Upload directory
Browse files- models/base/__init__.py +151 -0
models/base/__init__.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Union
|
3 |
+
import torch
|
4 |
+
from torch import device
|
5 |
+
from .utils import get_parameter_device, get_parameter_dtype, save_state_dict_and_config, load_state_dict_from_path
|
6 |
+
|
7 |
+
class BaseModel(torch.nn.Module):
|
8 |
+
"""
|
9 |
+
A base model class that provides a template for implementing models. It includes methods for
|
10 |
+
loading, saving, and managing model configurations and states. This class is designed to be
|
11 |
+
extended by specific model implementations.
|
12 |
+
|
13 |
+
Attributes:
|
14 |
+
config (object): Configuration object containing model settings.
|
15 |
+
input_color_flip (bool): Whether to flip the color channels from BGR to RGB.
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self, config=None):
|
19 |
+
"""
|
20 |
+
Initializes the BaseModel class.
|
21 |
+
|
22 |
+
Parameters:
|
23 |
+
config (object, optional): Configuration object containing model settings.
|
24 |
+
"""
|
25 |
+
super(BaseModel, self).__init__()
|
26 |
+
self.config = config
|
27 |
+
if self.config.color_space == 'BGR':
|
28 |
+
self.input_color_flip = True
|
29 |
+
self._config_color_space = 'BGR'
|
30 |
+
self.config.color_space = 'RGB'
|
31 |
+
else:
|
32 |
+
self.input_color_flip = False
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
"""
|
36 |
+
Forward pass of the model. Needs to be implemented in subclass.
|
37 |
+
|
38 |
+
Parameters:
|
39 |
+
x (torch.Tensor): Input tensor.
|
40 |
+
|
41 |
+
Raises:
|
42 |
+
NotImplementedError: If the subclass does not implement this method.
|
43 |
+
"""
|
44 |
+
raise NotImplementedError('forward must be implemented in subclass')
|
45 |
+
|
46 |
+
@classmethod
|
47 |
+
def from_config(cls, config) -> "BaseModel":
|
48 |
+
"""
|
49 |
+
Creates an instance of this class from a configuration object. Needs to be implemented in subclass.
|
50 |
+
|
51 |
+
Parameters:
|
52 |
+
config (object): Configuration object.
|
53 |
+
|
54 |
+
Returns:
|
55 |
+
BaseModel: An instance of the subclass.
|
56 |
+
|
57 |
+
Raises:
|
58 |
+
NotImplementedError: If the subclass does not implement this method.
|
59 |
+
"""
|
60 |
+
raise NotImplementedError('from_config must be implemented in subclass')
|
61 |
+
|
62 |
+
def make_train_transform(self):
|
63 |
+
"""
|
64 |
+
Creates training data transformations. Needs to be implemented in subclass.
|
65 |
+
|
66 |
+
Raises:
|
67 |
+
NotImplementedError: If the subclass does not implement this method.
|
68 |
+
"""
|
69 |
+
raise NotImplementedError('make_train_transform must be implemented in subclass')
|
70 |
+
|
71 |
+
def make_test_transform(self):
|
72 |
+
"""
|
73 |
+
Creates testing data transformations. Needs to be implemented in subclass.
|
74 |
+
|
75 |
+
Raises:
|
76 |
+
NotImplementedError: If the subclass does not implement this method.
|
77 |
+
"""
|
78 |
+
raise NotImplementedError('make_test_transform must be implemented in subclass')
|
79 |
+
|
80 |
+
def save_pretrained(
|
81 |
+
self,
|
82 |
+
save_dir: Union[str, os.PathLike],
|
83 |
+
name: str = 'model.pt',
|
84 |
+
rank: int = 0,
|
85 |
+
):
|
86 |
+
"""
|
87 |
+
Saves the model's state_dict and configuration to the specified directory.
|
88 |
+
|
89 |
+
Parameters:
|
90 |
+
save_dir (Union[str, os.PathLike]): The directory to save the model.
|
91 |
+
name (str, optional): The name of the file to save the model as. Default is 'model.pt'.
|
92 |
+
rank (int, optional): The rank of the process (used in distributed training). Default is 0.
|
93 |
+
"""
|
94 |
+
save_path = os.path.join(save_dir, name)
|
95 |
+
if rank == 0:
|
96 |
+
save_state_dict_and_config(self.state_dict(), self.config, save_path)
|
97 |
+
|
98 |
+
def load_state_dict_from_path(self, pretrained_model_path):
|
99 |
+
state_dict = load_state_dict_from_path(pretrained_model_path)
|
100 |
+
if 'net.vit' in list(self.state_dict().keys())[-1] and 'pretrained_models' in pretrained_model_path:
|
101 |
+
state_dict = {k.replace('net', 'net.vit'): v for k, v in state_dict.items()}
|
102 |
+
|
103 |
+
st_keys = list(state_dict.keys())
|
104 |
+
self_keys = list(self.state_dict().keys())
|
105 |
+
print('compatible keys in state_dict', len(set(st_keys).intersection(set(self_keys))), '/', len(st_keys))
|
106 |
+
print('Check\n\n')
|
107 |
+
result = self.load_state_dict(state_dict, strict=False)
|
108 |
+
print(result)
|
109 |
+
print(f"Loaded pretrained model from {pretrained_model_path}")
|
110 |
+
|
111 |
+
|
112 |
+
@property
|
113 |
+
def device(self) -> device:
|
114 |
+
"""
|
115 |
+
Returns the device of the model's parameters.
|
116 |
+
|
117 |
+
Returns:
|
118 |
+
device: The device the model is on.
|
119 |
+
"""
|
120 |
+
return get_parameter_device(self)
|
121 |
+
|
122 |
+
@property
|
123 |
+
def dtype(self) -> torch.dtype:
|
124 |
+
"""
|
125 |
+
Returns the data type of the model's parameters.
|
126 |
+
|
127 |
+
Returns:
|
128 |
+
torch.dtype: The data type of the model.
|
129 |
+
"""
|
130 |
+
return get_parameter_dtype(self)
|
131 |
+
|
132 |
+
def num_parameters(self, only_trainable: bool = False) -> int:
|
133 |
+
"""
|
134 |
+
Returns the number of parameters in the model, optionally filtering only trainable parameters.
|
135 |
+
|
136 |
+
Parameters:
|
137 |
+
only_trainable (bool, optional): Whether to count only trainable parameters. Default is False.
|
138 |
+
|
139 |
+
Returns:
|
140 |
+
int: The number of parameters.
|
141 |
+
"""
|
142 |
+
return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable)
|
143 |
+
|
144 |
+
def has_trainable_params(self):
|
145 |
+
"""
|
146 |
+
Checks if the model has any trainable parameters.
|
147 |
+
|
148 |
+
Returns:
|
149 |
+
bool: True if the model has trainable parameters, False otherwise.
|
150 |
+
"""
|
151 |
+
return any(p.requires_grad for p in self.parameters())
|