|
205 |
+
|
206 |
+
### BibTeX
|
207 |
+
```bibtex
|
208 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
209 |
+
doi = {10.48550/ARXIV.2209.11055},
|
210 |
+
url = {https://arxiv.org/abs/2209.11055},
|
211 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
212 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
213 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
214 |
+
publisher = {arXiv},
|
215 |
+
year = {2022},
|
216 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
217 |
+
}
|
218 |
+
```
|
219 |
+
|
220 |
+
<!--
|
221 |
+
## Glossary
|
222 |
+
|
223 |
+
*Clearly define terms in order to be accessible across audiences.*
|
224 |
+
-->
|
225 |
+
|
226 |
+
<!--
|
227 |
+
## Model Card Authors
|
228 |
+
|
229 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
230 |
+
-->
|
231 |
+
|
232 |
+
<!--
|
233 |
+
## Model Card Contact
|
234 |
+
|
235 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
236 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mini1013/master_item_bc",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.44.2",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.2.0a0+81ea7a4"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d095369d19edaa45ff145059e728ab06555981e5f41fc7e0fadc3db941f6bd6
|
3 |
+
size 442494816
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a18580d3bca8153f4b17bbbcc7a89c66531acc2ece44f8acfbe544d6faa06696
|
3 |
+
size 25447
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "[PAD]",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|