Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +289 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- setfit
|
4 |
+
- sentence-transformers
|
5 |
+
- text-classification
|
6 |
+
- generated_from_setfit_trainer
|
7 |
+
widget:
|
8 |
+
- text: 아기 기저귀가방 숄더백 출산가방 애기 엄마 분유가방 그레이 출산/육아 > 외출용품 > 기저귀가방
|
9 |
+
- text: '[에시앙]모데즈 유모차라이너+목쿠션 (디자인선택) 레몬 출산/육아 > 외출용품 > 기타외출용품'
|
10 |
+
- text: 비트윈 뱀부 사일런스 아기띠 힙시트 무소음클립 허리벨트 올인원 3in1 쿨그레이 출산/육아 > 외출용품 > 힙시트
|
11 |
+
- text: 팔찌형 스프 랑 미아방지 밴드 다용도 유모차 가방 어린이 끈 아가 유아 용품 줄 아기 링 오렌지1P 출산/육아 > 외출용품 > 미아방지용품
|
12 |
+
- text: 허리 러닝 파우치 런닝 휴대폰 스마트폰 벨트 달리기용품rva-559636c 프리사이즈_랙 출산/육아 > 외출용품 > 슬링
|
13 |
+
metrics:
|
14 |
+
- accuracy
|
15 |
+
pipeline_tag: text-classification
|
16 |
+
library_name: setfit
|
17 |
+
inference: true
|
18 |
+
base_model: mini1013/master_domain
|
19 |
+
model-index:
|
20 |
+
- name: SetFit with mini1013/master_domain
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-classification
|
24 |
+
name: Text Classification
|
25 |
+
dataset:
|
26 |
+
name: Unknown
|
27 |
+
type: unknown
|
28 |
+
split: test
|
29 |
+
metrics:
|
30 |
+
- type: accuracy
|
31 |
+
value: 1.0
|
32 |
+
name: Accuracy
|
33 |
+
---
|
34 |
+
|
35 |
+
# SetFit with mini1013/master_domain
|
36 |
+
|
37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
38 |
+
|
39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
40 |
+
|
41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** SetFit
|
48 |
+
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
|
49 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
50 |
+
- **Maximum Sequence Length:** 512 tokens
|
51 |
+
- **Number of Classes:** 10 classes
|
52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
+
|
62 |
+
### Model Labels
|
63 |
+
| Label | Examples |
|
64 |
+
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
+
| 8.0 | <ul><li>'[현대백화점][압소바] 용용 텐셀 속싸개(2024년 봄신상) AZA10901 아이보리/FREE 출산/육아 > 외출용품 > 포대기/처네'</li><li>'애착육아 아기포대기 여름 망사 신생아 전통 사계절 순면 어부바 워머 인견 띠 어깨끈 사계절 일자형_아기곰블루 7부 출산/육아 > 외출용품 > 포대기/처네'</li><li>'[현대백화점][에뜨와] (2종용띠)켄미배내저고리X로디양말세트 07R017001B [00001] 아이보리아이보리/3M 출산/육아 > 외출용품 > 포대기/처네'</li></ul> |
|
66 |
+
| 3.0 | <ul><li>'의류용/슈즈용 네임스티커 화이트스티치 혼합형 의류용_컬러_의류용네임스티커Color여아리본_혼합형 출산/육아 > 외출용품 > 미아방지용품'</li><li>'의류용/슈즈용 네임스티커 화이트스티치 혼합형 신발용_슈즈용네임스티커애니멀_원형30 출산/육아 > 외출용품 > 미아방지용품'</li><li>'주문제작 미아방지 아기 포토 자동차 캐리어 네임택 에어팟 키링 어린이집 유치원 가방고리 아이돌 반려동물 열쇠고리 굿즈 베이직 더블팩_화이트_핑크 출산/육아 > 외출용품 > 미아방지용품'</li></ul> |
|
67 |
+
| 5.0 | <ul><li>'Bebefit 베베핏 시그니처7 올인원 아기띠 ��브릭 바구니+어깨침받이+가슴침받이세트 (선물 2종) 다크그레이 (사은품 2종) 출산/육아 > 외출용품 > 아기띠'</li><li>'베베핏x폴레드 시그니처7 올인원 아기띠 & 폴레드 에어러브 아기띠마스크 신생아 외출필수템 다크네이비_폴레드 에어러브 마스크_골든카멜 출산/육아 > 외출용품 > 아기띠'</li><li>'양털 아기 보낭 겉싸개 204539 유아 신생아 버건디9 출산/육아 > 외출용품 > 아기띠'</li></ul> |
|
68 |
+
| 2.0 | <ul><li>'비비엔다 아기 후드 망토 블랭킷 아기띠 유모차 워머 바람막이 M(24개월 이상 추천)_하트꼼_다우니퍼(3~4주 소요) 출산/육아 > 외출용품 > 망토/워머'</li><li>'세인트돌 무지손토시 모카_FREE 출산/육아 > 외출용품 > 망토/워머'</li><li>'돗투돗 뽀글이 극세사 아기띠 워머 아기 망토 블랭킷 유모차 바람막이 담요 겨울 [겨울 추천]극세사_비비(아이보리) 출산/육아 > 외출용품 > 망토/워머'</li></ul> |
|
69 |
+
| 0.0 | <ul><li>'기저귀가방 국민 기저귀 아기 가방 캔버스 가벼운 유모차 에코백 토트bag 옵션1(크로스끈없음)_블랙 출산/육아 > 외출용품 > 기저귀가방'</li><li>'리엘라 숄더백 기저귀가방 이너백 파우치 핑크 출산/육아 > 외출용품 > 기저귀가방'</li><li>'방수 건조 이중 지퍼 핸드백, 아기 기저귀 가방, 유모차 운반 팩, 여행 야외 보관 기저귀 포드 WB8-29 출산/육아 > 외출용품 > 기저귀가방'</li></ul> |
|
70 |
+
| 1.0 | <ul><li>'별과모래 아기띠침받이7종 아기띠커버 에르고호환 힙시트 침패드 [별과모 아기띠침받이1세트-옐로우 출산/육아 > 외출용품 > 기타외출용품'</li><li>'미토 어린이킥보드 악세사리 유모차 컵홀더 바람개비 자전거벨 스트리머 킥보드인형 마이크로 21세기 호환 보호대 S 핑크 출산/육아 > 외출용품 > 기타외출용품'</li><li>'744854 Apollo Walker 소형 및 대형 애완동물 캐리어 백팩 틸 쿠션 백 서포트 안전장치 여행 하이킹 아웃도어용 Teal Black 출산/육아 > 외출용품 > 기타외출용품'</li></ul> |
|
71 |
+
| 7.0 | <ul><li>'[이벤트]오로라x돗투돗 클라우드 퀄팅 휴대용 기저귀 패드 휴대용방수매트 기저귀 방수 매트.블루 출산/육아 > 외출용품 > 아기띠쿨러/패드'</li><li>'베베핏x폴레드 국민 기저귀가방 & 폴레드 에어러브3 도넛,주니어,에어마스트 에어쿨시트 딥브라운(썸머패키지)_주니어 밀키웨이 출산/육아 > 외출용품 > 아기띠쿨러/패드'</li><li>'베베핏x폴레드 국민 기저귀가방 & 폴레드 에어러브3 도넛,주니어,에어마스트 에어쿨시트 올리브베이지(썸머패키지)_주니어 피치크림 출산/육아 > 외출용품 > 아기띠쿨러/패드'</li></ul> |
|
72 |
+
| 4.0 | <ul><li>'JRCuddles 아기 랩 캐리어 AirMesh - 신생아부터 최대 44파운드의 유아까지 - 캥거루 스타일로 운반하기 쉬운 어린이용 슬링 - 엄마와 아빠를 위한 경량 가 Beige Dark Blue 출산/육아 > 외출용품 > 슬링'</li><li>'Baby Wrap Carrier,Adjustable Baby Carrier Newborn to Toddler Original Stretchy Infant Sling, Perfect Blue 출산/육아 > 외출용품 > 슬링'</li><li>'Unbred 아기 캐리어 랩 통기성 슬링 인체공학 백팩 코튼 ## 파랑색 출산/육아 > 외출용품 > 슬링'</li></ul> |
|
73 |
+
| 6.0 | <ul><li>'에어룸 아기띠+침받이 출산/육아 > 외출용품 > 아기띠받침이'</li><li>'오가닉붐 빅도뜨 가슴 침받이 아이보리 출산/육아 > 외출용품 > 아기띠받침이'</li><li>'아기띠 앞보기전용 침받이 에르고 힙시트 출산/육아 > 외출용품 > 아기띠받침이'</li></ul> |
|
74 |
+
| 9.0 | <ul><li>'베이비소풍 해먹 사이드 힙시트 휴대용 영유아 외출용 베이지(기본스트랩) 출산/육아 > 외출용품 > 힙시트'</li><li>'아기 외출 바람막이 힙시트 유모차 방풍커버 포대기 스카이블루 퍼플 출산/육아 > 외출용품 > 힙시트'</li><li>'[베베핏]스마트 캐리어 아기띠 출산/육아 > 외출용품 > 힙시트'</li></ul> |
|
75 |
+
|
76 |
+
## Evaluation
|
77 |
+
|
78 |
+
### Metrics
|
79 |
+
| Label | Accuracy |
|
80 |
+
|:--------|:---------|
|
81 |
+
| **all** | 1.0 |
|
82 |
+
|
83 |
+
## Uses
|
84 |
+
|
85 |
+
### Direct Use for Inference
|
86 |
+
|
87 |
+
First install the SetFit library:
|
88 |
+
|
89 |
+
```bash
|
90 |
+
pip install setfit
|
91 |
+
```
|
92 |
+
|
93 |
+
Then you can load this model and run inference.
|
94 |
+
|
95 |
+
```python
|
96 |
+
from setfit import SetFitModel
|
97 |
+
|
98 |
+
# Download from the 🤗 Hub
|
99 |
+
model = SetFitModel.from_pretrained("mini1013/master_cate_bc14")
|
100 |
+
# Run inference
|
101 |
+
preds = model("[에시앙]모데즈 유모차라이너+목쿠션 (디자인선택) 레몬 출산/육아 > 외출용품 > 기타외출용품")
|
102 |
+
```
|
103 |
+
|
104 |
+
<!--
|
105 |
+
### Downstream Use
|
106 |
+
|
107 |
+
*List how someone could finetune this model on their own dataset.*
|
108 |
+
-->
|
109 |
+
|
110 |
+
<!--
|
111 |
+
### Out-of-Scope Use
|
112 |
+
|
113 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
114 |
+
-->
|
115 |
+
|
116 |
+
<!--
|
117 |
+
## Bias, Risks and Limitations
|
118 |
+
|
119 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
120 |
+
-->
|
121 |
+
|
122 |
+
<!--
|
123 |
+
### Recommendations
|
124 |
+
|
125 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
126 |
+
-->
|
127 |
+
|
128 |
+
## Training Details
|
129 |
+
|
130 |
+
### Training Set Metrics
|
131 |
+
| Training set | Min | Median | Max |
|
132 |
+
|:-------------|:----|:--------|:----|
|
133 |
+
| Word count | 7 | 14.5385 | 42 |
|
134 |
+
|
135 |
+
| Label | Training Sample Count |
|
136 |
+
|:------|:----------------------|
|
137 |
+
| 0.0 | 70 |
|
138 |
+
| 1.0 | 70 |
|
139 |
+
| 2.0 | 70 |
|
140 |
+
| 3.0 | 70 |
|
141 |
+
| 4.0 | 70 |
|
142 |
+
| 5.0 | 70 |
|
143 |
+
| 6.0 | 20 |
|
144 |
+
| 7.0 | 70 |
|
145 |
+
| 8.0 | 70 |
|
146 |
+
| 9.0 | 70 |
|
147 |
+
|
148 |
+
### Training Hyperparameters
|
149 |
+
- batch_size: (256, 256)
|
150 |
+
- num_epochs: (30, 30)
|
151 |
+
- max_steps: -1
|
152 |
+
- sampling_strategy: oversampling
|
153 |
+
- num_iterations: 50
|
154 |
+
- body_learning_rate: (2e-05, 1e-05)
|
155 |
+
- head_learning_rate: 0.01
|
156 |
+
- loss: CosineSimilarityLoss
|
157 |
+
- distance_metric: cosine_distance
|
158 |
+
- margin: 0.25
|
159 |
+
- end_to_end: False
|
160 |
+
- use_amp: False
|
161 |
+
- warmup_proportion: 0.1
|
162 |
+
- l2_weight: 0.01
|
163 |
+
- seed: 42
|
164 |
+
- eval_max_steps: -1
|
165 |
+
- load_best_model_at_end: False
|
166 |
+
|
167 |
+
### Training Results
|
168 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
169 |
+
|:-------:|:----:|:-------------:|:---------------:|
|
170 |
+
| 0.0079 | 1 | 0.4929 | - |
|
171 |
+
| 0.3937 | 50 | 0.4972 | - |
|
172 |
+
| 0.7874 | 100 | 0.4631 | - |
|
173 |
+
| 1.1811 | 150 | 0.0622 | - |
|
174 |
+
| 1.5748 | 200 | 0.0077 | - |
|
175 |
+
| 1.9685 | 250 | 0.0002 | - |
|
176 |
+
| 2.3622 | 300 | 0.0001 | - |
|
177 |
+
| 2.7559 | 350 | 0.0 | - |
|
178 |
+
| 3.1496 | 400 | 0.0 | - |
|
179 |
+
| 3.5433 | 450 | 0.0 | - |
|
180 |
+
| 3.9370 | 500 | 0.0 | - |
|
181 |
+
| 4.3307 | 550 | 0.0 | - |
|
182 |
+
| 4.7244 | 600 | 0.0 | - |
|
183 |
+
| 5.1181 | 650 | 0.0 | - |
|
184 |
+
| 5.5118 | 700 | 0.0 | - |
|
185 |
+
| 5.9055 | 750 | 0.0 | - |
|
186 |
+
| 6.2992 | 800 | 0.0 | - |
|
187 |
+
| 6.6929 | 850 | 0.0 | - |
|
188 |
+
| 7.0866 | 900 | 0.0 | - |
|
189 |
+
| 7.4803 | 950 | 0.0 | - |
|
190 |
+
| 7.8740 | 1000 | 0.0 | - |
|
191 |
+
| 8.2677 | 1050 | 0.0 | - |
|
192 |
+
| 8.6614 | 1100 | 0.0 | - |
|
193 |
+
| 9.0551 | 1150 | 0.0 | - |
|
194 |
+
| 9.4488 | 1200 | 0.0 | - |
|
195 |
+
| 9.8425 | 1250 | 0.0 | - |
|
196 |
+
| 10.2362 | 1300 | 0.0 | - |
|
197 |
+
| 10.6299 | 1350 | 0.0 | - |
|
198 |
+
| 11.0236 | 1400 | 0.0 | - |
|
199 |
+
| 11.4173 | 1450 | 0.0 | - |
|
200 |
+
| 11.8110 | 1500 | 0.0 | - |
|
201 |
+
| 12.2047 | 1550 | 0.0 | - |
|
202 |
+
| 12.5984 | 1600 | 0.0 | - |
|
203 |
+
| 12.9921 | 1650 | 0.0 | - |
|
204 |
+
| 13.3858 | 1700 | 0.0 | - |
|
205 |
+
| 13.7795 | 1750 | 0.0 | - |
|
206 |
+
| 14.1732 | 1800 | 0.0 | - |
|
207 |
+
| 14.5669 | 1850 | 0.0 | - |
|
208 |
+
| 14.9606 | 1900 | 0.0 | - |
|
209 |
+
| 15.3543 | 1950 | 0.0 | - |
|
210 |
+
| 15.7480 | 2000 | 0.0 | - |
|
211 |
+
| 16.1417 | 2050 | 0.0 | - |
|
212 |
+
| 16.5354 | 2100 | 0.0 | - |
|
213 |
+
| 16.9291 | 2150 | 0.0 | - |
|
214 |
+
| 17.3228 | 2200 | 0.0 | - |
|
215 |
+
| 17.7165 | 2250 | 0.0 | - |
|
216 |
+
| 18.1102 | 2300 | 0.0 | - |
|
217 |
+
| 18.5039 | 2350 | 0.0 | - |
|
218 |
+
| 18.8976 | 2400 | 0.0 | - |
|
219 |
+
| 19.2913 | 2450 | 0.0 | - |
|
220 |
+
| 19.6850 | 2500 | 0.0 | - |
|
221 |
+
| 20.0787 | 2550 | 0.0 | - |
|
222 |
+
| 20.4724 | 2600 | 0.0 | - |
|
223 |
+
| 20.8661 | 2650 | 0.0 | - |
|
224 |
+
| 21.2598 | 2700 | 0.0 | - |
|
225 |
+
| 21.6535 | 2750 | 0.0 | - |
|
226 |
+
| 22.0472 | 2800 | 0.0 | - |
|
227 |
+
| 22.4409 | 2850 | 0.0 | - |
|
228 |
+
| 22.8346 | 2900 | 0.0 | - |
|
229 |
+
| 23.2283 | 2950 | 0.0 | - |
|
230 |
+
| 23.6220 | 3000 | 0.0 | - |
|
231 |
+
| 24.0157 | 3050 | 0.0 | - |
|
232 |
+
| 24.4094 | 3100 | 0.0 | - |
|
233 |
+
| 24.8031 | 3150 | 0.0 | - |
|
234 |
+
| 25.1969 | 3200 | 0.0 | - |
|
235 |
+
| 25.5906 | 3250 | 0.0 | - |
|
236 |
+
| 25.9843 | 3300 | 0.0 | - |
|
237 |
+
| 26.3780 | 3350 | 0.0 | - |
|
238 |
+
| 26.7717 | 3400 | 0.0 | - |
|
239 |
+
| 27.1654 | 3450 | 0.0 | - |
|
240 |
+
| 27.5591 | 3500 | 0.0 | - |
|
241 |
+
| 27.9528 | 3550 | 0.0 | - |
|
242 |
+
| 28.3465 | 3600 | 0.0 | - |
|
243 |
+
| 28.7402 | 3650 | 0.0 | - |
|
244 |
+
| 29.1339 | 3700 | 0.0 | - |
|
245 |
+
| 29.5276 | 3750 | 0.0 | - |
|
246 |
+
| 29.9213 | 3800 | 0.0 | - |
|
247 |
+
|
248 |
+
### Framework Versions
|
249 |
+
- Python: 3.10.12
|
250 |
+
- SetFit: 1.1.0
|
251 |
+
- Sentence Transformers: 3.3.1
|
252 |
+
- Transformers: 4.44.2
|
253 |
+
- PyTorch: 2.2.0a0+81ea7a4
|
254 |
+
- Datasets: 3.2.0
|
255 |
+
- Tokenizers: 0.19.1
|
256 |
+
|
257 |
+
## Citation
|
258 |
+
|
259 |
+
### BibTeX
|
260 |
+
```bibtex
|
261 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
262 |
+
doi = {10.48550/ARXIV.2209.11055},
|
263 |
+
url = {https://arxiv.org/abs/2209.11055},
|
264 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
265 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
266 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
267 |
+
publisher = {arXiv},
|
268 |
+
year = {2022},
|
269 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
270 |
+
}
|
271 |
+
```
|
272 |
+
|
273 |
+
<!--
|
274 |
+
## Glossary
|
275 |
+
|
276 |
+
*Clearly define terms in order to be accessible across audiences.*
|
277 |
+
-->
|
278 |
+
|
279 |
+
<!--
|
280 |
+
## Model Card Authors
|
281 |
+
|
282 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
283 |
+
-->
|
284 |
+
|
285 |
+
<!--
|
286 |
+
## Model Card Contact
|
287 |
+
|
288 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
289 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mini1013/master_item_bc",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.44.2",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.2.0a0+81ea7a4"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc8ca41fa64f47dd5a8839e27b5f15e760483caacbf64dd4f3ce17474060ec82
|
3 |
+
size 442494816
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1c326a78ad310a0bce52eaaaa02e3289187714153dce28c4a748debf9ce6dc5
|
3 |
+
size 62407
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "[PAD]",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|