Stepan
commited on
Commit
•
a4c27e8
1
Parent(s):
a962d53
Init ppo model for lunar lander
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 188.61 +/- 69.54
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fab4138cf80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fab41392050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fab413920e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fab41392170>", "_build": "<function ActorCriticPolicy._build at 0x7fab41392200>", "forward": "<function ActorCriticPolicy.forward at 0x7fab41392290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fab41392320>", "_predict": "<function ActorCriticPolicy._predict at 0x7fab413923b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fab41392440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fab413924d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fab41392560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fab413dd7b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651771772.1662884, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpRlzxI34a6xrSnuxuhCzmclzm6iEQsOgAAgD8AAIA/JmvXPfZQSbpeIqs7NMM/ON4Ofjt8vR63AACAPwAAgD9ziYE9DUxtPvgRyLxT0IK+Ic0Wvh2G3DwAAAAAAAAAAGbZsrxIabM/dOsKv6wLEr4xm4Y827ZVPQAAAAAAAAAAYM1aPhojAr3eiTw8ToXbuknwZL6GoqW7AACAPwAAgD/zVYA9CvcKuTnjizkrQ0kzFJMRO+22pbgAAIA/AACAP4NVjj6q+We9maSiutImmDnQMMe+tnvuOQAAgD8AAIA/gLefvoP8Ez/+v6486m5hvuTFn711ooi8AAAAAAAAAAAmqeO9D6V8PmTpED6fali+j8eFPcYmx7wAAAAAAAAAAGZznr3syaG52rYiPE82QzUWTM+7BflZNAAAgD8AAIA/ABj0vNfzALlEVYq7FfyVtjI8Bzy+bKc6AACAPwAAgD/NR1w9vMO+P65r5j4ENEA+uQhFPMhwMT4AAAAAAAAAADNCGL2uAcS6vnsBPODMKTwZY806zG4PvQAAgD8AAIA/wNHlPRQcl7otMKO7euxEOI2G17oY/to2AAAAAAAAgD/aks49w0k6urPWJbveGP81meDFuo70PjoAAIA/AACAP9prnj1ce2C6CORPOVdTKTT1u5a6Di5wuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPSe9b3wkYECUhpRSlIwBbJRN6AOMAXSUR0CQ5ZKl54W2dX2UKGgGaAloD0MIrrg4KjebVECUhpRSlGgVTegDaBZHQJDmmJP69Ch1fZQoaAZoCWgPQwgB++jUlYFaQJSGlFKUaBVN6ANoFkdAkPBPgWJrL3V9lChoBmgJaA9DCOEJvf4kdi7AlIaUUpRoFU0PAWgWR0CQ8iaRZEDydX2UKGgGaAloD0MImL1sO21HYkCUhpRSlGgVTegDaBZHQJD2LncL0Bh1fZQoaAZoCWgPQwjEIRtIl95gQJSGlFKUaBVN6ANoFkdAkPgrrC3w1HV9lChoBmgJaA9DCB2Txf1HJllAlIaUUpRoFU3oA2gWR0CRAhMzuWrwdX2UKGgGaAloD0MIoUyjycXTWkCUhpRSlGgVTegDaBZHQJEHzMvAXVN1fZQoaAZoCWgPQwgW+mAZm99jQJSGlFKUaBVN6ANoFkdAkTzk5U96knV9lChoBmgJaA9DCKd1G9R+mFlAlIaUUpRoFU3oA2gWR0CRPgNvwVj7dX2UKGgGaAloD0MIyatzDMj1X0CUhpRSlGgVTegDaBZHQJFAb5Lytmt1fZQoaAZoCWgPQwhnQ/6ZwSliQJSGlFKUaBVN6ANoFkdAkUUL26ClJ3V9lChoBmgJaA9DCMct5ueGfVdAlIaUUpRoFU3oA2gWR0CRUYy/9Hc2dX2UKGgGaAloD0MIggAZOvagYECUhpRSlGgVTegDaBZHQJFU0Ox0MgF1fZQoaAZoCWgPQwgoYDsYsadlQJSGlFKUaBVN6ANoFkdAkVZxguyu6nV9lChoBmgJaA9DCBrdQezMdGFAlIaUUpRoFU3oA2gWR0CRVohcJMQFdX2UKGgGaAloD0MIucK7XERTYECUhpRSlGgVTegDaBZHQJFYO0+kgwJ1fZQoaAZoCWgPQwhdpbvrbIxhQJSGlFKUaBVN6ANoFkdAkVmP9Hc1wnV9lChoBmgJaA9DCLFPAMXIJjBAlIaUUpRoFU1UAWgWR0CRW/CW/rSmdX2UKGgGaAloD0MIK1H2lvJ/YECUhpRSlGgVTegDaBZHQJFkMvFm4Al1fZQoaAZoCWgPQwhruTMTDNtWQJSGlFKUaBVN6ANoFkdAkWYsH8jzI3V9lChoBmgJaA9DCFlqvd9oAWFAlIaUUpRoFU3oA2gWR0CRamlyBCladX2UKGgGaAloD0MIxxAAHHtwXUCUhpRSlGgVTegDaBZHQJFsdECvHLl1fZQoaAZoCWgPQwjhJw6g35dgQJSGlFKUaBVN6ANoFkdAkXb9x+8XenV9lChoBmgJaA9DCLjM6bIYJWZAlIaUUpRoFU3oA2gWR0CRfQH2h7E6dX2UKGgGaAloD0MIvR3htOCOYUCUhpRSlGgVTbMCaBZHQJF+ewu/UON1fZQoaAZoCWgPQwibWOAruuUQwJSGlFKUaBVNNQFoFkdAkaZTz7MxGnV9lChoBmgJaA9DCCUjZ2FPXUvAlIaUUpRoFU0GAWgWR0CRraVhCtzTdX2UKGgGaAloD0MILNhGPFnnZkCUhpRSlGgVTegDaBZHQJGxnhJiAlR1fZQoaAZoCWgPQwj/WfPjL71XQJSGlFKUaBVN6ANoFkdAkbUfTXrdFnV9lChoBmgJaA9DCOMz2T9PklpAlIaUUpRoFU3oA2gWR0CRxhYlIEr5dX2UKGgGaAloD0MIl8XE5uNqN0CUhpRSlGgVS/RoFkdAkchugDifhHV9lChoBmgJaA9DCBH/sKVHqFlAlIaUUpRoFU3oA2gWR0CRyZZrpJPJdX2UKGgGaAloD0MIw0SDFDw2U0CUhpRSlGgVTegDaBZHQJHLPWXkYGd1fZQoaAZoCWgPQwjizK/mgC5iQJSGlFKUaBVN6ANoFkdAkctVrhzeXXV9lChoBmgJaA9DCFoPXyaKqF5AlIaUUpRoFU3oA2gWR0CRzSg2ZRbbdX2UKGgGaAloD0MIpYXLKmx3XkCUhpRSlGgVTegDaBZHQJHOVpVS4vx1fZQoaAZoCWgPQwiZSj/h7GdXQJSGlFKUaBVN6ANoFkdAkdDoCyQgcXV9lChoBmgJaA9DCLu04bA0Al9AlIaUUpRoFU3oA2gWR0CR2Z7YkE9udX2UKGgGaAloD0MIXRWoxeDMXkCUhpRSlGgVTegDaBZHQJHbtiQT2391fZQoaAZoCWgPQwiWP98WLMkwwJSGlFKUaBVL52gWR0CR3K67NB4VdX2UKGgGaAloD0MIm+jzUUaiXECUhpRSlGgVTegDaBZHQJHf4ntv4ud1fZQoaAZoCWgPQwifWKfK9ywKwJSGlFKUaBVNHAFoFkdAkfDnN9ph4XV9lChoBmgJaA9DCP5fdeRIyVFAlIaUUpRoFU3oA2gWR0CR8bkdmxt6dX2UKGgGaAloD0MIiSe7mVHtYkCUhpRSlGgVTegDaBZHQJHy/gMtsep1fZQoaAZoCWgPQwiKOQg6WmdMwJSGlFKUaBVNIAFoFkdAkfN8gpz90nV9lChoBmgJaA9DCCZTBaMSg2NAlIaUUpRoFU3oA2gWR0CR+6faHsTndX2UKGgGaAloD0MI0qjAyTahYUCUhpRSlGgVTegDaBZHQJIeyy+pOvd1fZQoaAZoCWgPQwhe1sQCX+lgQJSGlFKUaBVN6ANoFkdAkiTtNFjNIXV9lChoBmgJaA9DCJs4ud+haBTAlIaUUpRoFU0zAWgWR0CSKK7qptJndX2UKGgGaAloD0MIscBXdOvZQ0CUhpRSlGgVTegDaBZHQJI0KzC1qnF1fZQoaAZoCWgPQwgGRl7WxKo/QJSGlFKUaBVN6ANoFkdAkjZlLWZqmHV9lChoBmgJaA9DCK1OzlDcdV1AlIaUUpRoFU3oA2gWR0CSN2d7fHghdX2UKGgGaAloD0MIineAJy2iZ0CUhpRSlGgVTegDaBZHQJI49agVXV91fZQoaAZoCWgPQwjgDz//PaxeQJSGlFKUaBVN6ANoFkdAkjq+Vkc0cnV9lChoBmgJaA9DCJccd0qHX2NAlIaUUpRoFU3oA2gWR0CSO/BEa2nbdX2UKGgGaAloD0MIiZenc8XQYUCUhpRSlGgVTegDaBZHQJI+gH2RJVd1fZQoaAZoCWgPQwhFSN3OvoZgQJSGlFKUaBVN6ANoFkdAkknHt0FKTXV9lChoBmgJaA9DCHr7c9GQDWRAlIaUUpRoFU3oA2gWR0CSTUCFsYVJdX2UKGgGaAloD0MIcCL6tfUDNsCUhpRSlGgVTSoBaBZHQJJPSvGIbfh1fZQoaAZoCWgPQwiPcjCbAGNjQJSGlFKUaBVN6ANoFkdAkmA08JUo8nV9lChoBmgJaA9DCO3T8ZgB+2BAlIaUUpRoFU3oA2gWR0CSYRf16E8JdX2UKGgGaAloD0MIMbWlDvJTZUCUhpRSlGgVTegDaBZHQJJjH544ZMt1fZQoaAZoCWgPQwjyfXGpSnsrQJSGlFKUaBVNOgFoFkdAkmaeQp4KQnV9lChoBmgJaA9DCPVLxFvn1l5AlIaUUpRoFU3oA2gWR0CSbIWEbo8qdX2UKGgGaAloD0MIenJNgUy7Z0CUhpRSlGgVTWQDaBZHQJKP+MGX5WR1fZQoaAZoCWgPQwjICRNGs5ILQJSGlFKUaBVN6ANoFkdAkpCWr4nF53V9lChoBmgJaA9DCC/dJAaBh15AlIaUUpRoFU3oA2gWR0CSlxTKkl/pdX2UKGgGaAloD0MIZMvydZlmZECUhpRSlGgVTegDaBZHQJKnZuKoAGV1fZQoaAZoCWgPQwgs1nCRe91bQJSGlFKUaBVN6ANoFkdAkqmpiuuA7XV9lChoBmgJaA9DCM2v5gDB8VpAlIaUUpRoFU3oA2gWR0CSqq8qFyq/dX2UKGgGaAloD0MIK8HicOaqWUCUhpRSlGgVTegDaBZHQJKuAhOgxrV1fZQoaAZoCWgPQwgP7WMFvxhYQJSGlFKUaBVN6ANoFkdAkq9CqdYnv3V9lChoBmgJaA9DCEURUrezw1tAlIaUUpRoFU3oA2gWR0CSsbdSEUTMdX2UKGgGaAloD0MI4fCCiNRvWUCUhpRSlGgVTegDaBZHQJLBBuBMBZJ1fZQoaAZoCWgPQwj3qwDfbZRJQJSGlFKUaBVN6ANoFkdAksMQfEGZ/nV9lChoBmgJaA9DCOhrlstGmWpAlIaUUpRoFU1xAWgWR0CS0EltTDO1dX2UKGgGaAloD0MIrRdDOdEZXkCUhpRSlGgVTegDaBZHQJLTVvBJqZd1fZQoaAZoCWgPQwg9uhEWFbJhQJSGlFKUaBVN6ANoFkdAktQnE61b7nV9lChoBmgJaA9DCAwiUtOuQmJAlIaUUpRoFU3oA2gWR0CS1f+/xlQNdX2UKGgGaAloD0MIFvcfmQ5VWECUhpRSlGgVTegDaBZHQJLZGSpzcRF1fZQoaAZoCWgPQwgmcsEZ/O9CQJSGlFKUaBVN6ANoFkdAkt4UDlo11nV9lChoBmgJaA9DCAEwnkFD9l9AlIaUUpRoFU3oA2gWR0CTAJgK4QSSdX2UKGgGaAloD0MIF5tWCgHhYUCUhpRSlGgVTegDaBZHQJMBHzasZHd1fZQoaAZoCWgPQwhksOJUaz1ZQJSGlFKUaBVN6ANoFkdAkwcefVZs9HV9lChoBmgJaA9DCKhy2lNyDgtAlIaUUpRoFUvsaBZHQJMNqxY7q6h1fZQoaAZoCWgPQwhKXwg5751ZQJSGlFKUaBVN6ANoFkdAkxXlafSQYHV9lChoBmgJaA9DCOAu+3Wnu15AlIaUUpRoFU3oA2gWR0CTGBOMl1KXdX2UKGgGaAloD0MIizbHuU0dWECUhpRSlGgVTegDaBZHQJMZBo/Rmbt1fZQoaAZoCWgPQwiYio15nbhmQJSGlFKUaBVNNAJoFkdAkxskZzgdfnV9lChoBmgJaA9DCCcW+IruCWJAlIaUUpRoFU3oA2gWR0CTHCt5D7ZWdX2UKGgGaAloD0MI/fm2YKkFW0CUhpRSlGgVTegDaBZHQJMdWlchTwV1fZQoaAZoCWgPQwjerSzRWbxqQJSGlFKUaBVNiAJoFkdAkyXIfKZDzHV9lChoBmgJaA9DCCBCXDl7Il9AlIaUUpRoFU3oA2gWR0CTL5iM5wOwdX2UKGgGaAloD0MIXvQVpBnuYUCUhpRSlGgVTegDaBZHQJMxki3XqaB1fZQoaAZoCWgPQwjiOVtAaJddQJSGlFKUaBVN6ANoFkdAk0Fu4gA6uHV9lChoBmgJaA9DCGqIKvwZElFAlIaUUpRoFU3oA2gWR0CTQkW+49X+dX2UKGgGaAloD0MIFJfjFYjDU0CUhpRSlGgVTegDaBZHQJNHjADaGpN1fZQoaAZoCWgPQwjRsu4fCzJaQJSGlFKUaBVN6ANoFkdAk1OaJ2t+1HV9lChoBmgJaA9DCJ2AJsKGHldAlIaUUpRoFU3oA2gWR0CTVEjMmnfmdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dff61af49ff6c2f5bd0c984ddffee7de8d557e86bfa67bab0577bd3c967068c8
|
3 |
+
size 144044
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fab4138cf80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fab41392050>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fab413920e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fab41392170>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fab41392200>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fab41392290>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fab41392320>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fab413923b0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fab41392440>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fab413924d0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fab41392560>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fab413dd7b0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651771772.1662884,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpRlzxI34a6xrSnuxuhCzmclzm6iEQsOgAAgD8AAIA/JmvXPfZQSbpeIqs7NMM/ON4Ofjt8vR63AACAPwAAgD9ziYE9DUxtPvgRyLxT0IK+Ic0Wvh2G3DwAAAAAAAAAAGbZsrxIabM/dOsKv6wLEr4xm4Y827ZVPQAAAAAAAAAAYM1aPhojAr3eiTw8ToXbuknwZL6GoqW7AACAPwAAgD/zVYA9CvcKuTnjizkrQ0kzFJMRO+22pbgAAIA/AACAP4NVjj6q+We9maSiutImmDnQMMe+tnvuOQAAgD8AAIA/gLefvoP8Ez/+v6486m5hvuTFn711ooi8AAAAAAAAAAAmqeO9D6V8PmTpED6fali+j8eFPcYmx7wAAAAAAAAAAGZznr3syaG52rYiPE82QzUWTM+7BflZNAAAgD8AAIA/ABj0vNfzALlEVYq7FfyVtjI8Bzy+bKc6AACAPwAAgD/NR1w9vMO+P65r5j4ENEA+uQhFPMhwMT4AAAAAAAAAADNCGL2uAcS6vnsBPODMKTwZY806zG4PvQAAgD8AAIA/wNHlPRQcl7otMKO7euxEOI2G17oY/to2AAAAAAAAgD/aks49w0k6urPWJbveGP81meDFuo70PjoAAIA/AACAP9prnj1ce2C6CORPOVdTKTT1u5a6Di5wuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPSe9b3wkYECUhpRSlIwBbJRN6AOMAXSUR0CQ5ZKl54W2dX2UKGgGaAloD0MIrrg4KjebVECUhpRSlGgVTegDaBZHQJDmmJP69Ch1fZQoaAZoCWgPQwgB++jUlYFaQJSGlFKUaBVN6ANoFkdAkPBPgWJrL3V9lChoBmgJaA9DCOEJvf4kdi7AlIaUUpRoFU0PAWgWR0CQ8iaRZEDydX2UKGgGaAloD0MImL1sO21HYkCUhpRSlGgVTegDaBZHQJD2LncL0Bh1fZQoaAZoCWgPQwjEIRtIl95gQJSGlFKUaBVN6ANoFkdAkPgrrC3w1HV9lChoBmgJaA9DCB2Txf1HJllAlIaUUpRoFU3oA2gWR0CRAhMzuWrwdX2UKGgGaAloD0MIoUyjycXTWkCUhpRSlGgVTegDaBZHQJEHzMvAXVN1fZQoaAZoCWgPQwgW+mAZm99jQJSGlFKUaBVN6ANoFkdAkTzk5U96knV9lChoBmgJaA9DCKd1G9R+mFlAlIaUUpRoFU3oA2gWR0CRPgNvwVj7dX2UKGgGaAloD0MIyatzDMj1X0CUhpRSlGgVTegDaBZHQJFAb5Lytmt1fZQoaAZoCWgPQwhnQ/6ZwSliQJSGlFKUaBVN6ANoFkdAkUUL26ClJ3V9lChoBmgJaA9DCMct5ueGfVdAlIaUUpRoFU3oA2gWR0CRUYy/9Hc2dX2UKGgGaAloD0MIggAZOvagYECUhpRSlGgVTegDaBZHQJFU0Ox0MgF1fZQoaAZoCWgPQwgoYDsYsadlQJSGlFKUaBVN6ANoFkdAkVZxguyu6nV9lChoBmgJaA9DCBrdQezMdGFAlIaUUpRoFU3oA2gWR0CRVohcJMQFdX2UKGgGaAloD0MIucK7XERTYECUhpRSlGgVTegDaBZHQJFYO0+kgwJ1fZQoaAZoCWgPQwhdpbvrbIxhQJSGlFKUaBVN6ANoFkdAkVmP9Hc1wnV9lChoBmgJaA9DCLFPAMXIJjBAlIaUUpRoFU1UAWgWR0CRW/CW/rSmdX2UKGgGaAloD0MIK1H2lvJ/YECUhpRSlGgVTegDaBZHQJFkMvFm4Al1fZQoaAZoCWgPQwhruTMTDNtWQJSGlFKUaBVN6ANoFkdAkWYsH8jzI3V9lChoBmgJaA9DCFlqvd9oAWFAlIaUUpRoFU3oA2gWR0CRamlyBCladX2UKGgGaAloD0MIxxAAHHtwXUCUhpRSlGgVTegDaBZHQJFsdECvHLl1fZQoaAZoCWgPQwjhJw6g35dgQJSGlFKUaBVN6ANoFkdAkXb9x+8XenV9lChoBmgJaA9DCLjM6bIYJWZAlIaUUpRoFU3oA2gWR0CRfQH2h7E6dX2UKGgGaAloD0MIvR3htOCOYUCUhpRSlGgVTbMCaBZHQJF+ewu/UON1fZQoaAZoCWgPQwibWOAruuUQwJSGlFKUaBVNNQFoFkdAkaZTz7MxGnV9lChoBmgJaA9DCCUjZ2FPXUvAlIaUUpRoFU0GAWgWR0CRraVhCtzTdX2UKGgGaAloD0MILNhGPFnnZkCUhpRSlGgVTegDaBZHQJGxnhJiAlR1fZQoaAZoCWgPQwj/WfPjL71XQJSGlFKUaBVN6ANoFkdAkbUfTXrdFnV9lChoBmgJaA9DCOMz2T9PklpAlIaUUpRoFU3oA2gWR0CRxhYlIEr5dX2UKGgGaAloD0MIl8XE5uNqN0CUhpRSlGgVS/RoFkdAkchugDifhHV9lChoBmgJaA9DCBH/sKVHqFlAlIaUUpRoFU3oA2gWR0CRyZZrpJPJdX2UKGgGaAloD0MIw0SDFDw2U0CUhpRSlGgVTegDaBZHQJHLPWXkYGd1fZQoaAZoCWgPQwjizK/mgC5iQJSGlFKUaBVN6ANoFkdAkctVrhzeXXV9lChoBmgJaA9DCFoPXyaKqF5AlIaUUpRoFU3oA2gWR0CRzSg2ZRbbdX2UKGgGaAloD0MIpYXLKmx3XkCUhpRSlGgVTegDaBZHQJHOVpVS4vx1fZQoaAZoCWgPQwiZSj/h7GdXQJSGlFKUaBVN6ANoFkdAkdDoCyQgcXV9lChoBmgJaA9DCLu04bA0Al9AlIaUUpRoFU3oA2gWR0CR2Z7YkE9udX2UKGgGaAloD0MIXRWoxeDMXkCUhpRSlGgVTegDaBZHQJHbtiQT2391fZQoaAZoCWgPQwiWP98WLMkwwJSGlFKUaBVL52gWR0CR3K67NB4VdX2UKGgGaAloD0MIm+jzUUaiXECUhpRSlGgVTegDaBZHQJHf4ntv4ud1fZQoaAZoCWgPQwifWKfK9ywKwJSGlFKUaBVNHAFoFkdAkfDnN9ph4XV9lChoBmgJaA9DCP5fdeRIyVFAlIaUUpRoFU3oA2gWR0CR8bkdmxt6dX2UKGgGaAloD0MIiSe7mVHtYkCUhpRSlGgVTegDaBZHQJHy/gMtsep1fZQoaAZoCWgPQwiKOQg6WmdMwJSGlFKUaBVNIAFoFkdAkfN8gpz90nV9lChoBmgJaA9DCCZTBaMSg2NAlIaUUpRoFU3oA2gWR0CR+6faHsTndX2UKGgGaAloD0MI0qjAyTahYUCUhpRSlGgVTegDaBZHQJIeyy+pOvd1fZQoaAZoCWgPQwhe1sQCX+lgQJSGlFKUaBVN6ANoFkdAkiTtNFjNIXV9lChoBmgJaA9DCJs4ud+haBTAlIaUUpRoFU0zAWgWR0CSKK7qptJndX2UKGgGaAloD0MIscBXdOvZQ0CUhpRSlGgVTegDaBZHQJI0KzC1qnF1fZQoaAZoCWgPQwgGRl7WxKo/QJSGlFKUaBVN6ANoFkdAkjZlLWZqmHV9lChoBmgJaA9DCK1OzlDcdV1AlIaUUpRoFU3oA2gWR0CSN2d7fHghdX2UKGgGaAloD0MIineAJy2iZ0CUhpRSlGgVTegDaBZHQJI49agVXV91fZQoaAZoCWgPQwjgDz//PaxeQJSGlFKUaBVN6ANoFkdAkjq+Vkc0cnV9lChoBmgJaA9DCJccd0qHX2NAlIaUUpRoFU3oA2gWR0CSO/BEa2nbdX2UKGgGaAloD0MIiZenc8XQYUCUhpRSlGgVTegDaBZHQJI+gH2RJVd1fZQoaAZoCWgPQwhFSN3OvoZgQJSGlFKUaBVN6ANoFkdAkknHt0FKTXV9lChoBmgJaA9DCHr7c9GQDWRAlIaUUpRoFU3oA2gWR0CSTUCFsYVJdX2UKGgGaAloD0MIcCL6tfUDNsCUhpRSlGgVTSoBaBZHQJJPSvGIbfh1fZQoaAZoCWgPQwiPcjCbAGNjQJSGlFKUaBVN6ANoFkdAkmA08JUo8nV9lChoBmgJaA9DCO3T8ZgB+2BAlIaUUpRoFU3oA2gWR0CSYRf16E8JdX2UKGgGaAloD0MIMbWlDvJTZUCUhpRSlGgVTegDaBZHQJJjH544ZMt1fZQoaAZoCWgPQwjyfXGpSnsrQJSGlFKUaBVNOgFoFkdAkmaeQp4KQnV9lChoBmgJaA9DCPVLxFvn1l5AlIaUUpRoFU3oA2gWR0CSbIWEbo8qdX2UKGgGaAloD0MIenJNgUy7Z0CUhpRSlGgVTWQDaBZHQJKP+MGX5WR1fZQoaAZoCWgPQwjICRNGs5ILQJSGlFKUaBVN6ANoFkdAkpCWr4nF53V9lChoBmgJaA9DCC/dJAaBh15AlIaUUpRoFU3oA2gWR0CSlxTKkl/pdX2UKGgGaAloD0MIZMvydZlmZECUhpRSlGgVTegDaBZHQJKnZuKoAGV1fZQoaAZoCWgPQwgs1nCRe91bQJSGlFKUaBVN6ANoFkdAkqmpiuuA7XV9lChoBmgJaA9DCM2v5gDB8VpAlIaUUpRoFU3oA2gWR0CSqq8qFyq/dX2UKGgGaAloD0MIK8HicOaqWUCUhpRSlGgVTegDaBZHQJKuAhOgxrV1fZQoaAZoCWgPQwgP7WMFvxhYQJSGlFKUaBVN6ANoFkdAkq9CqdYnv3V9lChoBmgJaA9DCEURUrezw1tAlIaUUpRoFU3oA2gWR0CSsbdSEUTMdX2UKGgGaAloD0MI4fCCiNRvWUCUhpRSlGgVTegDaBZHQJLBBuBMBZJ1fZQoaAZoCWgPQwj3qwDfbZRJQJSGlFKUaBVN6ANoFkdAksMQfEGZ/nV9lChoBmgJaA9DCOhrlstGmWpAlIaUUpRoFU1xAWgWR0CS0EltTDO1dX2UKGgGaAloD0MIrRdDOdEZXkCUhpRSlGgVTegDaBZHQJLTVvBJqZd1fZQoaAZoCWgPQwg9uhEWFbJhQJSGlFKUaBVN6ANoFkdAktQnE61b7nV9lChoBmgJaA9DCAwiUtOuQmJAlIaUUpRoFU3oA2gWR0CS1f+/xlQNdX2UKGgGaAloD0MIFvcfmQ5VWECUhpRSlGgVTegDaBZHQJLZGSpzcRF1fZQoaAZoCWgPQwgmcsEZ/O9CQJSGlFKUaBVN6ANoFkdAkt4UDlo11nV9lChoBmgJaA9DCAEwnkFD9l9AlIaUUpRoFU3oA2gWR0CTAJgK4QSSdX2UKGgGaAloD0MIF5tWCgHhYUCUhpRSlGgVTegDaBZHQJMBHzasZHd1fZQoaAZoCWgPQwhksOJUaz1ZQJSGlFKUaBVN6ANoFkdAkwcefVZs9HV9lChoBmgJaA9DCKhy2lNyDgtAlIaUUpRoFUvsaBZHQJMNqxY7q6h1fZQoaAZoCWgPQwhKXwg5751ZQJSGlFKUaBVN6ANoFkdAkxXlafSQYHV9lChoBmgJaA9DCOAu+3Wnu15AlIaUUpRoFU3oA2gWR0CTGBOMl1KXdX2UKGgGaAloD0MIizbHuU0dWECUhpRSlGgVTegDaBZHQJMZBo/Rmbt1fZQoaAZoCWgPQwiYio15nbhmQJSGlFKUaBVNNAJoFkdAkxskZzgdfnV9lChoBmgJaA9DCCcW+IruCWJAlIaUUpRoFU3oA2gWR0CTHCt5D7ZWdX2UKGgGaAloD0MI/fm2YKkFW0CUhpRSlGgVTegDaBZHQJMdWlchTwV1fZQoaAZoCWgPQwjerSzRWbxqQJSGlFKUaBVNiAJoFkdAkyXIfKZDzHV9lChoBmgJaA9DCCBCXDl7Il9AlIaUUpRoFU3oA2gWR0CTL5iM5wOwdX2UKGgGaAloD0MIXvQVpBnuYUCUhpRSlGgVTegDaBZHQJMxki3XqaB1fZQoaAZoCWgPQwjiOVtAaJddQJSGlFKUaBVN6ANoFkdAk0Fu4gA6uHV9lChoBmgJaA9DCGqIKvwZElFAlIaUUpRoFU3oA2gWR0CTQkW+49X+dX2UKGgGaAloD0MIFJfjFYjDU0CUhpRSlGgVTegDaBZHQJNHjADaGpN1fZQoaAZoCWgPQwjRsu4fCzJaQJSGlFKUaBVN6ANoFkdAk1OaJ2t+1HV9lChoBmgJaA9DCJ2AJsKGHldAlIaUUpRoFU3oA2gWR0CTVEjMmnfmdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0847956dd8958bda129f9990a86d5064b44a83384536892bd9975f47f7343ea
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a63bc221901fce03bc1a38bb44af9f4b23fdef1c3aa0a4bb9aa509e2fb57edd7
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78722e443aa537cf12cdcf7f0f1ab98bcc76a85635226a4937c11b4c0392285a
|
3 |
+
size 181928
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 188.60759792966425, "std_reward": 69.54018666277123, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T17:47:59.215208"}
|