update model card README.md
Browse files
README.md
CHANGED
@@ -3,10 +3,37 @@ license: cc-by-nc-sa-4.0
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
6 |
-
-
|
|
|
|
|
|
|
|
|
|
|
7 |
model-index:
|
8 |
- name: pasha
|
9 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -14,7 +41,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
# pasha
|
16 |
|
17 |
-
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
## Model description
|
20 |
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
6 |
+
- nielsr/funsd-layoutlmv3
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
model-index:
|
13 |
- name: pasha
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: nielsr/funsd-layoutlmv3
|
20 |
+
type: nielsr/funsd-layoutlmv3
|
21 |
+
config: pasha
|
22 |
+
split: test
|
23 |
+
args: pasha
|
24 |
+
metrics:
|
25 |
+
- name: Precision
|
26 |
+
type: precision
|
27 |
+
value: 0.879144385026738
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.888328530259366
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.8837125963089052
|
34 |
+
- name: Accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 0.909112825458052
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
41 |
|
42 |
# pasha
|
43 |
|
44 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the nielsr/funsd-layoutlmv3 dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.6462
|
47 |
+
- Precision: 0.8791
|
48 |
+
- Recall: 0.8883
|
49 |
+
- F1: 0.8837
|
50 |
+
- Accuracy: 0.9091
|
51 |
|
52 |
## Model description
|
53 |
|