Upload directory
Browse files
models/vit_kprpe/RPE/KPRPE/kprpe_shared.py
ADDED
@@ -0,0 +1,735 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from easydict import EasyDict as edict
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from .dist import _rp_2d_cross_cols, _rp_2d_cross_rows, _rp_2d_euclidean, _rp_2d_product, _rp_2d_quant
|
6 |
+
|
7 |
+
try:
|
8 |
+
from ..rpe_ops.rpe_index import RPEIndexFunction
|
9 |
+
except Exception as e:
|
10 |
+
print('Failed to import cuda/cpp RPEIndexFunction')
|
11 |
+
RPEIndexFunction = None
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
def get_absolute_positions(height, width, dtype, device):
|
16 |
+
'''Get absolute positions
|
17 |
+
|
18 |
+
Take height = 3, width = 3 as an example:
|
19 |
+
rows: cols:
|
20 |
+
1 1 1 1 2 3
|
21 |
+
2 2 2 1 2 3
|
22 |
+
3 3 3 1 2 3
|
23 |
+
|
24 |
+
return stack([rows, cols], 2)
|
25 |
+
|
26 |
+
Parameters
|
27 |
+
----------
|
28 |
+
height, width: int
|
29 |
+
The height and width of feature map
|
30 |
+
dtype: torch.dtype
|
31 |
+
the data type of returned value
|
32 |
+
device: torch.device
|
33 |
+
the device of returned value
|
34 |
+
|
35 |
+
Return
|
36 |
+
------
|
37 |
+
2D absolute positions: torch.Tensor
|
38 |
+
The shape is (height, width, 2),
|
39 |
+
where 2 represents a 2D position (row, col).
|
40 |
+
'''
|
41 |
+
rows = torch.arange(height, dtype=dtype, device=device).view(
|
42 |
+
height, 1).repeat(1, width)
|
43 |
+
cols = torch.arange(width, dtype=dtype, device=device).view(
|
44 |
+
1, width).repeat(height, 1)
|
45 |
+
return torch.stack([rows, cols], 2)
|
46 |
+
|
47 |
+
|
48 |
+
class METHOD:
|
49 |
+
"""define iRPE method IDs
|
50 |
+
We divide the implementation of CROSS into CROSS_ROWS and CROSS_COLS.
|
51 |
+
|
52 |
+
"""
|
53 |
+
EUCLIDEAN = 0
|
54 |
+
QUANT = 1
|
55 |
+
PRODUCT = 3
|
56 |
+
CROSS = 4
|
57 |
+
CROSS_ROWS = 41
|
58 |
+
CROSS_COLS = 42
|
59 |
+
|
60 |
+
|
61 |
+
# Define a mapping from METHOD_ID to Python function
|
62 |
+
_METHOD_FUNC = {
|
63 |
+
METHOD.EUCLIDEAN: _rp_2d_euclidean,
|
64 |
+
METHOD.QUANT: _rp_2d_quant,
|
65 |
+
METHOD.PRODUCT: _rp_2d_product,
|
66 |
+
METHOD.CROSS_ROWS: _rp_2d_cross_rows,
|
67 |
+
METHOD.CROSS_COLS: _rp_2d_cross_cols,
|
68 |
+
}
|
69 |
+
|
70 |
+
|
71 |
+
def get_num_buckets(method, alpha, beta, gamma):
|
72 |
+
""" Get number of buckets storing relative position encoding.
|
73 |
+
The buckets does not contain `skip` token.
|
74 |
+
|
75 |
+
Parameters
|
76 |
+
----------
|
77 |
+
method: METHOD
|
78 |
+
The method ID of image relative position encoding.
|
79 |
+
alpha, beta, gamma: float
|
80 |
+
The coefficients of piecewise index function.
|
81 |
+
|
82 |
+
Returns
|
83 |
+
-------
|
84 |
+
num_buckets: int
|
85 |
+
The number of buckets storing relative position encoding.
|
86 |
+
"""
|
87 |
+
beta_int = int(beta)
|
88 |
+
if method == METHOD.PRODUCT:
|
89 |
+
# IDs in [0, (2 * beta_int + 1)^2) for Product method
|
90 |
+
num_buckets = (2 * beta_int + 1) ** 2
|
91 |
+
else:
|
92 |
+
# IDs in [-beta_int, beta_int] except of Product method
|
93 |
+
num_buckets = 2 * beta_int + 1
|
94 |
+
return num_buckets
|
95 |
+
|
96 |
+
|
97 |
+
# (method, alpha, beta, gamma) -> (bucket_ids, num_buckets, height, width)
|
98 |
+
BUCKET_IDS_BUF = dict()
|
99 |
+
|
100 |
+
|
101 |
+
@torch.no_grad()
|
102 |
+
def get_bucket_ids_2d_without_skip(method, height, width,
|
103 |
+
alpha, beta, gamma,
|
104 |
+
dtype=torch.long, device=torch.device('cpu')):
|
105 |
+
"""Get bucket IDs for image relative position encodings without skip token
|
106 |
+
|
107 |
+
Parameters
|
108 |
+
----------
|
109 |
+
method: METHOD
|
110 |
+
The method ID of image relative position encoding.
|
111 |
+
height, width: int
|
112 |
+
The height and width of the feature map.
|
113 |
+
The sequence length is equal to `height * width`.
|
114 |
+
alpha, beta, gamma: float
|
115 |
+
The coefficients of piecewise index function.
|
116 |
+
dtype: torch.dtype
|
117 |
+
the data type of returned `bucket_ids`
|
118 |
+
device: torch.device
|
119 |
+
the device of returned `bucket_ids`
|
120 |
+
|
121 |
+
Returns
|
122 |
+
-------
|
123 |
+
bucket_ids: torch.Tensor, dtype: long
|
124 |
+
The bucket IDs which index to corresponding encodings.
|
125 |
+
The shape of `bucket_ids` is (skip + L, skip + L),
|
126 |
+
where `L = height * wdith`.
|
127 |
+
num_buckets: int
|
128 |
+
The number of buckets including `skip` token.
|
129 |
+
L: int
|
130 |
+
The sequence length
|
131 |
+
"""
|
132 |
+
|
133 |
+
key = (method, alpha, beta, gamma, dtype, device)
|
134 |
+
value = BUCKET_IDS_BUF.get(key, None)
|
135 |
+
if value is None or value[-2] < height or value[-1] < width:
|
136 |
+
if value is None:
|
137 |
+
max_height, max_width = height, width
|
138 |
+
else:
|
139 |
+
max_height = max(value[-2], height)
|
140 |
+
max_width = max(value[-1], width)
|
141 |
+
# relative position encoding mapping function
|
142 |
+
func = _METHOD_FUNC.get(method, None)
|
143 |
+
if func is None:
|
144 |
+
raise NotImplementedError(
|
145 |
+
f"[Error] The method ID {method} does not exist.")
|
146 |
+
pos = get_absolute_positions(max_height, max_width, dtype, device)
|
147 |
+
|
148 |
+
# compute the offset of a pair of 2D relative positions
|
149 |
+
max_L = max_height * max_width
|
150 |
+
pos1 = pos.view((max_L, 1, 2))
|
151 |
+
pos2 = pos.view((1, max_L, 2))
|
152 |
+
# diff: shape of (L, L, 2)
|
153 |
+
diff = pos1 - pos2
|
154 |
+
|
155 |
+
# bucket_ids: shape of (L, L)
|
156 |
+
bucket_ids = func(diff, alpha=alpha, beta=beta,
|
157 |
+
gamma=gamma, dtype=dtype)
|
158 |
+
beta_int = int(beta)
|
159 |
+
if method != METHOD.PRODUCT:
|
160 |
+
bucket_ids += beta_int
|
161 |
+
bucket_ids = bucket_ids.view(
|
162 |
+
max_height, max_width, max_height, max_width)
|
163 |
+
|
164 |
+
num_buckets = get_num_buckets(method, alpha, beta, gamma)
|
165 |
+
value = (bucket_ids, num_buckets, height, width)
|
166 |
+
BUCKET_IDS_BUF[key] = value
|
167 |
+
L = height * width
|
168 |
+
bucket_ids = value[0][:height, :width, :height, :width].reshape(L, L)
|
169 |
+
num_buckets = value[1]
|
170 |
+
|
171 |
+
return bucket_ids, num_buckets, L
|
172 |
+
|
173 |
+
|
174 |
+
@torch.no_grad()
|
175 |
+
def get_bucket_ids_2d(method, height, width,
|
176 |
+
skip, alpha, beta, gamma,
|
177 |
+
dtype=torch.long, device=torch.device('cpu')):
|
178 |
+
"""Get bucket IDs for image relative position encodings
|
179 |
+
|
180 |
+
Parameters
|
181 |
+
----------
|
182 |
+
method: METHOD
|
183 |
+
The method ID of image relative position encoding.
|
184 |
+
height, width: int
|
185 |
+
The height and width of the feature map.
|
186 |
+
The sequence length is equal to `height * width`.
|
187 |
+
skip: int
|
188 |
+
The number of skip token before spatial tokens.
|
189 |
+
When skip is 0, no classification token.
|
190 |
+
When skip is 1, there is a classification token before spatial tokens.
|
191 |
+
When skip > 1, there are `skip` extra tokens before spatial tokens.
|
192 |
+
alpha, beta, gamma: float
|
193 |
+
The coefficients of piecewise index function.
|
194 |
+
dtype: torch.dtype
|
195 |
+
the data type of returned `bucket_ids`
|
196 |
+
device: torch.device
|
197 |
+
the device of returned `bucket_ids`
|
198 |
+
|
199 |
+
Returns
|
200 |
+
-------
|
201 |
+
bucket_ids: torch.Tensor, dtype: long
|
202 |
+
The bucket IDs which index to corresponding encodings.
|
203 |
+
The shape of `bucket_ids` is (skip + L, skip + L),
|
204 |
+
where `L = height * wdith`.
|
205 |
+
num_buckets: int
|
206 |
+
The number of buckets including `skip` token.
|
207 |
+
"""
|
208 |
+
bucket_ids, num_buckets, L = get_bucket_ids_2d_without_skip(method, height, width,
|
209 |
+
alpha, beta, gamma,
|
210 |
+
dtype, device)
|
211 |
+
|
212 |
+
# add an extra encoding (id = num_buckets) for the classification token
|
213 |
+
if skip > 0:
|
214 |
+
new_bids = bucket_ids.new_empty(size=(skip + L, skip + L))
|
215 |
+
|
216 |
+
# if extra token exists, we add extra bucket as its encoding.
|
217 |
+
extra_bucket_id = num_buckets
|
218 |
+
num_buckets += 1
|
219 |
+
|
220 |
+
new_bids[:skip] = extra_bucket_id
|
221 |
+
new_bids[:, :skip] = extra_bucket_id
|
222 |
+
new_bids[skip:, skip:] = bucket_ids
|
223 |
+
|
224 |
+
bucket_ids = new_bids
|
225 |
+
bucket_ids = bucket_ids.contiguous()
|
226 |
+
return bucket_ids, num_buckets
|
227 |
+
|
228 |
+
|
229 |
+
class iRPE(nn.Module):
|
230 |
+
"""The implementation of image relative position encoding (excluding Cross method).
|
231 |
+
|
232 |
+
Parameters
|
233 |
+
----------
|
234 |
+
head_dim: int
|
235 |
+
The dimension for each head.
|
236 |
+
num_heads: int
|
237 |
+
The number of parallel attention heads.
|
238 |
+
mode: str or None
|
239 |
+
The mode of image relative position encoding.
|
240 |
+
Choices: [None, 'bias', 'contextual']
|
241 |
+
method: METHOD
|
242 |
+
The method ID of image relative position encoding.
|
243 |
+
The `METHOD` class is defined in `irpe.py`.
|
244 |
+
transposed: bool
|
245 |
+
Whether to transpose the input feature.
|
246 |
+
For iRPE on queries or keys, transposed should be `True`.
|
247 |
+
For iRPE on values, transposed should be `False`.
|
248 |
+
num_buckets: int
|
249 |
+
The number of buckets, which store encodings.
|
250 |
+
initializer: None or an inplace function
|
251 |
+
[Optional] The initializer to `lookup_table`.
|
252 |
+
Initalize `lookup_table` as zero by default.
|
253 |
+
rpe_config: RPEConfig
|
254 |
+
The config generated by the function `get_single_rpe_config`.
|
255 |
+
"""
|
256 |
+
# a buffer to store bucket index
|
257 |
+
# (key, rp_bucket, _ctx_rp_bucket_flatten)
|
258 |
+
_rp_bucket_buf = (None, None, None)
|
259 |
+
|
260 |
+
def __init__(self, head_dim, num_heads=8,
|
261 |
+
mode=None, method=None,
|
262 |
+
transposed=True, num_buckets=None,
|
263 |
+
initializer=None, rpe_config=None):
|
264 |
+
super().__init__()
|
265 |
+
self.num_heads = num_heads
|
266 |
+
self.head_dim = head_dim
|
267 |
+
|
268 |
+
# relative position
|
269 |
+
assert mode in [None, 'bias', 'contextual']
|
270 |
+
self.mode = mode
|
271 |
+
|
272 |
+
assert method is not None, 'method should be a METHOD ID rather than None'
|
273 |
+
self.method = method
|
274 |
+
|
275 |
+
self.transposed = transposed
|
276 |
+
self.num_buckets = num_buckets
|
277 |
+
|
278 |
+
if initializer is None:
|
279 |
+
def initializer(x): return None
|
280 |
+
self.initializer = initializer
|
281 |
+
|
282 |
+
self.reset_parameters()
|
283 |
+
|
284 |
+
self.rpe_config = rpe_config
|
285 |
+
|
286 |
+
@torch.no_grad()
|
287 |
+
def reset_parameters(self):
|
288 |
+
# initialize the parameters of iRPE
|
289 |
+
if self.transposed:
|
290 |
+
if self.mode == 'bias':
|
291 |
+
self.lookup_table_bias = nn.Parameter(
|
292 |
+
torch.zeros(self.num_heads, self.num_buckets))
|
293 |
+
self.initializer(self.lookup_table_bias)
|
294 |
+
elif self.mode == 'contextual':
|
295 |
+
# shared and initialized from vit
|
296 |
+
pass
|
297 |
+
else:
|
298 |
+
if self.mode == 'bias':
|
299 |
+
raise NotImplementedError(
|
300 |
+
"[Error] Bias non-transposed RPE does not exist.")
|
301 |
+
elif self.mode == 'contextual':
|
302 |
+
raise ValueError('may not work, check')
|
303 |
+
|
304 |
+
def forward(self, x, height=None, width=None):
|
305 |
+
"""forward function for iRPE.
|
306 |
+
|
307 |
+
Parameters
|
308 |
+
----------
|
309 |
+
x: torch.Tensor
|
310 |
+
Input Tensor whose shape is (B, H, L, head_dim),
|
311 |
+
where B is batch size,
|
312 |
+
H is the number of heads,
|
313 |
+
L is the sequence length,
|
314 |
+
equal to height * width (+1 if class token exists)
|
315 |
+
head_dim is the dimension of each head
|
316 |
+
|
317 |
+
Returns
|
318 |
+
-------
|
319 |
+
rpe_encoding: torch.Tensor
|
320 |
+
image Relative Position Encoding,
|
321 |
+
whose shape is (B, H, L, L)
|
322 |
+
"""
|
323 |
+
rp_bucket, self._ctx_rp_bucket_flatten = \
|
324 |
+
self._get_rp_bucket(x, height=height, width=width)
|
325 |
+
|
326 |
+
if self.transposed:
|
327 |
+
return self.forward_rpe_transpose(x, rp_bucket)
|
328 |
+
return self.forward_rpe_no_transpose(x, rp_bucket)
|
329 |
+
|
330 |
+
def _get_rp_bucket(self, x, height=None, width=None):
|
331 |
+
"""Get relative position encoding buckets IDs corresponding the input shape
|
332 |
+
|
333 |
+
Parameters
|
334 |
+
----------
|
335 |
+
x: torch.Tensor
|
336 |
+
Input Tensor whose shape is (B, H, L, head_dim),
|
337 |
+
where B is batch size,
|
338 |
+
H is the number of heads,
|
339 |
+
L is the sequence length,
|
340 |
+
equal to height * width (+1 if class token exists)
|
341 |
+
head_dim is the dimension of each head
|
342 |
+
height: int or None
|
343 |
+
[Optional] The height of the input
|
344 |
+
If not defined, height = floor(sqrt(L))
|
345 |
+
width: int or None
|
346 |
+
[Optional] The width of the input
|
347 |
+
If not defined, width = floor(sqrt(L))
|
348 |
+
|
349 |
+
Returns
|
350 |
+
-------
|
351 |
+
rp_bucket: torch.Tensor
|
352 |
+
relative position encoding buckets IDs
|
353 |
+
The shape is (L, L)
|
354 |
+
_ctx_rp_bucket_flatten: torch.Tensor or None
|
355 |
+
It is a private tensor for efficient computation.
|
356 |
+
"""
|
357 |
+
B, H, L, D = x.shape
|
358 |
+
device = x.device
|
359 |
+
if height is None:
|
360 |
+
E = int(math.sqrt(L))
|
361 |
+
height = width = E
|
362 |
+
key = (height, width, device)
|
363 |
+
# use buffer if the spatial shape and device is not changable.
|
364 |
+
|
365 |
+
if self._rp_bucket_buf[0] == key:
|
366 |
+
return self._rp_bucket_buf[1:3]
|
367 |
+
|
368 |
+
skip = L - height * width
|
369 |
+
config = self.rpe_config
|
370 |
+
if RPEIndexFunction is not None and self.mode == 'contextual' and self.transposed:
|
371 |
+
# RPEIndexFunction uses int32 index.
|
372 |
+
dtype = torch.int32
|
373 |
+
else:
|
374 |
+
dtype = torch.long
|
375 |
+
rp_bucket, num_buckets = get_bucket_ids_2d(method=self.method,
|
376 |
+
height=height, width=width,
|
377 |
+
skip=skip, alpha=config.alpha,
|
378 |
+
beta=config.beta, gamma=config.gamma,
|
379 |
+
dtype=dtype, device=device)
|
380 |
+
assert num_buckets == self.num_buckets
|
381 |
+
|
382 |
+
# transposed contextual
|
383 |
+
_ctx_rp_bucket_flatten = None
|
384 |
+
if self.mode == 'contextual' and self.transposed:
|
385 |
+
if RPEIndexFunction is None:
|
386 |
+
offset = torch.arange(0, L * self.num_buckets, self.num_buckets,
|
387 |
+
dtype=rp_bucket.dtype, device=rp_bucket.device).view(-1, 1)
|
388 |
+
_ctx_rp_bucket_flatten = (rp_bucket + offset).flatten()
|
389 |
+
self._rp_bucket_buf = (key, rp_bucket, _ctx_rp_bucket_flatten)
|
390 |
+
return rp_bucket, _ctx_rp_bucket_flatten
|
391 |
+
|
392 |
+
def forward_rpe_transpose(self, x, rp_bucket):
|
393 |
+
"""Forward function for iRPE (transposed version)
|
394 |
+
This version is utilized by RPE on Query or Key
|
395 |
+
|
396 |
+
Parameters
|
397 |
+
----------
|
398 |
+
x: torch.Tensor
|
399 |
+
Input Tensor whose shape is (B, H, L, head_dim),
|
400 |
+
where B is batch size,
|
401 |
+
H is the number of heads,
|
402 |
+
L is the sequence length,
|
403 |
+
equal to height * width (+1 if class token exists)
|
404 |
+
head_dim is the dimension of each head
|
405 |
+
rp_bucket: torch.Tensor
|
406 |
+
relative position encoding buckets IDs
|
407 |
+
The shape is (L, L)
|
408 |
+
|
409 |
+
Weights
|
410 |
+
-------
|
411 |
+
lookup_table_bias: torch.Tensor
|
412 |
+
The shape is (H or 1, num_buckets)
|
413 |
+
|
414 |
+
or
|
415 |
+
|
416 |
+
lookup_table_weight: torch.Tensor
|
417 |
+
The shape is (H or 1, head_dim, num_buckets)
|
418 |
+
|
419 |
+
Returns
|
420 |
+
-------
|
421 |
+
output: torch.Tensor
|
422 |
+
Relative position encoding on queries or keys.
|
423 |
+
The shape is (B or 1, H, L, L),
|
424 |
+
where D is the output dimension for each head.
|
425 |
+
"""
|
426 |
+
|
427 |
+
B = len(x) # batch_size
|
428 |
+
L_query, L_key = rp_bucket.shape
|
429 |
+
if self.mode == 'bias':
|
430 |
+
return self.lookup_table_bias[:, rp_bucket.flatten()]. \
|
431 |
+
view(1, self.num_heads, L_query, L_key)
|
432 |
+
|
433 |
+
elif self.mode == 'contextual':
|
434 |
+
"""
|
435 |
+
ret[b, h, i, j] = lookup_table_weight[b, h, i, rp_bucket[i, j]]
|
436 |
+
|
437 |
+
ret[b, h, i * L_key + j] = \
|
438 |
+
lookup_table[b, h, i * num_buckets + rp_buckets[i, j]]
|
439 |
+
|
440 |
+
computational cost
|
441 |
+
------------------
|
442 |
+
matmul: B * H * L_query * head_dim * num_buckets
|
443 |
+
index: L_query + L_query * L_key + B * H * L_query * L_key
|
444 |
+
total: O(B * H * L_query * (head_dim * num_buckets + L_key))
|
445 |
+
"""
|
446 |
+
if RPEIndexFunction is not None:
|
447 |
+
return RPEIndexFunction.apply(x, rp_bucket)
|
448 |
+
else:
|
449 |
+
return x.flatten(2)[:, :, self._ctx_rp_bucket_flatten]. \
|
450 |
+
view(B, -1, L_query, L_key)
|
451 |
+
|
452 |
+
def forward_rpe_no_transpose(self, x, rp_bucket):
|
453 |
+
"""Forward function for iRPE (non-transposed version)
|
454 |
+
This version is utilized by RPE on Value.
|
455 |
+
|
456 |
+
Parameters
|
457 |
+
----------
|
458 |
+
x: torch.Tensor
|
459 |
+
Input Tensor whose shape is (B, H, L, head_dim),
|
460 |
+
where B is batch size,
|
461 |
+
H is the number of heads,
|
462 |
+
L is the sequence length,
|
463 |
+
equal to height * width (+1 if class token exists)
|
464 |
+
head_dim is the dimension of each head
|
465 |
+
rp_bucket: torch.Tensor
|
466 |
+
relative position encoding buckets IDs
|
467 |
+
The shape is (L, L)
|
468 |
+
|
469 |
+
Weights
|
470 |
+
-------
|
471 |
+
lookup_table_weight: torch.Tensor
|
472 |
+
The shape is (H or 1, num_buckets, head_dim)
|
473 |
+
|
474 |
+
Returns
|
475 |
+
-------
|
476 |
+
output: torch.Tensor
|
477 |
+
Relative position encoding on values.
|
478 |
+
The shape is (B, H, L, D),
|
479 |
+
where D is the output dimension for each head.
|
480 |
+
"""
|
481 |
+
|
482 |
+
B = len(x) # batch_size
|
483 |
+
L_query, L_key = rp_bucket.shape
|
484 |
+
assert self.mode == 'contextual', "Only support contextual \
|
485 |
+
version in non-transposed version"
|
486 |
+
weight = self.lookup_table_weight[:, rp_bucket.flatten()]. \
|
487 |
+
view(self.num_heads, L_query, L_key, self.head_dim)
|
488 |
+
# (H, L_query, B, L_key) @ (H, L_query, L_key, D) = (H, L_query, B, D)
|
489 |
+
# -> (B, H, L_query, D)
|
490 |
+
return torch.matmul(x.permute(1, 2, 0, 3), weight).permute(2, 0, 1, 3)
|
491 |
+
|
492 |
+
def __repr__(self):
|
493 |
+
return 'iRPE(head_dim={rpe.head_dim}, num_heads={rpe.num_heads}, \
|
494 |
+
mode="{rpe.mode}", method={rpe.method}, transposed={rpe.transposed}, \
|
495 |
+
num_buckets={rpe.num_buckets}, initializer={rpe.initializer}, \
|
496 |
+
rpe_config={rpe.rpe_config})'.format(rpe=self)
|
497 |
+
|
498 |
+
|
499 |
+
class iRPE_Cross(nn.Module):
|
500 |
+
"""The implementation of image relative position encoding (specific for Cross method).
|
501 |
+
|
502 |
+
Parameters
|
503 |
+
----------
|
504 |
+
head_dim: int
|
505 |
+
The dimension for each head.
|
506 |
+
num_heads: int
|
507 |
+
The number of parallel attention heads.
|
508 |
+
mode: str or None
|
509 |
+
The mode of image relative position encoding.
|
510 |
+
Choices: [None, 'bias', 'contextual']
|
511 |
+
method: METHOD
|
512 |
+
The method ID of image relative position encoding.
|
513 |
+
The `METHOD` class is defined in `irpe.py`.
|
514 |
+
transposed: bool
|
515 |
+
Whether to transpose the input feature.
|
516 |
+
For iRPE on queries or keys, transposed should be `True`.
|
517 |
+
For iRPE on values, transposed should be `False`.
|
518 |
+
num_buckets: int
|
519 |
+
The number of buckets, which store encodings.
|
520 |
+
initializer: None or an inplace function
|
521 |
+
[Optional] The initializer to `lookup_table`.
|
522 |
+
Initalize `lookup_table` as zero by default.
|
523 |
+
rpe_config: RPEConfig
|
524 |
+
The config generated by the function `get_single_rpe_config`.
|
525 |
+
"""
|
526 |
+
|
527 |
+
def __init__(self, method, **kwargs):
|
528 |
+
super().__init__()
|
529 |
+
assert method == METHOD.CROSS
|
530 |
+
self.rp_rows = iRPE(**kwargs, method=METHOD.CROSS_ROWS)
|
531 |
+
self.rp_cols = iRPE(**kwargs, method=METHOD.CROSS_COLS)
|
532 |
+
|
533 |
+
def forward(self, x, height=None, width=None):
|
534 |
+
"""forward function for iRPE.
|
535 |
+
Compute encoding on horizontal and vertical directions separately,
|
536 |
+
then summarize them.
|
537 |
+
|
538 |
+
Parameters
|
539 |
+
----------
|
540 |
+
x: torch.Tensor
|
541 |
+
Input Tensor whose shape is (B, H, L, head_dim),
|
542 |
+
where B is batch size,
|
543 |
+
H is the number of heads,
|
544 |
+
L is the sequence length,
|
545 |
+
equal to height * width (+1 if class token exists)
|
546 |
+
head_dim is the dimension of each head
|
547 |
+
height: int or None
|
548 |
+
[Optional] The height of the input
|
549 |
+
If not defined, height = floor(sqrt(L))
|
550 |
+
width: int or None
|
551 |
+
[Optional] The width of the input
|
552 |
+
If not defined, width = floor(sqrt(L))
|
553 |
+
|
554 |
+
Returns
|
555 |
+
-------
|
556 |
+
rpe_encoding: torch.Tensor
|
557 |
+
Image Relative Position Encoding,
|
558 |
+
whose shape is (B, H, L, L)
|
559 |
+
"""
|
560 |
+
|
561 |
+
rows = self.rp_rows(x, height=height, width=width)
|
562 |
+
cols = self.rp_cols(x, height=height, width=width)
|
563 |
+
return rows + cols
|
564 |
+
|
565 |
+
def __repr__(self):
|
566 |
+
return 'iRPE_Cross(head_dim={rpe.head_dim}, \
|
567 |
+
num_heads={rpe.num_heads}, mode="{rpe.mode}", method={rpe.method}, \
|
568 |
+
transposed={rpe.transposed}, num_buckets={rpe.num_buckets}, \
|
569 |
+
initializer={rpe.initializer}, \
|
570 |
+
rpe_config={rpe.rpe_config})'.format(rpe=self.rp_rows)
|
571 |
+
|
572 |
+
|
573 |
+
def get_single_rpe_config(ratio=1.9,
|
574 |
+
method=METHOD.PRODUCT,
|
575 |
+
mode='contextual',
|
576 |
+
shared_head=True,
|
577 |
+
skip=0):
|
578 |
+
"""Get the config of single relative position encoding
|
579 |
+
|
580 |
+
Parameters
|
581 |
+
----------
|
582 |
+
ratio: float
|
583 |
+
The ratio to control the number of buckets.
|
584 |
+
method: METHOD
|
585 |
+
The method ID of image relative position encoding.
|
586 |
+
The `METHOD` class is defined in `irpe.py`.
|
587 |
+
mode: str or None
|
588 |
+
The mode of image relative position encoding.
|
589 |
+
Choices: [None, 'bias', 'contextual']
|
590 |
+
shared_head: bool
|
591 |
+
Whether to share weight among different heads.
|
592 |
+
skip: int
|
593 |
+
The number of skip token before spatial tokens.
|
594 |
+
When skip is 0, no classification token.
|
595 |
+
When skip is 1, there is a classification token before spatial tokens.
|
596 |
+
When skip > 1, there are `skip` extra tokens before spatial tokens.
|
597 |
+
|
598 |
+
Returns
|
599 |
+
-------
|
600 |
+
config: RPEConfig
|
601 |
+
The config of single relative position encoding.
|
602 |
+
"""
|
603 |
+
config = edict()
|
604 |
+
# whether to share encodings across different heads
|
605 |
+
config.shared_head = shared_head
|
606 |
+
# mode: None, bias, contextual
|
607 |
+
config.mode = mode
|
608 |
+
# method: None, Bias, Quant, Cross, Product
|
609 |
+
config.method = method
|
610 |
+
# the coefficients of piecewise index function
|
611 |
+
config.alpha = 1 * ratio
|
612 |
+
config.beta = 2 * ratio
|
613 |
+
config.gamma = 8 * ratio
|
614 |
+
|
615 |
+
# set the number of buckets
|
616 |
+
config.num_buckets = get_num_buckets(method,
|
617 |
+
config.alpha,
|
618 |
+
config.beta,
|
619 |
+
config.gamma)
|
620 |
+
# add extra bucket for `skip` token (e.g. class token)
|
621 |
+
if skip > 0:
|
622 |
+
config.num_buckets += 1
|
623 |
+
return config
|
624 |
+
|
625 |
+
|
626 |
+
def get_rpe_config(ratio=1.9,
|
627 |
+
method=METHOD.PRODUCT,
|
628 |
+
mode='contextual',
|
629 |
+
shared_head=True,
|
630 |
+
skip=0,
|
631 |
+
rpe_on='k'):
|
632 |
+
"""Get the config of relative position encoding on queries, keys and values
|
633 |
+
|
634 |
+
Parameters
|
635 |
+
----------
|
636 |
+
ratio: float
|
637 |
+
The ratio to control the number of buckets.
|
638 |
+
method: METHOD or str
|
639 |
+
The method ID (or name) of image relative position encoding.
|
640 |
+
The `METHOD` class is defined in `irpe.py`.
|
641 |
+
mode: str or None
|
642 |
+
The mode of image relative position encoding.
|
643 |
+
Choices: [None, 'bias', 'contextual']
|
644 |
+
shared_head: bool
|
645 |
+
Whether to share weight among different heads.
|
646 |
+
skip: int
|
647 |
+
The number of skip token before spatial tokens.
|
648 |
+
When skip is 0, no classification token.
|
649 |
+
When skip is 1, there is a classification token before spatial tokens.
|
650 |
+
When skip > 1, there are `skip` extra tokens before spatial tokens.
|
651 |
+
rpe_on: str
|
652 |
+
Where RPE attaches.
|
653 |
+
"q": RPE on queries
|
654 |
+
"k": RPE on keys
|
655 |
+
"v": RPE on values
|
656 |
+
"qk": RPE on queries and keys
|
657 |
+
"qkv": RPE on queries, keys and values
|
658 |
+
|
659 |
+
Returns
|
660 |
+
-------
|
661 |
+
config: RPEConfigs
|
662 |
+
config.rpe_q: the config of relative position encoding on queries
|
663 |
+
config.rpe_k: the config of relative position encoding on keys
|
664 |
+
config.rpe_v: the config of relative position encoding on values
|
665 |
+
"""
|
666 |
+
|
667 |
+
# alias
|
668 |
+
if isinstance(method, str):
|
669 |
+
method_mapping = dict(
|
670 |
+
euc=METHOD.EUCLIDEAN,
|
671 |
+
quant=METHOD.QUANT,
|
672 |
+
cross=METHOD.CROSS,
|
673 |
+
product=METHOD.PRODUCT,
|
674 |
+
)
|
675 |
+
method = method_mapping[method.lower()]
|
676 |
+
if mode == 'ctx':
|
677 |
+
mode = 'contextual'
|
678 |
+
config = edict()
|
679 |
+
# relative position encoding on queries, keys and values
|
680 |
+
kwargs = dict(
|
681 |
+
ratio=ratio,
|
682 |
+
method=method,
|
683 |
+
mode=mode,
|
684 |
+
shared_head=shared_head,
|
685 |
+
skip=skip,
|
686 |
+
)
|
687 |
+
config.rpe_q = get_single_rpe_config(**kwargs) if 'q' in rpe_on else None
|
688 |
+
config.rpe_k = get_single_rpe_config(**kwargs) if 'k' in rpe_on else None
|
689 |
+
config.rpe_v = get_single_rpe_config(**kwargs) if 'v' in rpe_on else None
|
690 |
+
return config
|
691 |
+
|
692 |
+
|
693 |
+
def build_rpe(config, head_dim, num_heads):
|
694 |
+
"""Build iRPE modules on queries, keys and values.
|
695 |
+
|
696 |
+
Parameters
|
697 |
+
----------
|
698 |
+
config: RPEConfigs
|
699 |
+
config.rpe_q: the config of relative position encoding on queries
|
700 |
+
config.rpe_k: the config of relative position encoding on keys
|
701 |
+
config.rpe_v: the config of relative position encoding on values
|
702 |
+
None when RPE is not used.
|
703 |
+
head_dim: int
|
704 |
+
The dimension for each head.
|
705 |
+
num_heads: int
|
706 |
+
The number of parallel attention heads.
|
707 |
+
|
708 |
+
Returns
|
709 |
+
-------
|
710 |
+
modules: a list of nn.Module
|
711 |
+
The iRPE Modules on [queries, keys, values].
|
712 |
+
None when RPE is not used.
|
713 |
+
"""
|
714 |
+
if config is None:
|
715 |
+
return None, None, None
|
716 |
+
rpes = [config.rpe_q, config.rpe_k, config.rpe_v]
|
717 |
+
transposeds = [True, True, False]
|
718 |
+
|
719 |
+
def _build_single_rpe(rpe, transposed):
|
720 |
+
if rpe is None:
|
721 |
+
return None
|
722 |
+
|
723 |
+
rpe_cls = iRPE if rpe.method != METHOD.CROSS else iRPE_Cross
|
724 |
+
return rpe_cls(
|
725 |
+
head_dim=head_dim,
|
726 |
+
num_heads=1 if rpe.shared_head else num_heads,
|
727 |
+
mode=rpe.mode,
|
728 |
+
method=rpe.method,
|
729 |
+
transposed=transposed,
|
730 |
+
num_buckets=rpe.num_buckets,
|
731 |
+
rpe_config=rpe,
|
732 |
+
)
|
733 |
+
return [_build_single_rpe(rpe, transposed)
|
734 |
+
for rpe, transposed in zip(rpes, transposeds)]
|
735 |
+
|