mini1013 commited on
Commit
1cd4b5e
·
verified ·
1 Parent(s): 7c9110a

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: '[헤지스ACC]HJBA3F885BK[13인치 노트북 수납가능][KEVIN]블랙 참장식 크로스 겸용 미니 토트백 에이케이에스앤디 (주)
14
+ AK인터넷쇼핑몰'
15
+ - text: 마젤란 메신저백 크로스백 슬링백 힙색 힙쌕 학생 여성 남자 캐주얼 크로스 여행용 여권 핸드폰 보조 학원 가방 LKHS-304_B-연핑크(+키홀더)
16
+ 더블유팝
17
+ - text: 마젤란 메신저백 크로스백 슬링백 힙색 힙쌕 학생 여성 남자 캐주얼 크로스 여행용 여권 핸드폰 보조 학원 가방 ML-1928_연그레이
18
+ 더블유팝
19
+ - text: '[갤러리아] JUBA4E021G2 [MATEO] 그레이 로고프린트 숄더백 JUBA4E021G2 [MATEO] 그레이 로고프린트 숄더백
20
+ NS홈쇼핑_NS몰'
21
+ - text: '[디스커버리](신세계강남점)[23N] 디스커버리 미니 슬링백 (DXSG0043N) IVD 다크 아이보리_F 주식회사 에스에스지닷컴'
22
+ inference: true
23
+ model-index:
24
+ - name: SetFit with mini1013/master_domain
25
+ results:
26
+ - task:
27
+ type: text-classification
28
+ name: Text Classification
29
+ dataset:
30
+ name: Unknown
31
+ type: unknown
32
+ split: test
33
+ metrics:
34
+ - type: metric
35
+ value: 0.8488667448221962
36
+ name: Metric
37
+ ---
38
+
39
+ # SetFit with mini1013/master_domain
40
+
41
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
42
+
43
+ The model has been trained using an efficient few-shot learning technique that involves:
44
+
45
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
46
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
47
+
48
+ ## Model Details
49
+
50
+ ### Model Description
51
+ - **Model Type:** SetFit
52
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
53
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
54
+ - **Maximum Sequence Length:** 512 tokens
55
+ - **Number of Classes:** 9 classes
56
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
57
+ <!-- - **Language:** Unknown -->
58
+ <!-- - **License:** Unknown -->
59
+
60
+ ### Model Sources
61
+
62
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
63
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
64
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
65
+
66
+ ### Model Labels
67
+ | Label | Examples |
68
+ |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
69
+ | 6.0 | <ul><li>'[질스튜어트](광주신세계)블랙 클래식 클러치백 [JUWA2F392BK] 주식회사 에스에스지닷컴'</li><li>'심플 클러치백 EOCFHX257BK/에스콰이아 블랙 롯데쇼핑(주)'</li><li>'[듀퐁] 소프트그레인 파우치 베이지 CG180263CL 베이지 (주)씨제이이엔엠'</li></ul> |
70
+ | 3.0 | <ul><li>'엔지니어드가먼츠 블랙 나일론 토트백 23F1H034BLACK 주식회사 어도어럭스'</li><li>'[가이거] 퀼팅 레더 체인 숄더백 (+플랩지갑) 캐러멜 브라운 (주)우리홈쇼핑'</li><li>'토트 브리프 크로스백 FT8570 블랙 글로리홈'</li></ul> |
71
+ | 4.0 | <ul><li>'여자캔버스 가방 코디 크로스백 남자에코백 신발 BLUE 고앤런'</li><li>'여학생 에코백 아이보리 가방 남녀공용 캐주얼 쇼퍼백 엘케이엠'</li><li>'패션 에코백 데일리 가방 캐주얼 숄더백 브라운 심정'</li></ul> |
72
+ | 7.0 | <ul><li>'[갤러리아] 644040 2BKPI 1000 ONE SIZE 한화갤러리아(주)'</li><li>'[갤러리아] 헤지스핸드백 그린 워싱가죽 크로스 겸용 토트백 HJBA3E301E2(타임월드) 한화갤러리아(주)'</li><li>'[메종키츠네] 로고 프린트 코튼 토트백 블루 LW05102WW0008 BLUE_FREE 신세계몰'</li></ul> |
73
+ | 2.0 | <ul><li>'바버 가죽 코팅 서류 가방 브리프 케이스 UBA0004 NAVY 뉴욕트레이딩'</li><li>'[롯데백화점]에스콰이아 23FW 신상 경량 나일론 노트북 수납 남여 데일리 토트 크로스백 EOCFHX258BK 롯데백화점_'</li><li>'22FW 신상 뉴 포멀 슬림 스퀘어 심플 비즈니스 캐주얼 서류가방 ECBFHX227GY 롯데백화점1관'</li></ul> |
74
+ | 1.0 | <ul><li>'NATIONALGEOGRAPHIC N225USD340 다이브 플러스 V3 BLACK 240 맥스투'</li><li>'레스포삭 보이저 백팩 경량 나일론 보부상 복조리 가방 7839 플라워 행운샵'</li><li>'레스포삭 보이저 백팩 경량 Voyager Backpack 7839 블랙 하하대행'</li></ul> |
75
+ | 0.0 | <ul><li>'[갤러리아] 헤지스핸드백HJBA2F770BK_ 블랙 로고 장식 솔리드 메신져백(타임월드) 한화갤러리아(주)'</li><li>'로아드로아 허쉬 메쉬 포켓 크로스 메신저백 (아이보리) 크로스백 FREE 가방팝'</li><li>'[본사공식] 타프 메신저백 사첼 S EOCBS04 008 롯데아이몰'</li></ul> |
76
+ | 5.0 | <ul><li>'팩세이프 가방 GO 크로스바디 백 2.5L / PACSAFE URBAN 도난방지 유럽 해외 여행 등산 슬링백 크로스백 RFID차단 1. 제트 블랙 (JET BLACK) 시계1위팝워치'</li><li>'샨타코[Chantaco] 레더 크로스백 BB NH3271C53N 000/라코스테 롯데쇼핑(주)'</li><li>'팩세이프 가방 GO 크로스바디 백 2.5L / PACSAFE URBAN 도난방지 유럽 해외 여행 등산 슬링백 크로스백 RFID차단 2. 로즈 (ROSE) 시계1위팝워치'</li></ul> |
77
+ | 8.0 | <ul><li>'[기회공작소] 데일리 슬링백 크로스 힙색 허리가방 스포츠 등산 힙색 허리색 슬링백 보조가방 글로리커머스'</li><li>'구찌 GG 캔버스 투웨이 밸트백 힙색 630915 KY9KN 9886 쏠나인'</li><li>'벨트형 핸드폰 허리가방 남자 벨트백 세로형 가죽 벨트파우치 지갑 허리벨트케이스 브라운 자주구매'</li></ul> |
78
+
79
+ ## Evaluation
80
+
81
+ ### Metrics
82
+ | Label | Metric |
83
+ |:--------|:-------|
84
+ | **all** | 0.8489 |
85
+
86
+ ## Uses
87
+
88
+ ### Direct Use for Inference
89
+
90
+ First install the SetFit library:
91
+
92
+ ```bash
93
+ pip install setfit
94
+ ```
95
+
96
+ Then you can load this model and run inference.
97
+
98
+ ```python
99
+ from setfit import SetFitModel
100
+
101
+ # Download from the 🤗 Hub
102
+ model = SetFitModel.from_pretrained("mini1013/master_cate_ac0")
103
+ # Run inference
104
+ preds = model("[디스커버리](신세계강남점)[23N] 디스커버리 미니 슬링백 (DXSG0043N) IVD 다크 아이보리_F 주식회사 에스에스지닷컴")
105
+ ```
106
+
107
+ <!--
108
+ ### Downstream Use
109
+
110
+ *List how someone could finetune this model on their own dataset.*
111
+ -->
112
+
113
+ <!--
114
+ ### Out-of-Scope Use
115
+
116
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
117
+ -->
118
+
119
+ <!--
120
+ ## Bias, Risks and Limitations
121
+
122
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
123
+ -->
124
+
125
+ <!--
126
+ ### Recommendations
127
+
128
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
129
+ -->
130
+
131
+ ## Training Details
132
+
133
+ ### Training Set Metrics
134
+ | Training set | Min | Median | Max |
135
+ |:-------------|:----|:-------|:----|
136
+ | Word count | 4 | 9.2289 | 29 |
137
+
138
+ | Label | Training Sample Count |
139
+ |:------|:----------------------|
140
+ | 0.0 | 50 |
141
+ | 1.0 | 50 |
142
+ | 2.0 | 50 |
143
+ | 3.0 | 50 |
144
+ | 4.0 | 50 |
145
+ | 5.0 | 50 |
146
+ | 6.0 | 50 |
147
+ | 7.0 | 50 |
148
+ | 8.0 | 50 |
149
+
150
+ ### Training Hyperparameters
151
+ - batch_size: (512, 512)
152
+ - num_epochs: (20, 20)
153
+ - max_steps: -1
154
+ - sampling_strategy: oversampling
155
+ - num_iterations: 40
156
+ - body_learning_rate: (2e-05, 2e-05)
157
+ - head_learning_rate: 2e-05
158
+ - loss: CosineSimilarityLoss
159
+ - distance_metric: cosine_distance
160
+ - margin: 0.25
161
+ - end_to_end: False
162
+ - use_amp: False
163
+ - warmup_proportion: 0.1
164
+ - seed: 42
165
+ - eval_max_steps: -1
166
+ - load_best_model_at_end: False
167
+
168
+ ### Training Results
169
+ | Epoch | Step | Training Loss | Validation Loss |
170
+ |:-------:|:----:|:-------------:|:---------------:|
171
+ | 0.0141 | 1 | 0.3958 | - |
172
+ | 0.7042 | 50 | 0.3012 | - |
173
+ | 1.4085 | 100 | 0.1811 | - |
174
+ | 2.1127 | 150 | 0.0599 | - |
175
+ | 2.8169 | 200 | 0.0333 | - |
176
+ | 3.5211 | 250 | 0.0169 | - |
177
+ | 4.2254 | 300 | 0.0005 | - |
178
+ | 4.9296 | 350 | 0.0003 | - |
179
+ | 5.6338 | 400 | 0.0002 | - |
180
+ | 6.3380 | 450 | 0.0003 | - |
181
+ | 7.0423 | 500 | 0.0001 | - |
182
+ | 7.7465 | 550 | 0.0001 | - |
183
+ | 8.4507 | 600 | 0.0001 | - |
184
+ | 9.1549 | 650 | 0.0001 | - |
185
+ | 9.8592 | 700 | 0.0001 | - |
186
+ | 10.5634 | 750 | 0.0 | - |
187
+ | 11.2676 | 800 | 0.0001 | - |
188
+ | 11.9718 | 850 | 0.0001 | - |
189
+ | 12.6761 | 900 | 0.0001 | - |
190
+ | 13.3803 | 950 | 0.0 | - |
191
+ | 14.0845 | 1000 | 0.0 | - |
192
+ | 14.7887 | 1050 | 0.0 | - |
193
+ | 15.4930 | 1100 | 0.0 | - |
194
+ | 16.1972 | 1150 | 0.0 | - |
195
+ | 16.9014 | 1200 | 0.0 | - |
196
+ | 17.6056 | 1250 | 0.0 | - |
197
+ | 18.3099 | 1300 | 0.0 | - |
198
+ | 19.0141 | 1350 | 0.0 | - |
199
+ | 19.7183 | 1400 | 0.0 | - |
200
+
201
+ ### Framework Versions
202
+ - Python: 3.10.12
203
+ - SetFit: 1.1.0.dev0
204
+ - Sentence Transformers: 3.1.1
205
+ - Transformers: 4.46.1
206
+ - PyTorch: 2.4.0+cu121
207
+ - Datasets: 2.20.0
208
+ - Tokenizers: 0.20.0
209
+
210
+ ## Citation
211
+
212
+ ### BibTeX
213
+ ```bibtex
214
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
215
+ doi = {10.48550/ARXIV.2209.11055},
216
+ url = {https://arxiv.org/abs/2209.11055},
217
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
218
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
219
+ title = {Efficient Few-Shot Learning Without Prompts},
220
+ publisher = {arXiv},
221
+ year = {2022},
222
+ copyright = {Creative Commons Attribution 4.0 International}
223
+ }
224
+ ```
225
+
226
+ <!--
227
+ ## Glossary
228
+
229
+ *Clearly define terms in order to be accessible across audiences.*
230
+ -->
231
+
232
+ <!--
233
+ ## Model Card Authors
234
+
235
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
236
+ -->
237
+
238
+ <!--
239
+ ## Model Card Contact
240
+
241
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
242
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_ac",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e88ab44bc082b46c1974452b1eabbb4d53100dc0341a139ab61094a83659411
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e059f790897964175c356a1d028cfbca7d089c59fb207912bc1e28a61f1d1ecc
3
+ size 56255
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff