test commit with 10000 iterations from unit1 notebook
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -117.62 +/- 52.65
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9c2f2e84c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9c2f2e8550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9c2f2e85e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9c2f2e8670>", "_build": "<function ActorCriticPolicy._build at 0x7f9c2f2e8700>", "forward": "<function ActorCriticPolicy.forward at 0x7f9c2f2e8790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9c2f2e8820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9c2f2e88b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9c2f2e8940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9c2f2e89d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9c2f2e8a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9c2f2e8af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9c2f2edec0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679655839653470796, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMWpj2ELJo/mnoOPttJD7+ZEzs+aDH+PQAAAAAAAAAAjfegvfgrqj9QJy2/L37PvrUJ8z2zT2E+AAAAAAAAAAAAKWw9bKqyP7wIhD7rv12+ClqJvUGkAb0AAAAAAAAAAFpLKj7myKY/6prmPhDjCb81Uge9CJPRPAAAAAAAAAAANjpOvvNdYj/sSjG+IkVlv05lIL6uVS++AAAAAAAAAAAjb4w+aeGAPmDK+rxDNaq//IpfP0aeAz8AAAAAAAAAAMCdJj6l3P0+KkeZPp3Tir9cHJ6+jvOrvQAAAAAAAAAAY7+iPujOn7ydHfO7D/7du1dG4L0f9kA9AAAAAAAAAABaSRc+MRnPP/YlqD5sFJC+4S9RvTgj1DsAAAAAAAAAAHa61L6slE8+ZeZ1v8tBt79aDK8/EdAiPwAAAAAAAAAAmpuMvfbOrT+lYra+yuiSvr7qAj6S1RA+AAAAAAAAAADN8Gi8xse3PyKBt77P44Q+j2SyPFKJ9z0AAAAAAAAAAJNALL4iyIs/UmhIvwrKQ7+VMjs+xoWpPQAAAAAAAAAAgI4nvd9LXT8Cf16+ZP95vzEIyD7D6aq8AAAAAAAAAABz4gy+OeTHP+fpSL/tNGg+gZGDPkzdqD4AAAAAAAAAAAMEpD6lIsk/plowPynrHr5kyqK+fjYlvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.6384000000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvfxOkxmQUMCUhpRSlIwBbJRLPIwBdJRHQDCnaHsTnJV1fZQoaAZoCWgPQwhlFwyuec93wJSGlFKUaBVLWGgWR0Awq5oGpuMudX2UKGgGaAloD0MIw2aAC7K2c8CUhpRSlGgVS2xoFkdAMLBgRbr1NHV9lChoBmgJaA9DCD7qr1dY71nAlIaUUpRoFUtHaBZHQDC5uFYdQwd1fZQoaAZoCWgPQwgPSMK+nV9zwJSGlFKUaBVLeGgWR0AwwyLyc0+DdX2UKGgGaAloD0MIGlBvRs0wacCUhpRSlGgVS1FoFkdAMMiAUcn3L3V9lChoBmgJaA9DCJVHN8KiDVTAlIaUUpRoFUtVaBZHQDDOprDZUUB1fZQoaAZoCWgPQwip+pXOhw1dwJSGlFKUaBVLQmgWR0Aw5eruIAOsdX2UKGgGaAloD0MIKzOl9TdyaMCUhpRSlGgVS0FoFkdAMO6lP8AJcHV9lChoBmgJaA9DCM3K9iFvrm7AlIaUUpRoFUtsaBZHQDD+JLuhK151fZQoaAZoCWgPQwjsF+yGbRJswJSGlFKUaBVLfWgWR0AxA7lJYkmhdX2UKGgGaAloD0MI3bQZpyE1WcCUhpRSlGgVSztoFkdAMQVe4TbnHXV9lChoBmgJaA9DCJNX5xjQoHnAlIaUUpRoFUt7aBZHQDEIjW07bL51fZQoaAZoCWgPQwilSpS9pWRgwJSGlFKUaBVLQWgWR0AxCOi35N48dX2UKGgGaAloD0MIXqEPlrExKkCUhpRSlGgVS5JoFkdAMRN3bEgnt3V9lChoBmgJaA9DCNaqXROS5XXAlIaUUpRoFUtnaBZHQDExgiNbTtt1fZQoaAZoCWgPQwhV+Z6RCCtdwJSGlFKUaBVLOGgWR0AxOoq0+kgwdX2UKGgGaAloD0MI5Uf8ijXNcsCUhpRSlGgVS1toFkdAMTsXizcAR3V9lChoBmgJaA9DCOhM2lTdlzbAlIaUUpRoFUuXaBZHQDE9mqYJE6V1fZQoaAZoCWgPQwgvwhTlUqV7wJSGlFKUaBVLWWgWR0AxQ2AoXsPbdX2UKGgGaAloD0MIC5krg6oKeMCUhpRSlGgVS3loFkdAMUdfkWAPNHV9lChoBmgJaA9DCP8fJ0wYAU7AlIaUUpRoFUtdaBZHQDFS4kNWluZ1fZQoaAZoCWgPQwj1ZtR8VQN5wJSGlFKUaBVLZWgWR0AxZi1y/9HddX2UKGgGaAloD0MIvceZJqypf8CUhpRSlGgVS2hoFkdAMXCad+Xqq3V9lChoBmgJaA9DCI6PFmcMnmPAlIaUUpRoFUtJaBZHQDF09wFTvRZ1fZQoaAZoCWgPQwhM/id/9/5gwJSGlFKUaBVLYWgWR0AxmPSDyvs7dX2UKGgGaAloD0MIzVt1Haprd8CUhpRSlGgVS2RoFkdAMajmGM4tH3V9lChoBmgJaA9DCCYeUDblWXHAlIaUUpRoFUtHaBZHQDGwcHWz4UN1fZQoaAZoCWgPQwhUxVT6iTpkwJSGlFKUaBVLfGgWR0AxuyN4qwyJdX2UKGgGaAloD0MIhAzk2WWVb8CUhpRSlGgVS1hoFkdAMcX2ZiNKiHV9lChoBmgJaA9DCG7BUl3AjnfAlIaUUpRoFUt1aBZHQDHIzbeuV5d1fZQoaAZoCWgPQwhVo1cDlKhUwJSGlFKUaBVLf2gWR0Axy3uuzQeFdX2UKGgGaAloD0MIk40HW+yeQMCUhpRSlGgVS1RoFkdAMddhRZU1h3V9lChoBmgJaA9DCI8ZqIy/K3vAlIaUUpRoFUtqaBZHQDH43++/QBx1fZQoaAZoCWgPQwh9dVWgFq1YwJSGlFKUaBVLcmgWR0Ax/LOzIFNddX2UKGgGaAloD0MIZR2OrtKiV8CUhpRSlGgVS1loFkdAMf7fHggow3V9lChoBmgJaA9DCPYn8bkTQ17AlIaUUpRoFUuQaBZHQDIBiuuA7Pp1fZQoaAZoCWgPQwiaeAd40qlwwJSGlFKUaBVLdmgWR0AyBO+ZgG8mdX2UKGgGaAloD0MI14aKcf75d8CUhpRSlGgVS2poFkdAMgXu/k/8mHV9lChoBmgJaA9DCGbdPxaihWrAlIaUUpRoFUtbaBZHQDIOFZgXuVp1fZQoaAZoCWgPQwiu9UVC29Z6wJSGlFKUaBVLZmgWR0AyILxI8QqadX2UKGgGaAloD0MILT4FwHjWScCUhpRSlGgVS0toFkdAMi0VeruIAXV9lChoBmgJaA9DCFyPwvXoL4HAlIaUUpRoFUtaaBZHQDI7QZ4wAVB1fZQoaAZoCWgPQwi5+xwfLfBhwJSGlFKUaBVLS2gWR0AyS2OAAhjfdX2UKGgGaAloD0MIh8Q9ln62dMCUhpRSlGgVS1RoFkdAMk3c+JP69HV9lChoBmgJaA9DCLPQzmmWIHXAlIaUUpRoFUtbaBZHQDJUlPacqe91fZQoaAZoCWgPQwgcsRafQll0wJSGlFKUaBVLgWgWR0AybUBXCCSSdX2UKGgGaAloD0MISYCaWrYcVsCUhpRSlGgVS0VoFkdAMm5hBqsU7HV9lChoBmgJaA9DCLKFIAelG2jAlIaUUpRoFUtJaBZHQDJvxOLzf791fZQoaAZoCWgPQwi1UDI5tQZjwJSGlFKUaBVLd2gWR0AydX0Gu9vkdX2UKGgGaAloD0MIcy1agLaTW8CUhpRSlGgVS1JoFkdAMowfp2U0N3V9lChoBmgJaA9DCJG1hlK7cnLAlIaUUpRoFUtgaBZHQDKa+mFajet1fZQoaAZoCWgPQwiDUN7H0VZhwJSGlFKUaBVLgmgWR0AymyUcGTs6dX2UKGgGaAloD0MI2AsFbAd+bMCUhpRSlGgVS2poFkdAMp5ZOi35OHV9lChoBmgJaA9DCLzplh3iZmLAlIaUUpRoFUtoaBZHQDKey+pOvdN1fZQoaAZoCWgPQwjjNa/qrEVewJSGlFKUaBVLSmgWR0Ayoab4Ju2rdX2UKGgGaAloD0MIJsPxfAZMWsCUhpRSlGgVS3VoFkdAMrEVJtix3XV9lChoBmgJaA9DCJLoZRTLpFnAlIaUUpRoFUtIaBZHQDK8ALiMo+h1fZQoaAZoCWgPQwg5nPnVnIBqwJSGlFKUaBVLR2gWR0Ayw9i+cpb2dX2UKGgGaAloD0MIhNOCF30cWMCUhpRSlGgVS2xoFkdAMshZ2ZAprnV9lChoBmgJaA9DCHy45LhTElnAlIaUUpRoFUs9aBZHQDLM7Qswtap1fZQoaAZoCWgPQwjH1F3ZBWNZwJSGlFKUaBVLQ2gWR0Ay3pEQXhwVdX2UKGgGaAloD0MI04OCUvQIdMCUhpRSlGgVS2xoFkdAMuPVurIYFnV9lChoBmgJaA9DCBlVhnG3tmXAlIaUUpRoFUtTaBZHQDLynYQJ5Vx1fZQoaAZoCWgPQwh8YTJVMPhfwJSGlFKUaBVLP2gWR0AzAGh24d6tdX2UKGgGaAloD0MICRaHM78gWsCUhpRSlGgVS3RoFkdAMwIkiUxEfHV9lChoBmgJaA9DCCaKkLqd/GTAlIaUUpRoFUtDaBZHQDMEA4n4O+Z1fZQoaAZoCWgPQwgG9phIaSJIwJSGlFKUaBVLR2gWR0AzBkauOjqOdX2UKGgGaAloD0MIcFzGTQ2HbsCUhpRSlGgVS1VoFkdAMw9rKvFFUnV9lChoBmgJaA9DCBhd3hwuUW7AlIaUUpRoFUtOaBZHQDMUtyxRl6J1fZQoaAZoCWgPQwj5EFSNHhdywJSGlFKUaBVLemgWR0AzKwkPczqKdX2UKGgGaAloD0MIyAvp8BAjVcCUhpRSlGgVS0RoFkdAMyzXrdFfA3V9lChoBmgJaA9DCGahndMsOV/AlIaUUpRoFUtnaBZHQDM2OFQEZBN1fZQoaAZoCWgPQwgP8KSFy2pnwJSGlFKUaBVLUWgWR0AzNyPdVNpNdX2UKGgGaAloD0MIzGPNyCDWW8CUhpRSlGgVSzpoFkdAM1uUMXrMT3V9lChoBmgJaA9DCDhKXp1jQ1vAlIaUUpRoFUtHaBZHQDNdjbzshPl1fZQoaAZoCWgPQwiPVUrPtI5zwJSGlFKUaBVLZmgWR0AzbCwr1/UfdX2UKGgGaAloD0MI5nXEIRvecsCUhpRSlGgVS2toFkdAM28Dr7fpEHV9lChoBmgJaA9DCBE4EmjwI3DAlIaUUpRoFUtoaBZHQDOBK15Sm651fZQoaAZoCWgPQwg/5gMCnY05QJSGlFKUaBVLV2gWR0AziMbWEsasdX2UKGgGaAloD0MIXDtREpJmccCUhpRSlGgVS09oFkdAM5KVt4zJp3V9lChoBmgJaA9DCGSWPQlsnGTAlIaUUpRoFUt2aBZHQDOhoUSIxg11fZQoaAZoCWgPQwiOsKiI01NZwJSGlFKUaBVLUmgWR0AztQjD8+A3dX2UKGgGaAloD0MIwJMWLqsqaMCUhpRSlGgVS3FoFkdAM7nqVyFPBXV9lChoBmgJaA9DCIqsNZRasGHAlIaUUpRoFUtqaBZHQDO7336AOKB1fZQoaAZoCWgPQwhan3JMFmNjwJSGlFKUaBVLc2gWR0AzwS+g13t8dX2UKGgGaAloD0MIDLH6I4w5Z8CUhpRSlGgVS2FoFkdAM8owRGtp23V9lChoBmgJaA9DCA7d7A9UY3LAlIaUUpRoFUtaaBZHQDPMfEGZ/kN1fZQoaAZoCWgPQwgLCRhd3itWwJSGlFKUaBVLQmgWR0Az3jLSuyNXdX2UKGgGaAloD0MIuhEWFXF/VMCUhpRSlGgVS01oFkdAM+DBRAKOUHV9lChoBmgJaA9DCNkG7kCdq1XAlIaUUpRoFUtEaBZHQDP0yDZlFtt1fZQoaAZoCWgPQwiGVbyReYx3wJSGlFKUaBVLX2gWR0Az/fNiYsundX2UKGgGaAloD0MI4o+iztyvWsCUhpRSlGgVS0xoFkdANAoFvAGjbnV9lChoBmgJaA9DCIO/X8yWl2PAlIaUUpRoFUuFaBZHQDQTAXVLBbh1fZQoaAZoCWgPQwgsK01KwYxgwJSGlFKUaBVLRWgWR0A0Lc/+sHSndX2UKGgGaAloD0MIhxVu+UjqW8CUhpRSlGgVS15oFkdANDB60IC2dHV9lChoBmgJaA9DCOKTTiQYmmPAlIaUUpRoFUtzaBZHQDQxT/ACW/t1fZQoaAZoCWgPQwiyg0pcx2RZwJSGlFKUaBVLSmgWR0A0NFNtZV4pdX2UKGgGaAloD0MISmHe40z6UMCUhpRSlGgVS0ZoFkdANEDOcDr7f3V9lChoBmgJaA9DCDSCjevfk1rAlIaUUpRoFUtBaBZHQDRJ9MK1G9Z1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11b606ab8978929742746fc0cf1edb1bac037dbd85d0464a0d3fc4c8246cdc8c
|
3 |
+
size 147289
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9c2f2e84c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9c2f2e8550>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9c2f2e85e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9c2f2e8670>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9c2f2e8700>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9c2f2e8790>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9c2f2e8820>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9c2f2e88b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9c2f2e8940>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9c2f2e89d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9c2f2e8a60>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9c2f2e8af0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f9c2f2edec0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 16384,
|
47 |
+
"_total_timesteps": 10000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1679655839653470796,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMWpj2ELJo/mnoOPttJD7+ZEzs+aDH+PQAAAAAAAAAAjfegvfgrqj9QJy2/L37PvrUJ8z2zT2E+AAAAAAAAAAAAKWw9bKqyP7wIhD7rv12+ClqJvUGkAb0AAAAAAAAAAFpLKj7myKY/6prmPhDjCb81Uge9CJPRPAAAAAAAAAAANjpOvvNdYj/sSjG+IkVlv05lIL6uVS++AAAAAAAAAAAjb4w+aeGAPmDK+rxDNaq//IpfP0aeAz8AAAAAAAAAAMCdJj6l3P0+KkeZPp3Tir9cHJ6+jvOrvQAAAAAAAAAAY7+iPujOn7ydHfO7D/7du1dG4L0f9kA9AAAAAAAAAABaSRc+MRnPP/YlqD5sFJC+4S9RvTgj1DsAAAAAAAAAAHa61L6slE8+ZeZ1v8tBt79aDK8/EdAiPwAAAAAAAAAAmpuMvfbOrT+lYra+yuiSvr7qAj6S1RA+AAAAAAAAAADN8Gi8xse3PyKBt77P44Q+j2SyPFKJ9z0AAAAAAAAAAJNALL4iyIs/UmhIvwrKQ7+VMjs+xoWpPQAAAAAAAAAAgI4nvd9LXT8Cf16+ZP95vzEIyD7D6aq8AAAAAAAAAABz4gy+OeTHP+fpSL/tNGg+gZGDPkzdqD4AAAAAAAAAAAMEpD6lIsk/plowPynrHr5kyqK+fjYlvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.6384000000000001,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvfxOkxmQUMCUhpRSlIwBbJRLPIwBdJRHQDCnaHsTnJV1fZQoaAZoCWgPQwhlFwyuec93wJSGlFKUaBVLWGgWR0Awq5oGpuMudX2UKGgGaAloD0MIw2aAC7K2c8CUhpRSlGgVS2xoFkdAMLBgRbr1NHV9lChoBmgJaA9DCD7qr1dY71nAlIaUUpRoFUtHaBZHQDC5uFYdQwd1fZQoaAZoCWgPQwgPSMK+nV9zwJSGlFKUaBVLeGgWR0AwwyLyc0+DdX2UKGgGaAloD0MIGlBvRs0wacCUhpRSlGgVS1FoFkdAMMiAUcn3L3V9lChoBmgJaA9DCJVHN8KiDVTAlIaUUpRoFUtVaBZHQDDOprDZUUB1fZQoaAZoCWgPQwip+pXOhw1dwJSGlFKUaBVLQmgWR0Aw5eruIAOsdX2UKGgGaAloD0MIKzOl9TdyaMCUhpRSlGgVS0FoFkdAMO6lP8AJcHV9lChoBmgJaA9DCM3K9iFvrm7AlIaUUpRoFUtsaBZHQDD+JLuhK151fZQoaAZoCWgPQwjsF+yGbRJswJSGlFKUaBVLfWgWR0AxA7lJYkmhdX2UKGgGaAloD0MI3bQZpyE1WcCUhpRSlGgVSztoFkdAMQVe4TbnHXV9lChoBmgJaA9DCJNX5xjQoHnAlIaUUpRoFUt7aBZHQDEIjW07bL51fZQoaAZoCWgPQwilSpS9pWRgwJSGlFKUaBVLQWgWR0AxCOi35N48dX2UKGgGaAloD0MIXqEPlrExKkCUhpRSlGgVS5JoFkdAMRN3bEgnt3V9lChoBmgJaA9DCNaqXROS5XXAlIaUUpRoFUtnaBZHQDExgiNbTtt1fZQoaAZoCWgPQwhV+Z6RCCtdwJSGlFKUaBVLOGgWR0AxOoq0+kgwdX2UKGgGaAloD0MI5Uf8ijXNcsCUhpRSlGgVS1toFkdAMTsXizcAR3V9lChoBmgJaA9DCOhM2lTdlzbAlIaUUpRoFUuXaBZHQDE9mqYJE6V1fZQoaAZoCWgPQwgvwhTlUqV7wJSGlFKUaBVLWWgWR0AxQ2AoXsPbdX2UKGgGaAloD0MIC5krg6oKeMCUhpRSlGgVS3loFkdAMUdfkWAPNHV9lChoBmgJaA9DCP8fJ0wYAU7AlIaUUpRoFUtdaBZHQDFS4kNWluZ1fZQoaAZoCWgPQwj1ZtR8VQN5wJSGlFKUaBVLZWgWR0AxZi1y/9HddX2UKGgGaAloD0MIvceZJqypf8CUhpRSlGgVS2hoFkdAMXCad+Xqq3V9lChoBmgJaA9DCI6PFmcMnmPAlIaUUpRoFUtJaBZHQDF09wFTvRZ1fZQoaAZoCWgPQwhM/id/9/5gwJSGlFKUaBVLYWgWR0AxmPSDyvs7dX2UKGgGaAloD0MIzVt1Haprd8CUhpRSlGgVS2RoFkdAMajmGM4tH3V9lChoBmgJaA9DCCYeUDblWXHAlIaUUpRoFUtHaBZHQDGwcHWz4UN1fZQoaAZoCWgPQwhUxVT6iTpkwJSGlFKUaBVLfGgWR0AxuyN4qwyJdX2UKGgGaAloD0MIhAzk2WWVb8CUhpRSlGgVS1hoFkdAMcX2ZiNKiHV9lChoBmgJaA9DCG7BUl3AjnfAlIaUUpRoFUt1aBZHQDHIzbeuV5d1fZQoaAZoCWgPQwhVo1cDlKhUwJSGlFKUaBVLf2gWR0Axy3uuzQeFdX2UKGgGaAloD0MIk40HW+yeQMCUhpRSlGgVS1RoFkdAMddhRZU1h3V9lChoBmgJaA9DCI8ZqIy/K3vAlIaUUpRoFUtqaBZHQDH43++/QBx1fZQoaAZoCWgPQwh9dVWgFq1YwJSGlFKUaBVLcmgWR0Ax/LOzIFNddX2UKGgGaAloD0MIZR2OrtKiV8CUhpRSlGgVS1loFkdAMf7fHggow3V9lChoBmgJaA9DCPYn8bkTQ17AlIaUUpRoFUuQaBZHQDIBiuuA7Pp1fZQoaAZoCWgPQwiaeAd40qlwwJSGlFKUaBVLdmgWR0AyBO+ZgG8mdX2UKGgGaAloD0MI14aKcf75d8CUhpRSlGgVS2poFkdAMgXu/k/8mHV9lChoBmgJaA9DCGbdPxaihWrAlIaUUpRoFUtbaBZHQDIOFZgXuVp1fZQoaAZoCWgPQwiu9UVC29Z6wJSGlFKUaBVLZmgWR0AyILxI8QqadX2UKGgGaAloD0MILT4FwHjWScCUhpRSlGgVS0toFkdAMi0VeruIAXV9lChoBmgJaA9DCFyPwvXoL4HAlIaUUpRoFUtaaBZHQDI7QZ4wAVB1fZQoaAZoCWgPQwi5+xwfLfBhwJSGlFKUaBVLS2gWR0AyS2OAAhjfdX2UKGgGaAloD0MIh8Q9ln62dMCUhpRSlGgVS1RoFkdAMk3c+JP69HV9lChoBmgJaA9DCLPQzmmWIHXAlIaUUpRoFUtbaBZHQDJUlPacqe91fZQoaAZoCWgPQwgcsRafQll0wJSGlFKUaBVLgWgWR0AybUBXCCSSdX2UKGgGaAloD0MISYCaWrYcVsCUhpRSlGgVS0VoFkdAMm5hBqsU7HV9lChoBmgJaA9DCLKFIAelG2jAlIaUUpRoFUtJaBZHQDJvxOLzf791fZQoaAZoCWgPQwi1UDI5tQZjwJSGlFKUaBVLd2gWR0AydX0Gu9vkdX2UKGgGaAloD0MIcy1agLaTW8CUhpRSlGgVS1JoFkdAMowfp2U0N3V9lChoBmgJaA9DCJG1hlK7cnLAlIaUUpRoFUtgaBZHQDKa+mFajet1fZQoaAZoCWgPQwiDUN7H0VZhwJSGlFKUaBVLgmgWR0AymyUcGTs6dX2UKGgGaAloD0MI2AsFbAd+bMCUhpRSlGgVS2poFkdAMp5ZOi35OHV9lChoBmgJaA9DCLzplh3iZmLAlIaUUpRoFUtoaBZHQDKey+pOvdN1fZQoaAZoCWgPQwjjNa/qrEVewJSGlFKUaBVLSmgWR0Ayoab4Ju2rdX2UKGgGaAloD0MIJsPxfAZMWsCUhpRSlGgVS3VoFkdAMrEVJtix3XV9lChoBmgJaA9DCJLoZRTLpFnAlIaUUpRoFUtIaBZHQDK8ALiMo+h1fZQoaAZoCWgPQwg5nPnVnIBqwJSGlFKUaBVLR2gWR0Ayw9i+cpb2dX2UKGgGaAloD0MIhNOCF30cWMCUhpRSlGgVS2xoFkdAMshZ2ZAprnV9lChoBmgJaA9DCHy45LhTElnAlIaUUpRoFUs9aBZHQDLM7Qswtap1fZQoaAZoCWgPQwjH1F3ZBWNZwJSGlFKUaBVLQ2gWR0Ay3pEQXhwVdX2UKGgGaAloD0MI04OCUvQIdMCUhpRSlGgVS2xoFkdAMuPVurIYFnV9lChoBmgJaA9DCBlVhnG3tmXAlIaUUpRoFUtTaBZHQDLynYQJ5Vx1fZQoaAZoCWgPQwh8YTJVMPhfwJSGlFKUaBVLP2gWR0AzAGh24d6tdX2UKGgGaAloD0MICRaHM78gWsCUhpRSlGgVS3RoFkdAMwIkiUxEfHV9lChoBmgJaA9DCCaKkLqd/GTAlIaUUpRoFUtDaBZHQDMEA4n4O+Z1fZQoaAZoCWgPQwgG9phIaSJIwJSGlFKUaBVLR2gWR0AzBkauOjqOdX2UKGgGaAloD0MIcFzGTQ2HbsCUhpRSlGgVS1VoFkdAMw9rKvFFUnV9lChoBmgJaA9DCBhd3hwuUW7AlIaUUpRoFUtOaBZHQDMUtyxRl6J1fZQoaAZoCWgPQwj5EFSNHhdywJSGlFKUaBVLemgWR0AzKwkPczqKdX2UKGgGaAloD0MIyAvp8BAjVcCUhpRSlGgVS0RoFkdAMyzXrdFfA3V9lChoBmgJaA9DCGahndMsOV/AlIaUUpRoFUtnaBZHQDM2OFQEZBN1fZQoaAZoCWgPQwgP8KSFy2pnwJSGlFKUaBVLUWgWR0AzNyPdVNpNdX2UKGgGaAloD0MIzGPNyCDWW8CUhpRSlGgVSzpoFkdAM1uUMXrMT3V9lChoBmgJaA9DCDhKXp1jQ1vAlIaUUpRoFUtHaBZHQDNdjbzshPl1fZQoaAZoCWgPQwiPVUrPtI5zwJSGlFKUaBVLZmgWR0AzbCwr1/UfdX2UKGgGaAloD0MI5nXEIRvecsCUhpRSlGgVS2toFkdAM28Dr7fpEHV9lChoBmgJaA9DCBE4EmjwI3DAlIaUUpRoFUtoaBZHQDOBK15Sm651fZQoaAZoCWgPQwg/5gMCnY05QJSGlFKUaBVLV2gWR0AziMbWEsasdX2UKGgGaAloD0MIXDtREpJmccCUhpRSlGgVS09oFkdAM5KVt4zJp3V9lChoBmgJaA9DCGSWPQlsnGTAlIaUUpRoFUt2aBZHQDOhoUSIxg11fZQoaAZoCWgPQwiOsKiI01NZwJSGlFKUaBVLUmgWR0AztQjD8+A3dX2UKGgGaAloD0MIwJMWLqsqaMCUhpRSlGgVS3FoFkdAM7nqVyFPBXV9lChoBmgJaA9DCIqsNZRasGHAlIaUUpRoFUtqaBZHQDO7336AOKB1fZQoaAZoCWgPQwhan3JMFmNjwJSGlFKUaBVLc2gWR0AzwS+g13t8dX2UKGgGaAloD0MIDLH6I4w5Z8CUhpRSlGgVS2FoFkdAM8owRGtp23V9lChoBmgJaA9DCA7d7A9UY3LAlIaUUpRoFUtaaBZHQDPMfEGZ/kN1fZQoaAZoCWgPQwgLCRhd3itWwJSGlFKUaBVLQmgWR0Az3jLSuyNXdX2UKGgGaAloD0MIuhEWFXF/VMCUhpRSlGgVS01oFkdAM+DBRAKOUHV9lChoBmgJaA9DCNkG7kCdq1XAlIaUUpRoFUtEaBZHQDP0yDZlFtt1fZQoaAZoCWgPQwiGVbyReYx3wJSGlFKUaBVLX2gWR0Az/fNiYsundX2UKGgGaAloD0MI4o+iztyvWsCUhpRSlGgVS0xoFkdANAoFvAGjbnV9lChoBmgJaA9DCIO/X8yWl2PAlIaUUpRoFUuFaBZHQDQTAXVLBbh1fZQoaAZoCWgPQwgsK01KwYxgwJSGlFKUaBVLRWgWR0A0Lc/+sHSndX2UKGgGaAloD0MIhxVu+UjqW8CUhpRSlGgVS15oFkdANDB60IC2dHV9lChoBmgJaA9DCOKTTiQYmmPAlIaUUpRoFUtzaBZHQDQxT/ACW/t1fZQoaAZoCWgPQwiyg0pcx2RZwJSGlFKUaBVLSmgWR0A0NFNtZV4pdX2UKGgGaAloD0MISmHe40z6UMCUhpRSlGgVS0ZoFkdANEDOcDr7f3V9lChoBmgJaA9DCDSCjevfk1rAlIaUUpRoFUtBaBZHQDRJ9MK1G9Z1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 4,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2149bd572552c10e534a2e21ba6042c7002e3a1942833e84e1fe2543038d59ac
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e27b8b323f6006507ff7ea551b7e5364a1a51430d5341582e10d1a385264799
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (160 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -117.6173855402507, "std_reward": 52.654291090463964, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-24T11:04:38.823779"}
|