|
11:17:49 {'seed': 1, 'ver': 'v1b', 'use_log': True, 'use_tqdm': True, 'debug': False, 'tokenizer': BertTokenizerFast(name_or_path='yiyanghkust/finbert-tone', vocab_size=30873, model_max_length=1000000000000000019884624838656, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'unk_token': '[UNK]', 'sep_token': '[SEP]', 'pad_token': '[PAD]', 'cls_token': '[CLS]', 'mask_token': '[MASK]'}, clean_up_tokenization_spaces=True), 'config': <custom_config.LongBERTConfig object at 0x7f4e984f26d0>, 'max_len': 50000, 'train_one_part': False, 'gradient_accumulation_steps': 2, 'apex': True, 'device': device(type='cuda', index=1), 'nepochs': 10, 'batch_size': 2, 'num_workers': 128, 'lr': 2e-05, 'weight_decay': 0.01, 'encoder_lr': 2e-05, 'decoder_lr': 0.001, 'min_lr': 1e-06, 'eps': 1e-06, 'betas': (0.9, 0.999), 'scheduler_type': 'cosine', 'num_cycles': 0.5, 'num_warmup_steps': 0.0, 'train_data_dir': 'data/train', 'valid_data_dir': 'data/valid', 'test_data_dir': '.', 'output_dir': 'model/v1/b'} |
|
11:17:49 Preparing training materials... |
|
11:17:49 Preparing the model... |
|
11:17:50 loading weights file pytorch_model.bin from cache at /home/tphan/.cache/huggingface/hub/models--yiyanghkust--finbert-tone/snapshots/4921590d3c0c3832c0efea24c8381ce0bda7844b/pytorch_model.bin |
|
11:17:51 Some weights of the model checkpoint at yiyanghkust/finbert-tone were not used when initializing BertModel: ['classifier.bias', 'classifier.weight'] |
|
- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model). |
|
- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model). |
|
11:17:51 All the weights of BertModel were initialized from the model checkpoint at yiyanghkust/finbert-tone. |
|
If your task is similar to the task the model of the checkpoint was trained on, you can already use BertModel for predictions without further training. |
|
11:17:53 Preparing the dataloaders... |
|
06:22:24 Epoch: [1] - Train/Valid Loss: 4.8630/4.4170 |
|
06:22:24 Saving the model to model/v1/b |
|
01:29:20 Epoch: [2] - Train/Valid Loss: 4.2652/4.0695 |
|
01:29:20 Saving the model to model/v1/b |
|
20:33:57 Epoch: [3] - Train/Valid Loss: 4.0235/3.9188 |
|
20:33:57 Saving the model to model/v1/b |
|
15:40:47 Epoch: [4] - Train/Valid Loss: 3.8973/3.8104 |
|
15:40:47 Saving the model to model/v1/b |
|
10:47:52 Epoch: [5] - Train/Valid Loss: 3.8073/3.7362 |
|
10:47:52 Saving the model to model/v1/b |
|
05:53:55 Epoch: [6] - Train/Valid Loss: 3.7396/3.6746 |
|
05:53:55 Saving the model to model/v1/b |
|
01:41:19 Epoch: [7] - Train/Valid Loss: 3.6884/3.6288 |
|
01:41:19 Saving the model to model/v1/b |
|
01:14:59 Epoch: [8] - Train/Valid Loss: 3.6465/3.5897 |
|
01:14:59 Saving the model to model/v1/b |
|
|