mikeseb commited on
Commit
4a580ba
1 Parent(s): 6d57bd9

End of training

Browse files
README.md CHANGED
@@ -16,14 +16,14 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 1.7343
20
- - Answer: {'precision': 0.865979381443299, 'recall': 0.9253365973072215, 'f1': 0.8946745562130176, 'number': 817}
21
- - Header: {'precision': 0.6442307692307693, 'recall': 0.5630252100840336, 'f1': 0.600896860986547, 'number': 119}
22
- - Question: {'precision': 0.8937329700272479, 'recall': 0.9136490250696379, 'f1': 0.9035812672176309, 'number': 1077}
23
- - Overall Precision: 0.8696
24
- - Overall Recall: 0.8977
25
- - Overall F1: 0.8834
26
- - Overall Accuracy: 0.8048
27
 
28
  ## Model description
29
 
@@ -49,23 +49,24 @@ The following hyperparameters were used during training:
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
  - training_steps: 2500
 
52
 
53
  ### Training results
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
  |:-------------:|:------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
- | 0.4108 | 10.53 | 200 | 0.9777 | {'precision': 0.8268590455049944, 'recall': 0.9118727050183598, 'f1': 0.8672875436554133, 'number': 817} | {'precision': 0.6464646464646465, 'recall': 0.5378151260504201, 'f1': 0.5871559633027523, 'number': 119} | {'precision': 0.8931860036832413, 'recall': 0.9006499535747446, 'f1': 0.8969024503005086, 'number': 1077} | 0.8528 | 0.8838 | 0.8680 | 0.8028 |
58
- | 0.0416 | 21.05 | 400 | 1.3626 | {'precision': 0.8482446206115515, 'recall': 0.9167686658506732, 'f1': 0.8811764705882352, 'number': 817} | {'precision': 0.5266666666666666, 'recall': 0.6638655462184874, 'f1': 0.5873605947955389, 'number': 119} | {'precision': 0.891566265060241, 'recall': 0.89322191272052, 'f1': 0.8923933209647495, 'number': 1077} | 0.8475 | 0.8892 | 0.8679 | 0.8033 |
59
- | 0.017 | 31.58 | 600 | 1.4784 | {'precision': 0.8646341463414634, 'recall': 0.8678090575275398, 'f1': 0.8662186927306048, 'number': 817} | {'precision': 0.6486486486486487, 'recall': 0.6050420168067226, 'f1': 0.6260869565217391, 'number': 119} | {'precision': 0.8519148936170213, 'recall': 0.9294336118848654, 'f1': 0.8889875666074601, 'number': 1077} | 0.8462 | 0.8852 | 0.8653 | 0.7964 |
60
- | 0.0098 | 42.11 | 800 | 1.4397 | {'precision': 0.8267543859649122, 'recall': 0.9228886168910648, 'f1': 0.8721804511278195, 'number': 817} | {'precision': 0.5865384615384616, 'recall': 0.5126050420168067, 'f1': 0.5470852017937219, 'number': 119} | {'precision': 0.8928247048138056, 'recall': 0.9127205199628597, 'f1': 0.9026629935720845, 'number': 1077} | 0.8493 | 0.8932 | 0.8707 | 0.8077 |
61
- | 0.004 | 52.63 | 1000 | 1.5432 | {'precision': 0.8721893491124261, 'recall': 0.9020807833537332, 'f1': 0.8868832731648616, 'number': 817} | {'precision': 0.5681818181818182, 'recall': 0.6302521008403361, 'f1': 0.597609561752988, 'number': 119} | {'precision': 0.8956999085086916, 'recall': 0.9090064995357474, 'f1': 0.9023041474654377, 'number': 1077} | 0.8652 | 0.8897 | 0.8773 | 0.8162 |
62
- | 0.0025 | 63.16 | 1200 | 1.6970 | {'precision': 0.8733727810650888, 'recall': 0.9033047735618115, 'f1': 0.888086642599278, 'number': 817} | {'precision': 0.7215189873417721, 'recall': 0.4789915966386555, 'f1': 0.5757575757575758, 'number': 119} | {'precision': 0.8804251550044287, 'recall': 0.9229340761374187, 'f1': 0.901178603807797, 'number': 1077} | 0.8714 | 0.8887 | 0.8800 | 0.7970 |
63
- | 0.0012 | 73.68 | 1400 | 1.6351 | {'precision': 0.8643274853801169, 'recall': 0.9045287637698899, 'f1': 0.8839712918660287, 'number': 817} | {'precision': 0.6115702479338843, 'recall': 0.6218487394957983, 'f1': 0.6166666666666667, 'number': 119} | {'precision': 0.8899821109123435, 'recall': 0.9238625812441968, 'f1': 0.9066059225512528, 'number': 1077} | 0.8634 | 0.8982 | 0.8804 | 0.8059 |
64
- | 0.0006 | 84.21 | 1600 | 1.5729 | {'precision': 0.8616279069767442, 'recall': 0.9069767441860465, 'f1': 0.8837209302325582, 'number': 817} | {'precision': 0.6973684210526315, 'recall': 0.44537815126050423, 'f1': 0.5435897435897435, 'number': 119} | {'precision': 0.878868258178603, 'recall': 0.9229340761374187, 'f1': 0.9003623188405797, 'number': 1077} | 0.8650 | 0.8882 | 0.8765 | 0.8149 |
65
- | 0.0008 | 94.74 | 1800 | 1.8110 | {'precision': 0.8455467869222097, 'recall': 0.9179926560587516, 'f1': 0.880281690140845, 'number': 817} | {'precision': 0.5522388059701493, 'recall': 0.6218487394957983, 'f1': 0.5849802371541502, 'number': 119} | {'precision': 0.9101851851851852, 'recall': 0.9127205199628597, 'f1': 0.9114510894761243, 'number': 1077} | 0.8601 | 0.8977 | 0.8785 | 0.7979 |
66
- | 0.0003 | 105.26 | 2000 | 1.7278 | {'precision': 0.8635321100917431, 'recall': 0.9216646266829865, 'f1': 0.8916518650088809, 'number': 817} | {'precision': 0.591304347826087, 'recall': 0.5714285714285714, 'f1': 0.5811965811965812, 'number': 119} | {'precision': 0.8986301369863013, 'recall': 0.9136490250696379, 'f1': 0.9060773480662985, 'number': 1077} | 0.8670 | 0.8967 | 0.8816 | 0.8005 |
67
- | 0.0004 | 115.79 | 2200 | 1.7088 | {'precision': 0.8802816901408451, 'recall': 0.9179926560587516, 'f1': 0.8987417615338527, 'number': 817} | {'precision': 0.6120689655172413, 'recall': 0.5966386554621849, 'f1': 0.6042553191489363, 'number': 119} | {'precision': 0.8869801084990958, 'recall': 0.9108635097493036, 'f1': 0.8987631699496106, 'number': 1077} | 0.8689 | 0.8952 | 0.8818 | 0.8051 |
68
- | 0.0003 | 126.32 | 2400 | 1.7343 | {'precision': 0.865979381443299, 'recall': 0.9253365973072215, 'f1': 0.8946745562130176, 'number': 817} | {'precision': 0.6442307692307693, 'recall': 0.5630252100840336, 'f1': 0.600896860986547, 'number': 119} | {'precision': 0.8937329700272479, 'recall': 0.9136490250696379, 'f1': 0.9035812672176309, 'number': 1077} | 0.8696 | 0.8977 | 0.8834 | 0.8048 |
69
 
70
 
71
  ### Framework versions
 
16
 
17
  This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 1.5278
20
+ - Answer: {'precision': 0.8726415094339622, 'recall': 0.9057527539779682, 'f1': 0.8888888888888888, 'number': 817}
21
+ - Header: {'precision': 0.6701030927835051, 'recall': 0.5462184873949579, 'f1': 0.6018518518518517, 'number': 119}
22
+ - Question: {'precision': 0.9128440366972477, 'recall': 0.9238625812441968, 'f1': 0.9183202584217812, 'number': 1077}
23
+ - Overall Precision: 0.8845
24
+ - Overall Recall: 0.8942
25
+ - Overall F1: 0.8893
26
+ - Overall Accuracy: 0.8213
27
 
28
  ## Model description
29
 
 
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
  - training_steps: 2500
52
+ - mixed_precision_training: Native AMP
53
 
54
  ### Training results
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
  |:-------------:|:------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
+ | 0.4258 | 10.53 | 200 | 0.9877 | {'precision': 0.8354143019296254, 'recall': 0.9008567931456548, 'f1': 0.866902237926973, 'number': 817} | {'precision': 0.5491803278688525, 'recall': 0.5630252100840336, 'f1': 0.5560165975103735, 'number': 119} | {'precision': 0.8691756272401434, 'recall': 0.9006499535747446, 'f1': 0.8846329229366164, 'number': 1077} | 0.8367 | 0.8808 | 0.8582 | 0.8030 |
59
+ | 0.0396 | 21.05 | 400 | 1.2891 | {'precision': 0.8314855875831486, 'recall': 0.9179926560587516, 'f1': 0.8726003490401396, 'number': 817} | {'precision': 0.5289256198347108, 'recall': 0.5378151260504201, 'f1': 0.5333333333333334, 'number': 119} | {'precision': 0.9008579599618685, 'recall': 0.8774373259052924, 'f1': 0.8889934148635935, 'number': 1077} | 0.8489 | 0.8738 | 0.8612 | 0.8071 |
60
+ | 0.0145 | 31.58 | 600 | 1.1878 | {'precision': 0.8541666666666666, 'recall': 0.9033047735618115, 'f1': 0.8780487804878049, 'number': 817} | {'precision': 0.5943396226415094, 'recall': 0.5294117647058824, 'f1': 0.5599999999999999, 'number': 119} | {'precision': 0.8793565683646113, 'recall': 0.9136490250696379, 'f1': 0.896174863387978, 'number': 1077} | 0.8545 | 0.8867 | 0.8703 | 0.8139 |
61
+ | 0.0093 | 42.11 | 800 | 1.3968 | {'precision': 0.8727272727272727, 'recall': 0.8812729498164015, 'f1': 0.8769792935444579, 'number': 817} | {'precision': 0.5454545454545454, 'recall': 0.6050420168067226, 'f1': 0.5737051792828685, 'number': 119} | {'precision': 0.8951686417502279, 'recall': 0.9117920148560817, 'f1': 0.9034038638454462, 'number': 1077} | 0.8637 | 0.8813 | 0.8724 | 0.8054 |
62
+ | 0.0042 | 52.63 | 1000 | 1.5509 | {'precision': 0.8372093023255814, 'recall': 0.9253365973072215, 'f1': 0.8790697674418605, 'number': 817} | {'precision': 0.6304347826086957, 'recall': 0.48739495798319327, 'f1': 0.5497630331753555, 'number': 119} | {'precision': 0.9044048734770385, 'recall': 0.8960074280408542, 'f1': 0.9001865671641791, 'number': 1077} | 0.8628 | 0.8838 | 0.8731 | 0.8044 |
63
+ | 0.0026 | 63.16 | 1200 | 1.5696 | {'precision': 0.8618266978922716, 'recall': 0.9008567931456548, 'f1': 0.8809096349491322, 'number': 817} | {'precision': 0.6666666666666666, 'recall': 0.5210084033613446, 'f1': 0.5849056603773585, 'number': 119} | {'precision': 0.8935978358881875, 'recall': 0.9201485608170845, 'f1': 0.9066788655077767, 'number': 1077} | 0.8701 | 0.8887 | 0.8793 | 0.8116 |
64
+ | 0.001 | 73.68 | 1400 | 1.7209 | {'precision': 0.8396860986547086, 'recall': 0.9167686658506732, 'f1': 0.8765359859566998, 'number': 817} | {'precision': 0.6781609195402298, 'recall': 0.4957983193277311, 'f1': 0.5728155339805825, 'number': 119} | {'precision': 0.8969359331476323, 'recall': 0.8969359331476323, 'f1': 0.8969359331476322, 'number': 1077} | 0.8628 | 0.8813 | 0.8720 | 0.7977 |
65
+ | 0.0011 | 84.21 | 1600 | 1.5329 | {'precision': 0.8646188850967008, 'recall': 0.9302325581395349, 'f1': 0.8962264150943396, 'number': 817} | {'precision': 0.6666666666666666, 'recall': 0.5042016806722689, 'f1': 0.5741626794258373, 'number': 119} | {'precision': 0.9050691244239631, 'recall': 0.9117920148560817, 'f1': 0.9084181313598519, 'number': 1077} | 0.8773 | 0.8952 | 0.8862 | 0.8267 |
66
+ | 0.0006 | 94.74 | 1800 | 1.5523 | {'precision': 0.8748510131108462, 'recall': 0.8984088127294981, 'f1': 0.8864734299516908, 'number': 817} | {'precision': 0.5811965811965812, 'recall': 0.5714285714285714, 'f1': 0.576271186440678, 'number': 119} | {'precision': 0.9045412418906394, 'recall': 0.9062209842154132, 'f1': 0.9053803339517627, 'number': 1077} | 0.8737 | 0.8833 | 0.8785 | 0.8196 |
67
+ | 0.0005 | 105.26 | 2000 | 1.5178 | {'precision': 0.8758949880668258, 'recall': 0.8984088127294981, 'f1': 0.8870090634441088, 'number': 817} | {'precision': 0.6428571428571429, 'recall': 0.5294117647058824, 'f1': 0.5806451612903226, 'number': 119} | {'precision': 0.8995475113122172, 'recall': 0.9229340761374187, 'f1': 0.9110907424381303, 'number': 1077} | 0.8775 | 0.8897 | 0.8836 | 0.8253 |
68
+ | 0.0004 | 115.79 | 2200 | 1.5493 | {'precision': 0.8597701149425288, 'recall': 0.9155446756425949, 'f1': 0.8867812685240072, 'number': 817} | {'precision': 0.6631578947368421, 'recall': 0.5294117647058824, 'f1': 0.5887850467289719, 'number': 119} | {'precision': 0.9107635694572217, 'recall': 0.9192200557103064, 'f1': 0.9149722735674676, 'number': 1077} | 0.8777 | 0.8947 | 0.8861 | 0.8217 |
69
+ | 0.0003 | 126.32 | 2400 | 1.5278 | {'precision': 0.8726415094339622, 'recall': 0.9057527539779682, 'f1': 0.8888888888888888, 'number': 817} | {'precision': 0.6701030927835051, 'recall': 0.5462184873949579, 'f1': 0.6018518518518517, 'number': 119} | {'precision': 0.9128440366972477, 'recall': 0.9238625812441968, 'f1': 0.9183202584217812, 'number': 1077} | 0.8845 | 0.8942 | 0.8893 | 0.8213 |
70
 
71
 
72
  ### Framework versions
logs/events.out.tfevents.1682631950.datascience-1-0-ml-g4dn-xlarge-94fad2f4401e538ca1255dfa1e84.1621.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6ac4e73018e37deeb2a3bffd0cd407fae875c9159ff66425d32d1ece8b99ee7f
3
- size 12274
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de848dcdb7feeb4d10100087672a3de86bf2ad0c97888da7d0b90cc9be370cb5
3
+ size 12628
logs/events.out.tfevents.1682634099.datascience-1-0-ml-g4dn-xlarge-94fad2f4401e538ca1255dfa1e84.1621.2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fe531e5d1a20b7fad4f9e96e1b7a4adfc668b51466b626825b787ff9b671a66
3
+ size 544