Upload folder using huggingface_hub
Browse files- .gitattributes +3 -0
- checkpoint-6100/1_Pooling/config.json +10 -0
- checkpoint-6100/README.md +488 -0
- checkpoint-6100/config.json +28 -0
- checkpoint-6100/config_sentence_transformers.json +10 -0
- checkpoint-6100/model.safetensors +3 -0
- checkpoint-6100/modules.json +14 -0
- checkpoint-6100/optimizer.pt +3 -0
- checkpoint-6100/rng_state.pth +3 -0
- checkpoint-6100/scheduler.pt +3 -0
- checkpoint-6100/sentence_bert_config.json +4 -0
- checkpoint-6100/sentencepiece.bpe.model +3 -0
- checkpoint-6100/special_tokens_map.json +15 -0
- checkpoint-6100/tokenizer.json +3 -0
- checkpoint-6100/tokenizer_config.json +54 -0
- checkpoint-6100/trainer_state.json +1253 -0
- checkpoint-6100/training_args.bin +3 -0
- checkpoint-6200/1_Pooling/config.json +10 -0
- checkpoint-6200/README.md +489 -0
- checkpoint-6200/config.json +28 -0
- checkpoint-6200/config_sentence_transformers.json +10 -0
- checkpoint-6200/model.safetensors +3 -0
- checkpoint-6200/modules.json +14 -0
- checkpoint-6200/optimizer.pt +3 -0
- checkpoint-6200/rng_state.pth +3 -0
- checkpoint-6200/scheduler.pt +3 -0
- checkpoint-6200/sentence_bert_config.json +4 -0
- checkpoint-6200/sentencepiece.bpe.model +3 -0
- checkpoint-6200/special_tokens_map.json +15 -0
- checkpoint-6200/tokenizer.json +3 -0
- checkpoint-6200/tokenizer_config.json +54 -0
- checkpoint-6200/trainer_state.json +1273 -0
- checkpoint-6200/training_args.bin +3 -0
- final/1_Pooling/config.json +10 -0
- final/README.md +524 -0
- final/config.json +28 -0
- final/config_sentence_transformers.json +10 -0
- final/model.safetensors +3 -0
- final/modules.json +14 -0
- final/sentence_bert_config.json +4 -0
- final/sentencepiece.bpe.model +3 -0
- final/special_tokens_map.json +15 -0
- final/tokenizer.json +3 -0
- final/tokenizer_config.json +54 -0
- runs/Jun03_19-02-48_ruche-gpu14.cluster/events.out.tfevents.1717434207.ruche-gpu14.cluster.27296.0 +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
checkpoint-6100/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
checkpoint-6200/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
38 |
+
final/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
checkpoint-6100/1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
checkpoint-6100/README.md
ADDED
@@ -0,0 +1,488 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
library_name: sentence-transformers
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- dataset_size:100K<n<1M
|
10 |
+
- loss:MultipleNegativesRankingLoss
|
11 |
+
base_model: FacebookAI/xlm-roberta-large
|
12 |
+
metrics:
|
13 |
+
- cosine_accuracy
|
14 |
+
- dot_accuracy
|
15 |
+
- manhattan_accuracy
|
16 |
+
- euclidean_accuracy
|
17 |
+
- max_accuracy
|
18 |
+
widget:
|
19 |
+
- source_sentence: The boy scowls
|
20 |
+
sentences:
|
21 |
+
- A snowboarder jumps.
|
22 |
+
- Boy playing baseball.
|
23 |
+
- The men have blonde hair.
|
24 |
+
- source_sentence: an eagle flies
|
25 |
+
sentences:
|
26 |
+
- A woman is sleeping.
|
27 |
+
- He is playing a song.
|
28 |
+
- It is a cold day.
|
29 |
+
- source_sentence: A woman sings.
|
30 |
+
sentences:
|
31 |
+
- She checks her phone.
|
32 |
+
- the animal is running
|
33 |
+
- two women sit on a couch
|
34 |
+
- source_sentence: A bird flying.
|
35 |
+
sentences:
|
36 |
+
- Nobody is kicking.
|
37 |
+
- A man is on his feet.
|
38 |
+
- The girl has brown hair.
|
39 |
+
- source_sentence: There's a dock
|
40 |
+
sentences:
|
41 |
+
- People are shopping.
|
42 |
+
- Five people on a path
|
43 |
+
- The girls are watching tv
|
44 |
+
pipeline_tag: sentence-similarity
|
45 |
+
model-index:
|
46 |
+
- name: SentenceTransformer based on FacebookAI/xlm-roberta-large
|
47 |
+
results:
|
48 |
+
- task:
|
49 |
+
type: triplet
|
50 |
+
name: Triplet
|
51 |
+
dataset:
|
52 |
+
name: all nli dev
|
53 |
+
type: all-nli-dev
|
54 |
+
metrics:
|
55 |
+
- type: cosine_accuracy
|
56 |
+
value: 0.479
|
57 |
+
name: Cosine Accuracy
|
58 |
+
- type: dot_accuracy
|
59 |
+
value: 0.378
|
60 |
+
name: Dot Accuracy
|
61 |
+
- type: manhattan_accuracy
|
62 |
+
value: 0.484
|
63 |
+
name: Manhattan Accuracy
|
64 |
+
- type: euclidean_accuracy
|
65 |
+
value: 0.479
|
66 |
+
name: Euclidean Accuracy
|
67 |
+
- type: max_accuracy
|
68 |
+
value: 0.484
|
69 |
+
name: Max Accuracy
|
70 |
+
---
|
71 |
+
|
72 |
+
# SentenceTransformer based on FacebookAI/xlm-roberta-large
|
73 |
+
|
74 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
75 |
+
|
76 |
+
## Model Details
|
77 |
+
|
78 |
+
### Model Description
|
79 |
+
- **Model Type:** Sentence Transformer
|
80 |
+
- **Base model:** [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) <!-- at revision c23d21b0620b635a76227c604d44e43a9f0ee389 -->
|
81 |
+
- **Maximum Sequence Length:** 512 tokens
|
82 |
+
- **Output Dimensionality:** 1024 tokens
|
83 |
+
- **Similarity Function:** Cosine Similarity
|
84 |
+
- **Training Dataset:**
|
85 |
+
- [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
|
86 |
+
- **Language:** en
|
87 |
+
<!-- - **License:** Unknown -->
|
88 |
+
|
89 |
+
### Model Sources
|
90 |
+
|
91 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
92 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
93 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
94 |
+
|
95 |
+
### Full Model Architecture
|
96 |
+
|
97 |
+
```
|
98 |
+
SentenceTransformer(
|
99 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
100 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
101 |
+
)
|
102 |
+
```
|
103 |
+
|
104 |
+
## Usage
|
105 |
+
|
106 |
+
### Direct Usage (Sentence Transformers)
|
107 |
+
|
108 |
+
First install the Sentence Transformers library:
|
109 |
+
|
110 |
+
```bash
|
111 |
+
pip install -U sentence-transformers
|
112 |
+
```
|
113 |
+
|
114 |
+
Then you can load this model and run inference.
|
115 |
+
```python
|
116 |
+
from sentence_transformers import SentenceTransformer
|
117 |
+
|
118 |
+
# Download from the 🤗 Hub
|
119 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
120 |
+
# Run inference
|
121 |
+
sentences = [
|
122 |
+
"There's a dock",
|
123 |
+
'People are shopping.',
|
124 |
+
'Five people on a path',
|
125 |
+
]
|
126 |
+
embeddings = model.encode(sentences)
|
127 |
+
print(embeddings.shape)
|
128 |
+
# [3, 1024]
|
129 |
+
|
130 |
+
# Get the similarity scores for the embeddings
|
131 |
+
similarities = model.similarity(embeddings, embeddings)
|
132 |
+
print(similarities.shape)
|
133 |
+
# [3, 3]
|
134 |
+
```
|
135 |
+
|
136 |
+
<!--
|
137 |
+
### Direct Usage (Transformers)
|
138 |
+
|
139 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
140 |
+
|
141 |
+
</details>
|
142 |
+
-->
|
143 |
+
|
144 |
+
<!--
|
145 |
+
### Downstream Usage (Sentence Transformers)
|
146 |
+
|
147 |
+
You can finetune this model on your own dataset.
|
148 |
+
|
149 |
+
<details><summary>Click to expand</summary>
|
150 |
+
|
151 |
+
</details>
|
152 |
+
-->
|
153 |
+
|
154 |
+
<!--
|
155 |
+
### Out-of-Scope Use
|
156 |
+
|
157 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
158 |
+
-->
|
159 |
+
|
160 |
+
## Evaluation
|
161 |
+
|
162 |
+
### Metrics
|
163 |
+
|
164 |
+
#### Triplet
|
165 |
+
* Dataset: `all-nli-dev`
|
166 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
167 |
+
|
168 |
+
| Metric | Value |
|
169 |
+
|:-------------------|:----------|
|
170 |
+
| cosine_accuracy | 0.479 |
|
171 |
+
| dot_accuracy | 0.378 |
|
172 |
+
| manhattan_accuracy | 0.484 |
|
173 |
+
| euclidean_accuracy | 0.479 |
|
174 |
+
| **max_accuracy** | **0.484** |
|
175 |
+
|
176 |
+
<!--
|
177 |
+
## Bias, Risks and Limitations
|
178 |
+
|
179 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
180 |
+
-->
|
181 |
+
|
182 |
+
<!--
|
183 |
+
### Recommendations
|
184 |
+
|
185 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
186 |
+
-->
|
187 |
+
|
188 |
+
## Training Details
|
189 |
+
|
190 |
+
### Training Dataset
|
191 |
+
|
192 |
+
#### sentence-transformers/all-nli
|
193 |
+
|
194 |
+
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
195 |
+
* Size: 100,000 training samples
|
196 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
197 |
+
* Approximate statistics based on the first 1000 samples:
|
198 |
+
| | anchor | positive | negative |
|
199 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
200 |
+
| type | string | string | string |
|
201 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 10.9 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.62 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.76 tokens</li><li>max: 55 tokens</li></ul> |
|
202 |
+
* Samples:
|
203 |
+
| anchor | positive | negative |
|
204 |
+
|:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
|
205 |
+
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
|
206 |
+
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
|
207 |
+
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
|
208 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
209 |
+
```json
|
210 |
+
{
|
211 |
+
"scale": 20.0,
|
212 |
+
"similarity_fct": "cos_sim"
|
213 |
+
}
|
214 |
+
```
|
215 |
+
|
216 |
+
### Evaluation Dataset
|
217 |
+
|
218 |
+
#### sentence-transformers/all-nli
|
219 |
+
|
220 |
+
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
221 |
+
* Size: 1,000 evaluation samples
|
222 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
223 |
+
* Approximate statistics based on the first 1000 samples:
|
224 |
+
| | anchor | positive | negative |
|
225 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
226 |
+
| type | string | string | string |
|
227 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 20.31 tokens</li><li>max: 83 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.71 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.39 tokens</li><li>max: 32 tokens</li></ul> |
|
228 |
+
* Samples:
|
229 |
+
| anchor | positive | negative |
|
230 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
|
231 |
+
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
|
232 |
+
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
|
233 |
+
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
|
234 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
235 |
+
```json
|
236 |
+
{
|
237 |
+
"scale": 20.0,
|
238 |
+
"similarity_fct": "cos_sim"
|
239 |
+
}
|
240 |
+
```
|
241 |
+
|
242 |
+
### Training Hyperparameters
|
243 |
+
#### Non-Default Hyperparameters
|
244 |
+
|
245 |
+
- `eval_strategy`: steps
|
246 |
+
- `per_device_train_batch_size`: 16
|
247 |
+
- `per_device_eval_batch_size`: 16
|
248 |
+
- `num_train_epochs`: 1
|
249 |
+
- `warmup_ratio`: 0.1
|
250 |
+
- `fp16`: True
|
251 |
+
- `batch_sampler`: no_duplicates
|
252 |
+
|
253 |
+
#### All Hyperparameters
|
254 |
+
<details><summary>Click to expand</summary>
|
255 |
+
|
256 |
+
- `overwrite_output_dir`: False
|
257 |
+
- `do_predict`: False
|
258 |
+
- `eval_strategy`: steps
|
259 |
+
- `prediction_loss_only`: True
|
260 |
+
- `per_device_train_batch_size`: 16
|
261 |
+
- `per_device_eval_batch_size`: 16
|
262 |
+
- `per_gpu_train_batch_size`: None
|
263 |
+
- `per_gpu_eval_batch_size`: None
|
264 |
+
- `gradient_accumulation_steps`: 1
|
265 |
+
- `eval_accumulation_steps`: None
|
266 |
+
- `learning_rate`: 5e-05
|
267 |
+
- `weight_decay`: 0.0
|
268 |
+
- `adam_beta1`: 0.9
|
269 |
+
- `adam_beta2`: 0.999
|
270 |
+
- `adam_epsilon`: 1e-08
|
271 |
+
- `max_grad_norm`: 1.0
|
272 |
+
- `num_train_epochs`: 1
|
273 |
+
- `max_steps`: -1
|
274 |
+
- `lr_scheduler_type`: linear
|
275 |
+
- `lr_scheduler_kwargs`: {}
|
276 |
+
- `warmup_ratio`: 0.1
|
277 |
+
- `warmup_steps`: 0
|
278 |
+
- `log_level`: passive
|
279 |
+
- `log_level_replica`: warning
|
280 |
+
- `log_on_each_node`: True
|
281 |
+
- `logging_nan_inf_filter`: True
|
282 |
+
- `save_safetensors`: True
|
283 |
+
- `save_on_each_node`: False
|
284 |
+
- `save_only_model`: False
|
285 |
+
- `restore_callback_states_from_checkpoint`: False
|
286 |
+
- `no_cuda`: False
|
287 |
+
- `use_cpu`: False
|
288 |
+
- `use_mps_device`: False
|
289 |
+
- `seed`: 42
|
290 |
+
- `data_seed`: None
|
291 |
+
- `jit_mode_eval`: False
|
292 |
+
- `use_ipex`: False
|
293 |
+
- `bf16`: False
|
294 |
+
- `fp16`: True
|
295 |
+
- `fp16_opt_level`: O1
|
296 |
+
- `half_precision_backend`: auto
|
297 |
+
- `bf16_full_eval`: False
|
298 |
+
- `fp16_full_eval`: False
|
299 |
+
- `tf32`: None
|
300 |
+
- `local_rank`: 0
|
301 |
+
- `ddp_backend`: None
|
302 |
+
- `tpu_num_cores`: None
|
303 |
+
- `tpu_metrics_debug`: False
|
304 |
+
- `debug`: []
|
305 |
+
- `dataloader_drop_last`: False
|
306 |
+
- `dataloader_num_workers`: 0
|
307 |
+
- `dataloader_prefetch_factor`: None
|
308 |
+
- `past_index`: -1
|
309 |
+
- `disable_tqdm`: False
|
310 |
+
- `remove_unused_columns`: True
|
311 |
+
- `label_names`: None
|
312 |
+
- `load_best_model_at_end`: False
|
313 |
+
- `ignore_data_skip`: False
|
314 |
+
- `fsdp`: []
|
315 |
+
- `fsdp_min_num_params`: 0
|
316 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
317 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
318 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
319 |
+
- `deepspeed`: None
|
320 |
+
- `label_smoothing_factor`: 0.0
|
321 |
+
- `optim`: adamw_torch
|
322 |
+
- `optim_args`: None
|
323 |
+
- `adafactor`: False
|
324 |
+
- `group_by_length`: False
|
325 |
+
- `length_column_name`: length
|
326 |
+
- `ddp_find_unused_parameters`: None
|
327 |
+
- `ddp_bucket_cap_mb`: None
|
328 |
+
- `ddp_broadcast_buffers`: False
|
329 |
+
- `dataloader_pin_memory`: True
|
330 |
+
- `dataloader_persistent_workers`: False
|
331 |
+
- `skip_memory_metrics`: True
|
332 |
+
- `use_legacy_prediction_loop`: False
|
333 |
+
- `push_to_hub`: False
|
334 |
+
- `resume_from_checkpoint`: None
|
335 |
+
- `hub_model_id`: None
|
336 |
+
- `hub_strategy`: every_save
|
337 |
+
- `hub_private_repo`: False
|
338 |
+
- `hub_always_push`: False
|
339 |
+
- `gradient_checkpointing`: False
|
340 |
+
- `gradient_checkpointing_kwargs`: None
|
341 |
+
- `include_inputs_for_metrics`: False
|
342 |
+
- `eval_do_concat_batches`: True
|
343 |
+
- `fp16_backend`: auto
|
344 |
+
- `push_to_hub_model_id`: None
|
345 |
+
- `push_to_hub_organization`: None
|
346 |
+
- `mp_parameters`:
|
347 |
+
- `auto_find_batch_size`: False
|
348 |
+
- `full_determinism`: False
|
349 |
+
- `torchdynamo`: None
|
350 |
+
- `ray_scope`: last
|
351 |
+
- `ddp_timeout`: 1800
|
352 |
+
- `torch_compile`: False
|
353 |
+
- `torch_compile_backend`: None
|
354 |
+
- `torch_compile_mode`: None
|
355 |
+
- `dispatch_batches`: None
|
356 |
+
- `split_batches`: None
|
357 |
+
- `include_tokens_per_second`: False
|
358 |
+
- `include_num_input_tokens_seen`: False
|
359 |
+
- `neftune_noise_alpha`: None
|
360 |
+
- `optim_target_modules`: None
|
361 |
+
- `batch_eval_metrics`: False
|
362 |
+
- `batch_sampler`: no_duplicates
|
363 |
+
- `multi_dataset_batch_sampler`: proportional
|
364 |
+
|
365 |
+
</details>
|
366 |
+
|
367 |
+
### Training Logs
|
368 |
+
| Epoch | Step | Training Loss | loss | all-nli-dev_max_accuracy |
|
369 |
+
|:-----:|:----:|:-------------:|:------:|:------------------------:|
|
370 |
+
| 0 | 0 | - | - | 0.616 |
|
371 |
+
| 0.016 | 100 | 3.2768 | 1.8053 | 0.833 |
|
372 |
+
| 0.032 | 200 | 1.1697 | 1.2878 | 0.861 |
|
373 |
+
| 0.048 | 300 | 1.372 | 1.2466 | 0.861 |
|
374 |
+
| 0.064 | 400 | 1.0476 | 1.2291 | 0.863 |
|
375 |
+
| 0.08 | 500 | 0.8588 | 1.5259 | 0.838 |
|
376 |
+
| 0.096 | 600 | 2.9781 | 3.4309 | 0.463 |
|
377 |
+
| 0.112 | 700 | 3.4982 | 3.4309 | 0.457 |
|
378 |
+
| 0.128 | 800 | 3.467 | 3.4309 | 0.479 |
|
379 |
+
| 0.144 | 900 | 3.4665 | 3.4309 | 0.452 |
|
380 |
+
| 0.16 | 1000 | 3.4664 | 3.4309 | 0.477 |
|
381 |
+
| 0.176 | 1100 | 3.4663 | 3.4309 | 0.458 |
|
382 |
+
| 0.192 | 1200 | 3.4661 | 3.4309 | 0.462 |
|
383 |
+
| 0.208 | 1300 | 3.4658 | 3.4309 | 0.45 |
|
384 |
+
| 0.224 | 1400 | 3.4661 | 3.4309 | 0.481 |
|
385 |
+
| 0.24 | 1500 | 3.4877 | 3.4309 | 0.464 |
|
386 |
+
| 0.256 | 1600 | 3.4675 | 3.4309 | 0.462 |
|
387 |
+
| 0.272 | 1700 | 3.4665 | 3.4309 | 0.488 |
|
388 |
+
| 0.288 | 1800 | 3.4667 | 3.4309 | 0.492 |
|
389 |
+
| 0.304 | 1900 | 3.4664 | 3.4309 | 0.455 |
|
390 |
+
| 0.32 | 2000 | 3.4661 | 3.4309 | 0.453 |
|
391 |
+
| 0.336 | 2100 | 3.4666 | 3.4309 | 0.477 |
|
392 |
+
| 0.352 | 2200 | 3.4683 | 3.4309 | 0.48 |
|
393 |
+
| 0.368 | 2300 | 3.4663 | 3.4309 | 0.469 |
|
394 |
+
| 0.384 | 2400 | 3.4667 | 3.4309 | 0.448 |
|
395 |
+
| 0.4 | 2500 | 3.4669 | 3.4309 | 0.499 |
|
396 |
+
| 0.416 | 2600 | 3.4661 | 3.4309 | 0.453 |
|
397 |
+
| 0.432 | 2700 | 3.4656 | 3.4309 | 0.467 |
|
398 |
+
| 0.448 | 2800 | 3.4662 | 3.4309 | 0.507 |
|
399 |
+
| 0.464 | 2900 | 3.4902 | 3.4309 | 0.473 |
|
400 |
+
| 0.48 | 3000 | 3.4663 | 3.4309 | 0.469 |
|
401 |
+
| 0.496 | 3100 | 3.554 | 3.4309 | 0.46 |
|
402 |
+
| 0.512 | 3200 | 3.4664 | 3.4309 | 0.455 |
|
403 |
+
| 0.528 | 3300 | 3.4668 | 3.4309 | 0.46 |
|
404 |
+
| 0.544 | 3400 | 3.4661 | 3.4309 | 0.492 |
|
405 |
+
| 0.56 | 3500 | 3.4667 | 3.4309 | 0.432 |
|
406 |
+
| 0.576 | 3600 | 3.4668 | 3.4309 | 0.486 |
|
407 |
+
| 0.592 | 3700 | 3.4666 | 3.4309 | 0.469 |
|
408 |
+
| 0.608 | 3800 | 3.4669 | 3.4309 | 0.473 |
|
409 |
+
| 0.624 | 3900 | 3.4658 | 3.4309 | 0.487 |
|
410 |
+
| 0.64 | 4000 | 3.4663 | 3.4309 | 0.448 |
|
411 |
+
| 0.656 | 4100 | 3.4663 | 3.4309 | 0.465 |
|
412 |
+
| 0.672 | 4200 | 3.4664 | 3.4309 | 0.484 |
|
413 |
+
| 0.688 | 4300 | 3.4663 | 3.4309 | 0.469 |
|
414 |
+
| 0.704 | 4400 | 3.4661 | 3.4309 | 0.478 |
|
415 |
+
| 0.72 | 4500 | 3.4669 | 3.4309 | 0.467 |
|
416 |
+
| 0.736 | 4600 | 3.4664 | 3.4309 | 0.455 |
|
417 |
+
| 0.752 | 4700 | 3.4664 | 3.4309 | 0.481 |
|
418 |
+
| 0.768 | 4800 | 3.4659 | 3.4309 | 0.466 |
|
419 |
+
| 0.784 | 4900 | 3.466 | 3.4309 | 0.451 |
|
420 |
+
| 0.8 | 5000 | 3.466 | 3.4309 | 0.473 |
|
421 |
+
| 0.816 | 5100 | 3.4664 | 3.4309 | 0.44 |
|
422 |
+
| 0.832 | 5200 | 3.4658 | 3.4309 | 0.497 |
|
423 |
+
| 0.848 | 5300 | 3.4664 | 3.4309 | 0.474 |
|
424 |
+
| 0.864 | 5400 | 3.4658 | 3.4309 | 0.449 |
|
425 |
+
| 0.88 | 5500 | 3.4662 | 3.4309 | 0.466 |
|
426 |
+
| 0.896 | 5600 | 3.4663 | 3.4309 | 0.476 |
|
427 |
+
| 0.912 | 5700 | 3.4667 | 3.4309 | 0.455 |
|
428 |
+
| 0.928 | 5800 | 3.4669 | 3.4309 | 0.463 |
|
429 |
+
| 0.944 | 5900 | 3.4657 | 3.4309 | 0.467 |
|
430 |
+
| 0.96 | 6000 | 3.4671 | 3.4309 | 0.456 |
|
431 |
+
| 0.976 | 6100 | 2.9471 | 3.4309 | 0.484 |
|
432 |
+
|
433 |
+
|
434 |
+
### Framework Versions
|
435 |
+
- Python: 3.9.10
|
436 |
+
- Sentence Transformers: 3.0.0
|
437 |
+
- Transformers: 4.41.2
|
438 |
+
- PyTorch: 2.3.0+cu121
|
439 |
+
- Accelerate: 0.26.1
|
440 |
+
- Datasets: 2.16.1
|
441 |
+
- Tokenizers: 0.19.1
|
442 |
+
|
443 |
+
## Citation
|
444 |
+
|
445 |
+
### BibTeX
|
446 |
+
|
447 |
+
#### Sentence Transformers
|
448 |
+
```bibtex
|
449 |
+
@inproceedings{reimers-2019-sentence-bert,
|
450 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
451 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
452 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
453 |
+
month = "11",
|
454 |
+
year = "2019",
|
455 |
+
publisher = "Association for Computational Linguistics",
|
456 |
+
url = "https://arxiv.org/abs/1908.10084",
|
457 |
+
}
|
458 |
+
```
|
459 |
+
|
460 |
+
#### MultipleNegativesRankingLoss
|
461 |
+
```bibtex
|
462 |
+
@misc{henderson2017efficient,
|
463 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
464 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
465 |
+
year={2017},
|
466 |
+
eprint={1705.00652},
|
467 |
+
archivePrefix={arXiv},
|
468 |
+
primaryClass={cs.CL}
|
469 |
+
}
|
470 |
+
```
|
471 |
+
|
472 |
+
<!--
|
473 |
+
## Glossary
|
474 |
+
|
475 |
+
*Clearly define terms in order to be accessible across audiences.*
|
476 |
+
-->
|
477 |
+
|
478 |
+
<!--
|
479 |
+
## Model Card Authors
|
480 |
+
|
481 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
482 |
+
-->
|
483 |
+
|
484 |
+
<!--
|
485 |
+
## Model Card Contact
|
486 |
+
|
487 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
488 |
+
-->
|
checkpoint-6100/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "FacebookAI/xlm-roberta-large",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.41.2",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
checkpoint-6100/config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.0",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.3.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
checkpoint-6100/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3536403d82a4189fc382006c2061918f0903f620db30288232b2b4c7041e944
|
3 |
+
size 2239607176
|
checkpoint-6100/modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
checkpoint-6100/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b87a3155f4a6d52f539a56d8b3f15fa2ea1f8126f5e93a8574a1d90b9e616af
|
3 |
+
size 4471055801
|
checkpoint-6100/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82e6b358371fd8a01e1bb5ff6f6b184506fd43d9339c62665ab41df623190081
|
3 |
+
size 14244
|
checkpoint-6100/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06f843d945721c7a0fb1269619e679250a0fa0bc91699c6353d8e5e224f65b7c
|
3 |
+
size 1064
|
checkpoint-6100/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
checkpoint-6100/sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
checkpoint-6100/special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
checkpoint-6100/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
3 |
+
size 17082987
|
checkpoint-6100/tokenizer_config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
53 |
+
"unk_token": "<unk>"
|
54 |
+
}
|
checkpoint-6100/trainer_state.json
ADDED
@@ -0,0 +1,1253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.976,
|
5 |
+
"eval_steps": 100,
|
6 |
+
"global_step": 6100,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.016,
|
13 |
+
"grad_norm": 83.78450775146484,
|
14 |
+
"learning_rate": 7.44e-06,
|
15 |
+
"loss": 3.2768,
|
16 |
+
"step": 100
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.016,
|
20 |
+
"eval_all-nli-dev_cosine_accuracy": 0.815,
|
21 |
+
"eval_all-nli-dev_dot_accuracy": 0.316,
|
22 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.804,
|
23 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.833,
|
24 |
+
"eval_all-nli-dev_max_accuracy": 0.833,
|
25 |
+
"eval_loss": 1.8052657842636108,
|
26 |
+
"eval_runtime": 8.0216,
|
27 |
+
"eval_samples_per_second": 124.664,
|
28 |
+
"eval_steps_per_second": 7.854,
|
29 |
+
"step": 100
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"epoch": 0.032,
|
33 |
+
"grad_norm": 62.54200744628906,
|
34 |
+
"learning_rate": 1.544e-05,
|
35 |
+
"loss": 1.1697,
|
36 |
+
"step": 200
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"epoch": 0.032,
|
40 |
+
"eval_all-nli-dev_cosine_accuracy": 0.842,
|
41 |
+
"eval_all-nli-dev_dot_accuracy": 0.171,
|
42 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.838,
|
43 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.861,
|
44 |
+
"eval_all-nli-dev_max_accuracy": 0.861,
|
45 |
+
"eval_loss": 1.2878086566925049,
|
46 |
+
"eval_runtime": 7.8831,
|
47 |
+
"eval_samples_per_second": 126.853,
|
48 |
+
"eval_steps_per_second": 7.992,
|
49 |
+
"step": 200
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"epoch": 0.048,
|
53 |
+
"grad_norm": 75.54035949707031,
|
54 |
+
"learning_rate": 2.344e-05,
|
55 |
+
"loss": 1.372,
|
56 |
+
"step": 300
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.048,
|
60 |
+
"eval_all-nli-dev_cosine_accuracy": 0.841,
|
61 |
+
"eval_all-nli-dev_dot_accuracy": 0.181,
|
62 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.844,
|
63 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.861,
|
64 |
+
"eval_all-nli-dev_max_accuracy": 0.861,
|
65 |
+
"eval_loss": 1.2466014623641968,
|
66 |
+
"eval_runtime": 7.8792,
|
67 |
+
"eval_samples_per_second": 126.916,
|
68 |
+
"eval_steps_per_second": 7.996,
|
69 |
+
"step": 300
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.064,
|
73 |
+
"grad_norm": 33.85651779174805,
|
74 |
+
"learning_rate": 3.136e-05,
|
75 |
+
"loss": 1.0476,
|
76 |
+
"step": 400
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.064,
|
80 |
+
"eval_all-nli-dev_cosine_accuracy": 0.848,
|
81 |
+
"eval_all-nli-dev_dot_accuracy": 0.201,
|
82 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.848,
|
83 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.863,
|
84 |
+
"eval_all-nli-dev_max_accuracy": 0.863,
|
85 |
+
"eval_loss": 1.2291330099105835,
|
86 |
+
"eval_runtime": 7.8507,
|
87 |
+
"eval_samples_per_second": 127.378,
|
88 |
+
"eval_steps_per_second": 8.025,
|
89 |
+
"step": 400
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 0.08,
|
93 |
+
"grad_norm": 27.536640167236328,
|
94 |
+
"learning_rate": 3.936e-05,
|
95 |
+
"loss": 0.8588,
|
96 |
+
"step": 500
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"epoch": 0.08,
|
100 |
+
"eval_all-nli-dev_cosine_accuracy": 0.821,
|
101 |
+
"eval_all-nli-dev_dot_accuracy": 0.213,
|
102 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.828,
|
103 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.838,
|
104 |
+
"eval_all-nli-dev_max_accuracy": 0.838,
|
105 |
+
"eval_loss": 1.5258921384811401,
|
106 |
+
"eval_runtime": 7.8331,
|
107 |
+
"eval_samples_per_second": 127.663,
|
108 |
+
"eval_steps_per_second": 8.043,
|
109 |
+
"step": 500
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 0.096,
|
113 |
+
"grad_norm": 0.15947222709655762,
|
114 |
+
"learning_rate": 4.736000000000001e-05,
|
115 |
+
"loss": 2.9781,
|
116 |
+
"step": 600
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.096,
|
120 |
+
"eval_all-nli-dev_cosine_accuracy": 0.462,
|
121 |
+
"eval_all-nli-dev_dot_accuracy": 0.363,
|
122 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.462,
|
123 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.463,
|
124 |
+
"eval_all-nli-dev_max_accuracy": 0.463,
|
125 |
+
"eval_loss": 3.4308860301971436,
|
126 |
+
"eval_runtime": 7.9535,
|
127 |
+
"eval_samples_per_second": 125.73,
|
128 |
+
"eval_steps_per_second": 7.921,
|
129 |
+
"step": 600
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.112,
|
133 |
+
"grad_norm": 0.09273126721382141,
|
134 |
+
"learning_rate": 4.9404444444444447e-05,
|
135 |
+
"loss": 3.4982,
|
136 |
+
"step": 700
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.112,
|
140 |
+
"eval_all-nli-dev_cosine_accuracy": 0.449,
|
141 |
+
"eval_all-nli-dev_dot_accuracy": 0.381,
|
142 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.449,
|
143 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.457,
|
144 |
+
"eval_all-nli-dev_max_accuracy": 0.457,
|
145 |
+
"eval_loss": 3.4308860301971436,
|
146 |
+
"eval_runtime": 7.905,
|
147 |
+
"eval_samples_per_second": 126.501,
|
148 |
+
"eval_steps_per_second": 7.97,
|
149 |
+
"step": 700
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.128,
|
153 |
+
"grad_norm": 0.047491393983364105,
|
154 |
+
"learning_rate": 4.851555555555556e-05,
|
155 |
+
"loss": 3.467,
|
156 |
+
"step": 800
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.128,
|
160 |
+
"eval_all-nli-dev_cosine_accuracy": 0.471,
|
161 |
+
"eval_all-nli-dev_dot_accuracy": 0.366,
|
162 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.471,
|
163 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.479,
|
164 |
+
"eval_all-nli-dev_max_accuracy": 0.479,
|
165 |
+
"eval_loss": 3.4308860301971436,
|
166 |
+
"eval_runtime": 7.8623,
|
167 |
+
"eval_samples_per_second": 127.188,
|
168 |
+
"eval_steps_per_second": 8.013,
|
169 |
+
"step": 800
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"epoch": 0.144,
|
173 |
+
"grad_norm": 0.05457993969321251,
|
174 |
+
"learning_rate": 4.762666666666667e-05,
|
175 |
+
"loss": 3.4665,
|
176 |
+
"step": 900
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.144,
|
180 |
+
"eval_all-nli-dev_cosine_accuracy": 0.452,
|
181 |
+
"eval_all-nli-dev_dot_accuracy": 0.342,
|
182 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.452,
|
183 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.446,
|
184 |
+
"eval_all-nli-dev_max_accuracy": 0.452,
|
185 |
+
"eval_loss": 3.4308860301971436,
|
186 |
+
"eval_runtime": 8.0107,
|
187 |
+
"eval_samples_per_second": 124.832,
|
188 |
+
"eval_steps_per_second": 7.864,
|
189 |
+
"step": 900
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.16,
|
193 |
+
"grad_norm": 0.03311806544661522,
|
194 |
+
"learning_rate": 4.673777777777778e-05,
|
195 |
+
"loss": 3.4664,
|
196 |
+
"step": 1000
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 0.16,
|
200 |
+
"eval_all-nli-dev_cosine_accuracy": 0.477,
|
201 |
+
"eval_all-nli-dev_dot_accuracy": 0.352,
|
202 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.477,
|
203 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.468,
|
204 |
+
"eval_all-nli-dev_max_accuracy": 0.477,
|
205 |
+
"eval_loss": 3.4308860301971436,
|
206 |
+
"eval_runtime": 7.9233,
|
207 |
+
"eval_samples_per_second": 126.21,
|
208 |
+
"eval_steps_per_second": 7.951,
|
209 |
+
"step": 1000
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 0.176,
|
213 |
+
"grad_norm": 0.02707391045987606,
|
214 |
+
"learning_rate": 4.584888888888889e-05,
|
215 |
+
"loss": 3.4663,
|
216 |
+
"step": 1100
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"epoch": 0.176,
|
220 |
+
"eval_all-nli-dev_cosine_accuracy": 0.458,
|
221 |
+
"eval_all-nli-dev_dot_accuracy": 0.376,
|
222 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.458,
|
223 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.452,
|
224 |
+
"eval_all-nli-dev_max_accuracy": 0.458,
|
225 |
+
"eval_loss": 3.4308860301971436,
|
226 |
+
"eval_runtime": 7.8521,
|
227 |
+
"eval_samples_per_second": 127.354,
|
228 |
+
"eval_steps_per_second": 8.023,
|
229 |
+
"step": 1100
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"epoch": 0.192,
|
233 |
+
"grad_norm": 0.030668186023831367,
|
234 |
+
"learning_rate": 4.496e-05,
|
235 |
+
"loss": 3.4661,
|
236 |
+
"step": 1200
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.192,
|
240 |
+
"eval_all-nli-dev_cosine_accuracy": 0.46,
|
241 |
+
"eval_all-nli-dev_dot_accuracy": 0.39,
|
242 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.46,
|
243 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.462,
|
244 |
+
"eval_all-nli-dev_max_accuracy": 0.462,
|
245 |
+
"eval_loss": 3.4308862686157227,
|
246 |
+
"eval_runtime": 8.0488,
|
247 |
+
"eval_samples_per_second": 124.243,
|
248 |
+
"eval_steps_per_second": 7.827,
|
249 |
+
"step": 1200
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.208,
|
253 |
+
"grad_norm": 0.04911087080836296,
|
254 |
+
"learning_rate": 4.4071111111111115e-05,
|
255 |
+
"loss": 3.4658,
|
256 |
+
"step": 1300
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 0.208,
|
260 |
+
"eval_all-nli-dev_cosine_accuracy": 0.441,
|
261 |
+
"eval_all-nli-dev_dot_accuracy": 0.338,
|
262 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.441,
|
263 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.45,
|
264 |
+
"eval_all-nli-dev_max_accuracy": 0.45,
|
265 |
+
"eval_loss": 3.4308857917785645,
|
266 |
+
"eval_runtime": 7.9015,
|
267 |
+
"eval_samples_per_second": 126.558,
|
268 |
+
"eval_steps_per_second": 7.973,
|
269 |
+
"step": 1300
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.224,
|
273 |
+
"grad_norm": 0.02693816088140011,
|
274 |
+
"learning_rate": 4.3182222222222226e-05,
|
275 |
+
"loss": 3.4661,
|
276 |
+
"step": 1400
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.224,
|
280 |
+
"eval_all-nli-dev_cosine_accuracy": 0.475,
|
281 |
+
"eval_all-nli-dev_dot_accuracy": 0.31,
|
282 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.475,
|
283 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.481,
|
284 |
+
"eval_all-nli-dev_max_accuracy": 0.481,
|
285 |
+
"eval_loss": 3.4308862686157227,
|
286 |
+
"eval_runtime": 7.9424,
|
287 |
+
"eval_samples_per_second": 125.906,
|
288 |
+
"eval_steps_per_second": 7.932,
|
289 |
+
"step": 1400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.24,
|
293 |
+
"grad_norm": 0.17906944453716278,
|
294 |
+
"learning_rate": 4.229333333333334e-05,
|
295 |
+
"loss": 3.4877,
|
296 |
+
"step": 1500
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.24,
|
300 |
+
"eval_all-nli-dev_cosine_accuracy": 0.464,
|
301 |
+
"eval_all-nli-dev_dot_accuracy": 0.358,
|
302 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.464,
|
303 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.458,
|
304 |
+
"eval_all-nli-dev_max_accuracy": 0.464,
|
305 |
+
"eval_loss": 3.4308860301971436,
|
306 |
+
"eval_runtime": 7.9335,
|
307 |
+
"eval_samples_per_second": 126.048,
|
308 |
+
"eval_steps_per_second": 7.941,
|
309 |
+
"step": 1500
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.256,
|
313 |
+
"grad_norm": 0.07473237067461014,
|
314 |
+
"learning_rate": 4.140444444444445e-05,
|
315 |
+
"loss": 3.4675,
|
316 |
+
"step": 1600
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 0.256,
|
320 |
+
"eval_all-nli-dev_cosine_accuracy": 0.462,
|
321 |
+
"eval_all-nli-dev_dot_accuracy": 0.347,
|
322 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.462,
|
323 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.457,
|
324 |
+
"eval_all-nli-dev_max_accuracy": 0.462,
|
325 |
+
"eval_loss": 3.4308860301971436,
|
326 |
+
"eval_runtime": 7.9155,
|
327 |
+
"eval_samples_per_second": 126.335,
|
328 |
+
"eval_steps_per_second": 7.959,
|
329 |
+
"step": 1600
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 0.272,
|
333 |
+
"grad_norm": 0.06472893804311752,
|
334 |
+
"learning_rate": 4.051555555555556e-05,
|
335 |
+
"loss": 3.4665,
|
336 |
+
"step": 1700
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"epoch": 0.272,
|
340 |
+
"eval_all-nli-dev_cosine_accuracy": 0.488,
|
341 |
+
"eval_all-nli-dev_dot_accuracy": 0.394,
|
342 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.488,
|
343 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.487,
|
344 |
+
"eval_all-nli-dev_max_accuracy": 0.488,
|
345 |
+
"eval_loss": 3.4308862686157227,
|
346 |
+
"eval_runtime": 7.7762,
|
347 |
+
"eval_samples_per_second": 128.597,
|
348 |
+
"eval_steps_per_second": 8.102,
|
349 |
+
"step": 1700
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"epoch": 0.288,
|
353 |
+
"grad_norm": 0.05817211791872978,
|
354 |
+
"learning_rate": 3.9626666666666664e-05,
|
355 |
+
"loss": 3.4667,
|
356 |
+
"step": 1800
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 0.288,
|
360 |
+
"eval_all-nli-dev_cosine_accuracy": 0.492,
|
361 |
+
"eval_all-nli-dev_dot_accuracy": 0.396,
|
362 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.492,
|
363 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.483,
|
364 |
+
"eval_all-nli-dev_max_accuracy": 0.492,
|
365 |
+
"eval_loss": 3.4308860301971436,
|
366 |
+
"eval_runtime": 7.8429,
|
367 |
+
"eval_samples_per_second": 127.504,
|
368 |
+
"eval_steps_per_second": 8.033,
|
369 |
+
"step": 1800
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.304,
|
373 |
+
"grad_norm": 0.06118469312787056,
|
374 |
+
"learning_rate": 3.8737777777777776e-05,
|
375 |
+
"loss": 3.4664,
|
376 |
+
"step": 1900
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 0.304,
|
380 |
+
"eval_all-nli-dev_cosine_accuracy": 0.452,
|
381 |
+
"eval_all-nli-dev_dot_accuracy": 0.377,
|
382 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.452,
|
383 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.455,
|
384 |
+
"eval_all-nli-dev_max_accuracy": 0.455,
|
385 |
+
"eval_loss": 3.4308860301971436,
|
386 |
+
"eval_runtime": 7.8193,
|
387 |
+
"eval_samples_per_second": 127.888,
|
388 |
+
"eval_steps_per_second": 8.057,
|
389 |
+
"step": 1900
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.32,
|
393 |
+
"grad_norm": 0.034288015216588974,
|
394 |
+
"learning_rate": 3.784888888888889e-05,
|
395 |
+
"loss": 3.4661,
|
396 |
+
"step": 2000
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 0.32,
|
400 |
+
"eval_all-nli-dev_cosine_accuracy": 0.446,
|
401 |
+
"eval_all-nli-dev_dot_accuracy": 0.35,
|
402 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.446,
|
403 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.453,
|
404 |
+
"eval_all-nli-dev_max_accuracy": 0.453,
|
405 |
+
"eval_loss": 3.4308860301971436,
|
406 |
+
"eval_runtime": 7.8176,
|
407 |
+
"eval_samples_per_second": 127.916,
|
408 |
+
"eval_steps_per_second": 8.059,
|
409 |
+
"step": 2000
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.336,
|
413 |
+
"grad_norm": 0.06111547723412514,
|
414 |
+
"learning_rate": 3.696e-05,
|
415 |
+
"loss": 3.4666,
|
416 |
+
"step": 2100
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.336,
|
420 |
+
"eval_all-nli-dev_cosine_accuracy": 0.469,
|
421 |
+
"eval_all-nli-dev_dot_accuracy": 0.39,
|
422 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.469,
|
423 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.477,
|
424 |
+
"eval_all-nli-dev_max_accuracy": 0.477,
|
425 |
+
"eval_loss": 3.4308862686157227,
|
426 |
+
"eval_runtime": 7.8728,
|
427 |
+
"eval_samples_per_second": 127.02,
|
428 |
+
"eval_steps_per_second": 8.002,
|
429 |
+
"step": 2100
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.352,
|
433 |
+
"grad_norm": 0.06624756008386612,
|
434 |
+
"learning_rate": 3.607111111111111e-05,
|
435 |
+
"loss": 3.4683,
|
436 |
+
"step": 2200
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.352,
|
440 |
+
"eval_all-nli-dev_cosine_accuracy": 0.478,
|
441 |
+
"eval_all-nli-dev_dot_accuracy": 0.338,
|
442 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.478,
|
443 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.48,
|
444 |
+
"eval_all-nli-dev_max_accuracy": 0.48,
|
445 |
+
"eval_loss": 3.4308860301971436,
|
446 |
+
"eval_runtime": 7.9247,
|
447 |
+
"eval_samples_per_second": 126.188,
|
448 |
+
"eval_steps_per_second": 7.95,
|
449 |
+
"step": 2200
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 0.368,
|
453 |
+
"grad_norm": 0.031209247186779976,
|
454 |
+
"learning_rate": 3.518222222222222e-05,
|
455 |
+
"loss": 3.4663,
|
456 |
+
"step": 2300
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"epoch": 0.368,
|
460 |
+
"eval_all-nli-dev_cosine_accuracy": 0.469,
|
461 |
+
"eval_all-nli-dev_dot_accuracy": 0.312,
|
462 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.469,
|
463 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.464,
|
464 |
+
"eval_all-nli-dev_max_accuracy": 0.469,
|
465 |
+
"eval_loss": 3.4308860301971436,
|
466 |
+
"eval_runtime": 7.8393,
|
467 |
+
"eval_samples_per_second": 127.562,
|
468 |
+
"eval_steps_per_second": 8.036,
|
469 |
+
"step": 2300
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"epoch": 0.384,
|
473 |
+
"grad_norm": 0.133990079164505,
|
474 |
+
"learning_rate": 3.429333333333333e-05,
|
475 |
+
"loss": 3.4667,
|
476 |
+
"step": 2400
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 0.384,
|
480 |
+
"eval_all-nli-dev_cosine_accuracy": 0.448,
|
481 |
+
"eval_all-nli-dev_dot_accuracy": 0.404,
|
482 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.448,
|
483 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.445,
|
484 |
+
"eval_all-nli-dev_max_accuracy": 0.448,
|
485 |
+
"eval_loss": 3.4308860301971436,
|
486 |
+
"eval_runtime": 8.021,
|
487 |
+
"eval_samples_per_second": 124.672,
|
488 |
+
"eval_steps_per_second": 7.854,
|
489 |
+
"step": 2400
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.4,
|
493 |
+
"grad_norm": 0.04892706498503685,
|
494 |
+
"learning_rate": 3.3404444444444444e-05,
|
495 |
+
"loss": 3.4669,
|
496 |
+
"step": 2500
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 0.4,
|
500 |
+
"eval_all-nli-dev_cosine_accuracy": 0.499,
|
501 |
+
"eval_all-nli-dev_dot_accuracy": 0.365,
|
502 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.499,
|
503 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.492,
|
504 |
+
"eval_all-nli-dev_max_accuracy": 0.499,
|
505 |
+
"eval_loss": 3.4308862686157227,
|
506 |
+
"eval_runtime": 7.8451,
|
507 |
+
"eval_samples_per_second": 127.468,
|
508 |
+
"eval_steps_per_second": 8.03,
|
509 |
+
"step": 2500
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 0.416,
|
513 |
+
"grad_norm": 0.053150493651628494,
|
514 |
+
"learning_rate": 3.2515555555555555e-05,
|
515 |
+
"loss": 3.4661,
|
516 |
+
"step": 2600
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"epoch": 0.416,
|
520 |
+
"eval_all-nli-dev_cosine_accuracy": 0.453,
|
521 |
+
"eval_all-nli-dev_dot_accuracy": 0.349,
|
522 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.453,
|
523 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.45,
|
524 |
+
"eval_all-nli-dev_max_accuracy": 0.453,
|
525 |
+
"eval_loss": 3.4308860301971436,
|
526 |
+
"eval_runtime": 7.9334,
|
527 |
+
"eval_samples_per_second": 126.05,
|
528 |
+
"eval_steps_per_second": 7.941,
|
529 |
+
"step": 2600
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 0.432,
|
533 |
+
"grad_norm": 0.09555792808532715,
|
534 |
+
"learning_rate": 3.1626666666666667e-05,
|
535 |
+
"loss": 3.4656,
|
536 |
+
"step": 2700
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.432,
|
540 |
+
"eval_all-nli-dev_cosine_accuracy": 0.466,
|
541 |
+
"eval_all-nli-dev_dot_accuracy": 0.336,
|
542 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.466,
|
543 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.467,
|
544 |
+
"eval_all-nli-dev_max_accuracy": 0.467,
|
545 |
+
"eval_loss": 3.4308860301971436,
|
546 |
+
"eval_runtime": 7.8562,
|
547 |
+
"eval_samples_per_second": 127.287,
|
548 |
+
"eval_steps_per_second": 8.019,
|
549 |
+
"step": 2700
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.448,
|
553 |
+
"grad_norm": 0.01744948886334896,
|
554 |
+
"learning_rate": 3.0737777777777785e-05,
|
555 |
+
"loss": 3.4662,
|
556 |
+
"step": 2800
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.448,
|
560 |
+
"eval_all-nli-dev_cosine_accuracy": 0.506,
|
561 |
+
"eval_all-nli-dev_dot_accuracy": 0.4,
|
562 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.506,
|
563 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.507,
|
564 |
+
"eval_all-nli-dev_max_accuracy": 0.507,
|
565 |
+
"eval_loss": 3.4308860301971436,
|
566 |
+
"eval_runtime": 7.8617,
|
567 |
+
"eval_samples_per_second": 127.199,
|
568 |
+
"eval_steps_per_second": 8.014,
|
569 |
+
"step": 2800
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.464,
|
573 |
+
"grad_norm": 0.2527749538421631,
|
574 |
+
"learning_rate": 2.986666666666667e-05,
|
575 |
+
"loss": 3.4902,
|
576 |
+
"step": 2900
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.464,
|
580 |
+
"eval_all-nli-dev_cosine_accuracy": 0.463,
|
581 |
+
"eval_all-nli-dev_dot_accuracy": 0.338,
|
582 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.463,
|
583 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.473,
|
584 |
+
"eval_all-nli-dev_max_accuracy": 0.473,
|
585 |
+
"eval_loss": 3.4308860301971436,
|
586 |
+
"eval_runtime": 7.8074,
|
587 |
+
"eval_samples_per_second": 128.083,
|
588 |
+
"eval_steps_per_second": 8.069,
|
589 |
+
"step": 2900
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"epoch": 0.48,
|
593 |
+
"grad_norm": 0.02826513536274433,
|
594 |
+
"learning_rate": 2.897777777777778e-05,
|
595 |
+
"loss": 3.4663,
|
596 |
+
"step": 3000
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 0.48,
|
600 |
+
"eval_all-nli-dev_cosine_accuracy": 0.454,
|
601 |
+
"eval_all-nli-dev_dot_accuracy": 0.338,
|
602 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.454,
|
603 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.469,
|
604 |
+
"eval_all-nli-dev_max_accuracy": 0.469,
|
605 |
+
"eval_loss": 3.4308860301971436,
|
606 |
+
"eval_runtime": 7.8421,
|
607 |
+
"eval_samples_per_second": 127.516,
|
608 |
+
"eval_steps_per_second": 8.034,
|
609 |
+
"step": 3000
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.496,
|
613 |
+
"grad_norm": 0.07985329627990723,
|
614 |
+
"learning_rate": 2.8088888888888893e-05,
|
615 |
+
"loss": 3.554,
|
616 |
+
"step": 3100
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 0.496,
|
620 |
+
"eval_all-nli-dev_cosine_accuracy": 0.456,
|
621 |
+
"eval_all-nli-dev_dot_accuracy": 0.359,
|
622 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.456,
|
623 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.46,
|
624 |
+
"eval_all-nli-dev_max_accuracy": 0.46,
|
625 |
+
"eval_loss": 3.4308860301971436,
|
626 |
+
"eval_runtime": 7.8756,
|
627 |
+
"eval_samples_per_second": 126.975,
|
628 |
+
"eval_steps_per_second": 7.999,
|
629 |
+
"step": 3100
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"epoch": 0.512,
|
633 |
+
"grad_norm": 0.1259102076292038,
|
634 |
+
"learning_rate": 2.7200000000000004e-05,
|
635 |
+
"loss": 3.4664,
|
636 |
+
"step": 3200
|
637 |
+
},
|
638 |
+
{
|
639 |
+
"epoch": 0.512,
|
640 |
+
"eval_all-nli-dev_cosine_accuracy": 0.455,
|
641 |
+
"eval_all-nli-dev_dot_accuracy": 0.257,
|
642 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.455,
|
643 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.454,
|
644 |
+
"eval_all-nli-dev_max_accuracy": 0.455,
|
645 |
+
"eval_loss": 3.4308860301971436,
|
646 |
+
"eval_runtime": 7.9019,
|
647 |
+
"eval_samples_per_second": 126.552,
|
648 |
+
"eval_steps_per_second": 7.973,
|
649 |
+
"step": 3200
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 0.528,
|
653 |
+
"grad_norm": 0.06493524461984634,
|
654 |
+
"learning_rate": 2.6311111111111115e-05,
|
655 |
+
"loss": 3.4668,
|
656 |
+
"step": 3300
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.528,
|
660 |
+
"eval_all-nli-dev_cosine_accuracy": 0.448,
|
661 |
+
"eval_all-nli-dev_dot_accuracy": 0.383,
|
662 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.448,
|
663 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.46,
|
664 |
+
"eval_all-nli-dev_max_accuracy": 0.46,
|
665 |
+
"eval_loss": 3.4308860301971436,
|
666 |
+
"eval_runtime": 7.9333,
|
667 |
+
"eval_samples_per_second": 126.051,
|
668 |
+
"eval_steps_per_second": 7.941,
|
669 |
+
"step": 3300
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.544,
|
673 |
+
"grad_norm": 0.0680716335773468,
|
674 |
+
"learning_rate": 2.5422222222222227e-05,
|
675 |
+
"loss": 3.4661,
|
676 |
+
"step": 3400
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 0.544,
|
680 |
+
"eval_all-nli-dev_cosine_accuracy": 0.492,
|
681 |
+
"eval_all-nli-dev_dot_accuracy": 0.407,
|
682 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.492,
|
683 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.481,
|
684 |
+
"eval_all-nli-dev_max_accuracy": 0.492,
|
685 |
+
"eval_loss": 3.4308860301971436,
|
686 |
+
"eval_runtime": 7.9192,
|
687 |
+
"eval_samples_per_second": 126.276,
|
688 |
+
"eval_steps_per_second": 7.955,
|
689 |
+
"step": 3400
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.56,
|
693 |
+
"grad_norm": 0.04947361350059509,
|
694 |
+
"learning_rate": 2.4533333333333334e-05,
|
695 |
+
"loss": 3.4667,
|
696 |
+
"step": 3500
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 0.56,
|
700 |
+
"eval_all-nli-dev_cosine_accuracy": 0.432,
|
701 |
+
"eval_all-nli-dev_dot_accuracy": 0.391,
|
702 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.432,
|
703 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.427,
|
704 |
+
"eval_all-nli-dev_max_accuracy": 0.432,
|
705 |
+
"eval_loss": 3.4308857917785645,
|
706 |
+
"eval_runtime": 7.8702,
|
707 |
+
"eval_samples_per_second": 127.061,
|
708 |
+
"eval_steps_per_second": 8.005,
|
709 |
+
"step": 3500
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.576,
|
713 |
+
"grad_norm": 0.07287462800741196,
|
714 |
+
"learning_rate": 2.3644444444444446e-05,
|
715 |
+
"loss": 3.4668,
|
716 |
+
"step": 3600
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.576,
|
720 |
+
"eval_all-nli-dev_cosine_accuracy": 0.482,
|
721 |
+
"eval_all-nli-dev_dot_accuracy": 0.374,
|
722 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.482,
|
723 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.486,
|
724 |
+
"eval_all-nli-dev_max_accuracy": 0.486,
|
725 |
+
"eval_loss": 3.4308860301971436,
|
726 |
+
"eval_runtime": 7.8562,
|
727 |
+
"eval_samples_per_second": 127.288,
|
728 |
+
"eval_steps_per_second": 8.019,
|
729 |
+
"step": 3600
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.592,
|
733 |
+
"grad_norm": 0.028324555605649948,
|
734 |
+
"learning_rate": 2.2755555555555557e-05,
|
735 |
+
"loss": 3.4666,
|
736 |
+
"step": 3700
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 0.592,
|
740 |
+
"eval_all-nli-dev_cosine_accuracy": 0.469,
|
741 |
+
"eval_all-nli-dev_dot_accuracy": 0.351,
|
742 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.469,
|
743 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.46,
|
744 |
+
"eval_all-nli-dev_max_accuracy": 0.469,
|
745 |
+
"eval_loss": 3.4308865070343018,
|
746 |
+
"eval_runtime": 7.879,
|
747 |
+
"eval_samples_per_second": 126.919,
|
748 |
+
"eval_steps_per_second": 7.996,
|
749 |
+
"step": 3700
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"epoch": 0.608,
|
753 |
+
"grad_norm": 0.04251887649297714,
|
754 |
+
"learning_rate": 2.186666666666667e-05,
|
755 |
+
"loss": 3.4669,
|
756 |
+
"step": 3800
|
757 |
+
},
|
758 |
+
{
|
759 |
+
"epoch": 0.608,
|
760 |
+
"eval_all-nli-dev_cosine_accuracy": 0.473,
|
761 |
+
"eval_all-nli-dev_dot_accuracy": 0.369,
|
762 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.473,
|
763 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.467,
|
764 |
+
"eval_all-nli-dev_max_accuracy": 0.473,
|
765 |
+
"eval_loss": 3.4308860301971436,
|
766 |
+
"eval_runtime": 7.9346,
|
767 |
+
"eval_samples_per_second": 126.031,
|
768 |
+
"eval_steps_per_second": 7.94,
|
769 |
+
"step": 3800
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"epoch": 0.624,
|
773 |
+
"grad_norm": 0.01685403846204281,
|
774 |
+
"learning_rate": 2.097777777777778e-05,
|
775 |
+
"loss": 3.4658,
|
776 |
+
"step": 3900
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 0.624,
|
780 |
+
"eval_all-nli-dev_cosine_accuracy": 0.487,
|
781 |
+
"eval_all-nli-dev_dot_accuracy": 0.333,
|
782 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.487,
|
783 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.486,
|
784 |
+
"eval_all-nli-dev_max_accuracy": 0.487,
|
785 |
+
"eval_loss": 3.4308860301971436,
|
786 |
+
"eval_runtime": 8.0469,
|
787 |
+
"eval_samples_per_second": 124.272,
|
788 |
+
"eval_steps_per_second": 7.829,
|
789 |
+
"step": 3900
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.64,
|
793 |
+
"grad_norm": 0.16402187943458557,
|
794 |
+
"learning_rate": 2.008888888888889e-05,
|
795 |
+
"loss": 3.4663,
|
796 |
+
"step": 4000
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 0.64,
|
800 |
+
"eval_all-nli-dev_cosine_accuracy": 0.448,
|
801 |
+
"eval_all-nli-dev_dot_accuracy": 0.355,
|
802 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.448,
|
803 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.442,
|
804 |
+
"eval_all-nli-dev_max_accuracy": 0.448,
|
805 |
+
"eval_loss": 3.4308860301971436,
|
806 |
+
"eval_runtime": 7.9755,
|
807 |
+
"eval_samples_per_second": 125.384,
|
808 |
+
"eval_steps_per_second": 7.899,
|
809 |
+
"step": 4000
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 0.656,
|
813 |
+
"grad_norm": 0.08633382618427277,
|
814 |
+
"learning_rate": 1.9200000000000003e-05,
|
815 |
+
"loss": 3.4663,
|
816 |
+
"step": 4100
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"epoch": 0.656,
|
820 |
+
"eval_all-nli-dev_cosine_accuracy": 0.463,
|
821 |
+
"eval_all-nli-dev_dot_accuracy": 0.3,
|
822 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.463,
|
823 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.465,
|
824 |
+
"eval_all-nli-dev_max_accuracy": 0.465,
|
825 |
+
"eval_loss": 3.4308860301971436,
|
826 |
+
"eval_runtime": 7.9722,
|
827 |
+
"eval_samples_per_second": 125.436,
|
828 |
+
"eval_steps_per_second": 7.902,
|
829 |
+
"step": 4100
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 0.672,
|
833 |
+
"grad_norm": 0.08357453346252441,
|
834 |
+
"learning_rate": 1.8311111111111114e-05,
|
835 |
+
"loss": 3.4664,
|
836 |
+
"step": 4200
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.672,
|
840 |
+
"eval_all-nli-dev_cosine_accuracy": 0.48,
|
841 |
+
"eval_all-nli-dev_dot_accuracy": 0.343,
|
842 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.48,
|
843 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.484,
|
844 |
+
"eval_all-nli-dev_max_accuracy": 0.484,
|
845 |
+
"eval_loss": 3.4308860301971436,
|
846 |
+
"eval_runtime": 7.9287,
|
847 |
+
"eval_samples_per_second": 126.125,
|
848 |
+
"eval_steps_per_second": 7.946,
|
849 |
+
"step": 4200
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.688,
|
853 |
+
"grad_norm": 0.20162004232406616,
|
854 |
+
"learning_rate": 1.7422222222222222e-05,
|
855 |
+
"loss": 3.4663,
|
856 |
+
"step": 4300
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.688,
|
860 |
+
"eval_all-nli-dev_cosine_accuracy": 0.451,
|
861 |
+
"eval_all-nli-dev_dot_accuracy": 0.354,
|
862 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.451,
|
863 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.469,
|
864 |
+
"eval_all-nli-dev_max_accuracy": 0.469,
|
865 |
+
"eval_loss": 3.4308860301971436,
|
866 |
+
"eval_runtime": 7.9242,
|
867 |
+
"eval_samples_per_second": 126.195,
|
868 |
+
"eval_steps_per_second": 7.95,
|
869 |
+
"step": 4300
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"epoch": 0.704,
|
873 |
+
"grad_norm": 0.17491748929023743,
|
874 |
+
"learning_rate": 1.6533333333333333e-05,
|
875 |
+
"loss": 3.4661,
|
876 |
+
"step": 4400
|
877 |
+
},
|
878 |
+
{
|
879 |
+
"epoch": 0.704,
|
880 |
+
"eval_all-nli-dev_cosine_accuracy": 0.47,
|
881 |
+
"eval_all-nli-dev_dot_accuracy": 0.367,
|
882 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.47,
|
883 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.478,
|
884 |
+
"eval_all-nli-dev_max_accuracy": 0.478,
|
885 |
+
"eval_loss": 3.4308862686157227,
|
886 |
+
"eval_runtime": 7.989,
|
887 |
+
"eval_samples_per_second": 125.172,
|
888 |
+
"eval_steps_per_second": 7.886,
|
889 |
+
"step": 4400
|
890 |
+
},
|
891 |
+
{
|
892 |
+
"epoch": 0.72,
|
893 |
+
"grad_norm": 0.1597195565700531,
|
894 |
+
"learning_rate": 1.5644444444444444e-05,
|
895 |
+
"loss": 3.4669,
|
896 |
+
"step": 4500
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 0.72,
|
900 |
+
"eval_all-nli-dev_cosine_accuracy": 0.466,
|
901 |
+
"eval_all-nli-dev_dot_accuracy": 0.375,
|
902 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.466,
|
903 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.467,
|
904 |
+
"eval_all-nli-dev_max_accuracy": 0.467,
|
905 |
+
"eval_loss": 3.4308860301971436,
|
906 |
+
"eval_runtime": 7.9327,
|
907 |
+
"eval_samples_per_second": 126.06,
|
908 |
+
"eval_steps_per_second": 7.942,
|
909 |
+
"step": 4500
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 0.736,
|
913 |
+
"grad_norm": 0.08718598634004593,
|
914 |
+
"learning_rate": 1.4755555555555556e-05,
|
915 |
+
"loss": 3.4664,
|
916 |
+
"step": 4600
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"epoch": 0.736,
|
920 |
+
"eval_all-nli-dev_cosine_accuracy": 0.44,
|
921 |
+
"eval_all-nli-dev_dot_accuracy": 0.307,
|
922 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.44,
|
923 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.455,
|
924 |
+
"eval_all-nli-dev_max_accuracy": 0.455,
|
925 |
+
"eval_loss": 3.4308862686157227,
|
926 |
+
"eval_runtime": 7.9594,
|
927 |
+
"eval_samples_per_second": 125.637,
|
928 |
+
"eval_steps_per_second": 7.915,
|
929 |
+
"step": 4600
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 0.752,
|
933 |
+
"grad_norm": 0.03150181472301483,
|
934 |
+
"learning_rate": 1.3866666666666667e-05,
|
935 |
+
"loss": 3.4664,
|
936 |
+
"step": 4700
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"epoch": 0.752,
|
940 |
+
"eval_all-nli-dev_cosine_accuracy": 0.469,
|
941 |
+
"eval_all-nli-dev_dot_accuracy": 0.336,
|
942 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.469,
|
943 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.481,
|
944 |
+
"eval_all-nli-dev_max_accuracy": 0.481,
|
945 |
+
"eval_loss": 3.4308860301971436,
|
946 |
+
"eval_runtime": 7.9652,
|
947 |
+
"eval_samples_per_second": 125.546,
|
948 |
+
"eval_steps_per_second": 7.909,
|
949 |
+
"step": 4700
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"epoch": 0.768,
|
953 |
+
"grad_norm": 0.027570225298404694,
|
954 |
+
"learning_rate": 1.2977777777777777e-05,
|
955 |
+
"loss": 3.4659,
|
956 |
+
"step": 4800
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 0.768,
|
960 |
+
"eval_all-nli-dev_cosine_accuracy": 0.461,
|
961 |
+
"eval_all-nli-dev_dot_accuracy": 0.282,
|
962 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.461,
|
963 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.466,
|
964 |
+
"eval_all-nli-dev_max_accuracy": 0.466,
|
965 |
+
"eval_loss": 3.4308862686157227,
|
966 |
+
"eval_runtime": 8.0206,
|
967 |
+
"eval_samples_per_second": 124.678,
|
968 |
+
"eval_steps_per_second": 7.855,
|
969 |
+
"step": 4800
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.784,
|
973 |
+
"grad_norm": 0.16807572543621063,
|
974 |
+
"learning_rate": 1.208888888888889e-05,
|
975 |
+
"loss": 3.466,
|
976 |
+
"step": 4900
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 0.784,
|
980 |
+
"eval_all-nli-dev_cosine_accuracy": 0.45,
|
981 |
+
"eval_all-nli-dev_dot_accuracy": 0.375,
|
982 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.45,
|
983 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.451,
|
984 |
+
"eval_all-nli-dev_max_accuracy": 0.451,
|
985 |
+
"eval_loss": 3.4308860301971436,
|
986 |
+
"eval_runtime": 7.9772,
|
987 |
+
"eval_samples_per_second": 125.358,
|
988 |
+
"eval_steps_per_second": 7.898,
|
989 |
+
"step": 4900
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.8,
|
993 |
+
"grad_norm": 0.03361041471362114,
|
994 |
+
"learning_rate": 1.1200000000000001e-05,
|
995 |
+
"loss": 3.466,
|
996 |
+
"step": 5000
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.8,
|
1000 |
+
"eval_all-nli-dev_cosine_accuracy": 0.464,
|
1001 |
+
"eval_all-nli-dev_dot_accuracy": 0.374,
|
1002 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.464,
|
1003 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.473,
|
1004 |
+
"eval_all-nli-dev_max_accuracy": 0.473,
|
1005 |
+
"eval_loss": 3.4308860301971436,
|
1006 |
+
"eval_runtime": 7.9287,
|
1007 |
+
"eval_samples_per_second": 126.123,
|
1008 |
+
"eval_steps_per_second": 7.946,
|
1009 |
+
"step": 5000
|
1010 |
+
},
|
1011 |
+
{
|
1012 |
+
"epoch": 0.816,
|
1013 |
+
"grad_norm": 0.1332545429468155,
|
1014 |
+
"learning_rate": 1.031111111111111e-05,
|
1015 |
+
"loss": 3.4664,
|
1016 |
+
"step": 5100
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 0.816,
|
1020 |
+
"eval_all-nli-dev_cosine_accuracy": 0.44,
|
1021 |
+
"eval_all-nli-dev_dot_accuracy": 0.341,
|
1022 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.44,
|
1023 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.44,
|
1024 |
+
"eval_all-nli-dev_max_accuracy": 0.44,
|
1025 |
+
"eval_loss": 3.4308860301971436,
|
1026 |
+
"eval_runtime": 7.9414,
|
1027 |
+
"eval_samples_per_second": 125.922,
|
1028 |
+
"eval_steps_per_second": 7.933,
|
1029 |
+
"step": 5100
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 0.832,
|
1033 |
+
"grad_norm": 0.029825175181031227,
|
1034 |
+
"learning_rate": 9.422222222222222e-06,
|
1035 |
+
"loss": 3.4658,
|
1036 |
+
"step": 5200
|
1037 |
+
},
|
1038 |
+
{
|
1039 |
+
"epoch": 0.832,
|
1040 |
+
"eval_all-nli-dev_cosine_accuracy": 0.496,
|
1041 |
+
"eval_all-nli-dev_dot_accuracy": 0.356,
|
1042 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.496,
|
1043 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.497,
|
1044 |
+
"eval_all-nli-dev_max_accuracy": 0.497,
|
1045 |
+
"eval_loss": 3.4308860301971436,
|
1046 |
+
"eval_runtime": 7.9321,
|
1047 |
+
"eval_samples_per_second": 126.07,
|
1048 |
+
"eval_steps_per_second": 7.942,
|
1049 |
+
"step": 5200
|
1050 |
+
},
|
1051 |
+
{
|
1052 |
+
"epoch": 0.848,
|
1053 |
+
"grad_norm": 0.023120058700442314,
|
1054 |
+
"learning_rate": 8.533333333333334e-06,
|
1055 |
+
"loss": 3.4664,
|
1056 |
+
"step": 5300
|
1057 |
+
},
|
1058 |
+
{
|
1059 |
+
"epoch": 0.848,
|
1060 |
+
"eval_all-nli-dev_cosine_accuracy": 0.464,
|
1061 |
+
"eval_all-nli-dev_dot_accuracy": 0.321,
|
1062 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.464,
|
1063 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.474,
|
1064 |
+
"eval_all-nli-dev_max_accuracy": 0.474,
|
1065 |
+
"eval_loss": 3.4308860301971436,
|
1066 |
+
"eval_runtime": 7.9178,
|
1067 |
+
"eval_samples_per_second": 126.297,
|
1068 |
+
"eval_steps_per_second": 7.957,
|
1069 |
+
"step": 5300
|
1070 |
+
},
|
1071 |
+
{
|
1072 |
+
"epoch": 0.864,
|
1073 |
+
"grad_norm": 0.10328388214111328,
|
1074 |
+
"learning_rate": 7.644444444444445e-06,
|
1075 |
+
"loss": 3.4658,
|
1076 |
+
"step": 5400
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 0.864,
|
1080 |
+
"eval_all-nli-dev_cosine_accuracy": 0.446,
|
1081 |
+
"eval_all-nli-dev_dot_accuracy": 0.309,
|
1082 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.446,
|
1083 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.449,
|
1084 |
+
"eval_all-nli-dev_max_accuracy": 0.449,
|
1085 |
+
"eval_loss": 3.4308860301971436,
|
1086 |
+
"eval_runtime": 8.0066,
|
1087 |
+
"eval_samples_per_second": 124.897,
|
1088 |
+
"eval_steps_per_second": 7.869,
|
1089 |
+
"step": 5400
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.88,
|
1093 |
+
"grad_norm": 0.03729160130023956,
|
1094 |
+
"learning_rate": 6.755555555555555e-06,
|
1095 |
+
"loss": 3.4662,
|
1096 |
+
"step": 5500
|
1097 |
+
},
|
1098 |
+
{
|
1099 |
+
"epoch": 0.88,
|
1100 |
+
"eval_all-nli-dev_cosine_accuracy": 0.466,
|
1101 |
+
"eval_all-nli-dev_dot_accuracy": 0.311,
|
1102 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.466,
|
1103 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.464,
|
1104 |
+
"eval_all-nli-dev_max_accuracy": 0.466,
|
1105 |
+
"eval_loss": 3.4308860301971436,
|
1106 |
+
"eval_runtime": 7.964,
|
1107 |
+
"eval_samples_per_second": 125.565,
|
1108 |
+
"eval_steps_per_second": 7.911,
|
1109 |
+
"step": 5500
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"epoch": 0.896,
|
1113 |
+
"grad_norm": 0.02747642807662487,
|
1114 |
+
"learning_rate": 5.866666666666667e-06,
|
1115 |
+
"loss": 3.4663,
|
1116 |
+
"step": 5600
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 0.896,
|
1120 |
+
"eval_all-nli-dev_cosine_accuracy": 0.476,
|
1121 |
+
"eval_all-nli-dev_dot_accuracy": 0.369,
|
1122 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.476,
|
1123 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.468,
|
1124 |
+
"eval_all-nli-dev_max_accuracy": 0.476,
|
1125 |
+
"eval_loss": 3.4308860301971436,
|
1126 |
+
"eval_runtime": 7.9426,
|
1127 |
+
"eval_samples_per_second": 125.903,
|
1128 |
+
"eval_steps_per_second": 7.932,
|
1129 |
+
"step": 5600
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.912,
|
1133 |
+
"grad_norm": 0.053027376532554626,
|
1134 |
+
"learning_rate": 4.977777777777778e-06,
|
1135 |
+
"loss": 3.4667,
|
1136 |
+
"step": 5700
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.912,
|
1140 |
+
"eval_all-nli-dev_cosine_accuracy": 0.455,
|
1141 |
+
"eval_all-nli-dev_dot_accuracy": 0.369,
|
1142 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.455,
|
1143 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.454,
|
1144 |
+
"eval_all-nli-dev_max_accuracy": 0.455,
|
1145 |
+
"eval_loss": 3.4308860301971436,
|
1146 |
+
"eval_runtime": 7.9874,
|
1147 |
+
"eval_samples_per_second": 125.197,
|
1148 |
+
"eval_steps_per_second": 7.887,
|
1149 |
+
"step": 5700
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 0.928,
|
1153 |
+
"grad_norm": 0.02996170148253441,
|
1154 |
+
"learning_rate": 4.088888888888889e-06,
|
1155 |
+
"loss": 3.4669,
|
1156 |
+
"step": 5800
|
1157 |
+
},
|
1158 |
+
{
|
1159 |
+
"epoch": 0.928,
|
1160 |
+
"eval_all-nli-dev_cosine_accuracy": 0.456,
|
1161 |
+
"eval_all-nli-dev_dot_accuracy": 0.229,
|
1162 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.456,
|
1163 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.463,
|
1164 |
+
"eval_all-nli-dev_max_accuracy": 0.463,
|
1165 |
+
"eval_loss": 3.4308860301971436,
|
1166 |
+
"eval_runtime": 7.9568,
|
1167 |
+
"eval_samples_per_second": 125.679,
|
1168 |
+
"eval_steps_per_second": 7.918,
|
1169 |
+
"step": 5800
|
1170 |
+
},
|
1171 |
+
{
|
1172 |
+
"epoch": 0.944,
|
1173 |
+
"grad_norm": 0.05124541372060776,
|
1174 |
+
"learning_rate": 3.2000000000000003e-06,
|
1175 |
+
"loss": 3.4657,
|
1176 |
+
"step": 5900
|
1177 |
+
},
|
1178 |
+
{
|
1179 |
+
"epoch": 0.944,
|
1180 |
+
"eval_all-nli-dev_cosine_accuracy": 0.466,
|
1181 |
+
"eval_all-nli-dev_dot_accuracy": 0.388,
|
1182 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.467,
|
1183 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.464,
|
1184 |
+
"eval_all-nli-dev_max_accuracy": 0.467,
|
1185 |
+
"eval_loss": 3.4308862686157227,
|
1186 |
+
"eval_runtime": 7.9623,
|
1187 |
+
"eval_samples_per_second": 125.591,
|
1188 |
+
"eval_steps_per_second": 7.912,
|
1189 |
+
"step": 5900
|
1190 |
+
},
|
1191 |
+
{
|
1192 |
+
"epoch": 0.96,
|
1193 |
+
"grad_norm": 0.06664357334375381,
|
1194 |
+
"learning_rate": 2.311111111111111e-06,
|
1195 |
+
"loss": 3.4671,
|
1196 |
+
"step": 6000
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 0.96,
|
1200 |
+
"eval_all-nli-dev_cosine_accuracy": 0.452,
|
1201 |
+
"eval_all-nli-dev_dot_accuracy": 0.33,
|
1202 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.452,
|
1203 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.456,
|
1204 |
+
"eval_all-nli-dev_max_accuracy": 0.456,
|
1205 |
+
"eval_loss": 3.4308862686157227,
|
1206 |
+
"eval_runtime": 7.9667,
|
1207 |
+
"eval_samples_per_second": 125.523,
|
1208 |
+
"eval_steps_per_second": 7.908,
|
1209 |
+
"step": 6000
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.976,
|
1213 |
+
"grad_norm": 0.18055689334869385,
|
1214 |
+
"learning_rate": 1.4222222222222223e-06,
|
1215 |
+
"loss": 2.9471,
|
1216 |
+
"step": 6100
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 0.976,
|
1220 |
+
"eval_all-nli-dev_cosine_accuracy": 0.479,
|
1221 |
+
"eval_all-nli-dev_dot_accuracy": 0.378,
|
1222 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.479,
|
1223 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.484,
|
1224 |
+
"eval_all-nli-dev_max_accuracy": 0.484,
|
1225 |
+
"eval_loss": 3.4308860301971436,
|
1226 |
+
"eval_runtime": 7.9406,
|
1227 |
+
"eval_samples_per_second": 125.936,
|
1228 |
+
"eval_steps_per_second": 7.934,
|
1229 |
+
"step": 6100
|
1230 |
+
}
|
1231 |
+
],
|
1232 |
+
"logging_steps": 100,
|
1233 |
+
"max_steps": 6250,
|
1234 |
+
"num_input_tokens_seen": 0,
|
1235 |
+
"num_train_epochs": 1,
|
1236 |
+
"save_steps": 100,
|
1237 |
+
"stateful_callbacks": {
|
1238 |
+
"TrainerControl": {
|
1239 |
+
"args": {
|
1240 |
+
"should_epoch_stop": false,
|
1241 |
+
"should_evaluate": false,
|
1242 |
+
"should_log": false,
|
1243 |
+
"should_save": true,
|
1244 |
+
"should_training_stop": false
|
1245 |
+
},
|
1246 |
+
"attributes": {}
|
1247 |
+
}
|
1248 |
+
},
|
1249 |
+
"total_flos": 0.0,
|
1250 |
+
"train_batch_size": 16,
|
1251 |
+
"trial_name": null,
|
1252 |
+
"trial_params": null
|
1253 |
+
}
|
checkpoint-6100/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e69823ce181dc26bc2db3e2da63ac6c5f79ba1c1c3395abb62624ff8fc42611
|
3 |
+
size 5432
|
checkpoint-6200/1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
checkpoint-6200/README.md
ADDED
@@ -0,0 +1,489 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
library_name: sentence-transformers
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- dataset_size:100K<n<1M
|
10 |
+
- loss:MultipleNegativesRankingLoss
|
11 |
+
base_model: FacebookAI/xlm-roberta-large
|
12 |
+
metrics:
|
13 |
+
- cosine_accuracy
|
14 |
+
- dot_accuracy
|
15 |
+
- manhattan_accuracy
|
16 |
+
- euclidean_accuracy
|
17 |
+
- max_accuracy
|
18 |
+
widget:
|
19 |
+
- source_sentence: The boy scowls
|
20 |
+
sentences:
|
21 |
+
- Women are rollerblading.
|
22 |
+
- Boy playing baseball.
|
23 |
+
- The girls are watching tv
|
24 |
+
- source_sentence: an eagle flies
|
25 |
+
sentences:
|
26 |
+
- A man brushes his teeth.
|
27 |
+
- He is playing a song.
|
28 |
+
- the baby is eating
|
29 |
+
- source_sentence: A woman sings.
|
30 |
+
sentences:
|
31 |
+
- A man is with an animal.
|
32 |
+
- the animal is running
|
33 |
+
- There is a crowd
|
34 |
+
- source_sentence: A bird flying.
|
35 |
+
sentences:
|
36 |
+
- A boy makes a mud pie.
|
37 |
+
- A man is on his feet.
|
38 |
+
- The boy is sitting
|
39 |
+
- source_sentence: There's a dock
|
40 |
+
sentences:
|
41 |
+
- The girls eat the paper
|
42 |
+
- Five people on a path
|
43 |
+
- A boy is blowing bubbles.
|
44 |
+
pipeline_tag: sentence-similarity
|
45 |
+
model-index:
|
46 |
+
- name: SentenceTransformer based on FacebookAI/xlm-roberta-large
|
47 |
+
results:
|
48 |
+
- task:
|
49 |
+
type: triplet
|
50 |
+
name: Triplet
|
51 |
+
dataset:
|
52 |
+
name: all nli dev
|
53 |
+
type: all-nli-dev
|
54 |
+
metrics:
|
55 |
+
- type: cosine_accuracy
|
56 |
+
value: 0.452
|
57 |
+
name: Cosine Accuracy
|
58 |
+
- type: dot_accuracy
|
59 |
+
value: 0.34
|
60 |
+
name: Dot Accuracy
|
61 |
+
- type: manhattan_accuracy
|
62 |
+
value: 0.456
|
63 |
+
name: Manhattan Accuracy
|
64 |
+
- type: euclidean_accuracy
|
65 |
+
value: 0.452
|
66 |
+
name: Euclidean Accuracy
|
67 |
+
- type: max_accuracy
|
68 |
+
value: 0.456
|
69 |
+
name: Max Accuracy
|
70 |
+
---
|
71 |
+
|
72 |
+
# SentenceTransformer based on FacebookAI/xlm-roberta-large
|
73 |
+
|
74 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
75 |
+
|
76 |
+
## Model Details
|
77 |
+
|
78 |
+
### Model Description
|
79 |
+
- **Model Type:** Sentence Transformer
|
80 |
+
- **Base model:** [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) <!-- at revision c23d21b0620b635a76227c604d44e43a9f0ee389 -->
|
81 |
+
- **Maximum Sequence Length:** 512 tokens
|
82 |
+
- **Output Dimensionality:** 1024 tokens
|
83 |
+
- **Similarity Function:** Cosine Similarity
|
84 |
+
- **Training Dataset:**
|
85 |
+
- [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
|
86 |
+
- **Language:** en
|
87 |
+
<!-- - **License:** Unknown -->
|
88 |
+
|
89 |
+
### Model Sources
|
90 |
+
|
91 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
92 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
93 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
94 |
+
|
95 |
+
### Full Model Architecture
|
96 |
+
|
97 |
+
```
|
98 |
+
SentenceTransformer(
|
99 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
100 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
101 |
+
)
|
102 |
+
```
|
103 |
+
|
104 |
+
## Usage
|
105 |
+
|
106 |
+
### Direct Usage (Sentence Transformers)
|
107 |
+
|
108 |
+
First install the Sentence Transformers library:
|
109 |
+
|
110 |
+
```bash
|
111 |
+
pip install -U sentence-transformers
|
112 |
+
```
|
113 |
+
|
114 |
+
Then you can load this model and run inference.
|
115 |
+
```python
|
116 |
+
from sentence_transformers import SentenceTransformer
|
117 |
+
|
118 |
+
# Download from the 🤗 Hub
|
119 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
120 |
+
# Run inference
|
121 |
+
sentences = [
|
122 |
+
"There's a dock",
|
123 |
+
'The girls eat the paper',
|
124 |
+
'Five people on a path',
|
125 |
+
]
|
126 |
+
embeddings = model.encode(sentences)
|
127 |
+
print(embeddings.shape)
|
128 |
+
# [3, 1024]
|
129 |
+
|
130 |
+
# Get the similarity scores for the embeddings
|
131 |
+
similarities = model.similarity(embeddings, embeddings)
|
132 |
+
print(similarities.shape)
|
133 |
+
# [3, 3]
|
134 |
+
```
|
135 |
+
|
136 |
+
<!--
|
137 |
+
### Direct Usage (Transformers)
|
138 |
+
|
139 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
140 |
+
|
141 |
+
</details>
|
142 |
+
-->
|
143 |
+
|
144 |
+
<!--
|
145 |
+
### Downstream Usage (Sentence Transformers)
|
146 |
+
|
147 |
+
You can finetune this model on your own dataset.
|
148 |
+
|
149 |
+
<details><summary>Click to expand</summary>
|
150 |
+
|
151 |
+
</details>
|
152 |
+
-->
|
153 |
+
|
154 |
+
<!--
|
155 |
+
### Out-of-Scope Use
|
156 |
+
|
157 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
158 |
+
-->
|
159 |
+
|
160 |
+
## Evaluation
|
161 |
+
|
162 |
+
### Metrics
|
163 |
+
|
164 |
+
#### Triplet
|
165 |
+
* Dataset: `all-nli-dev`
|
166 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
167 |
+
|
168 |
+
| Metric | Value |
|
169 |
+
|:-------------------|:----------|
|
170 |
+
| cosine_accuracy | 0.452 |
|
171 |
+
| dot_accuracy | 0.34 |
|
172 |
+
| manhattan_accuracy | 0.456 |
|
173 |
+
| euclidean_accuracy | 0.452 |
|
174 |
+
| **max_accuracy** | **0.456** |
|
175 |
+
|
176 |
+
<!--
|
177 |
+
## Bias, Risks and Limitations
|
178 |
+
|
179 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
180 |
+
-->
|
181 |
+
|
182 |
+
<!--
|
183 |
+
### Recommendations
|
184 |
+
|
185 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
186 |
+
-->
|
187 |
+
|
188 |
+
## Training Details
|
189 |
+
|
190 |
+
### Training Dataset
|
191 |
+
|
192 |
+
#### sentence-transformers/all-nli
|
193 |
+
|
194 |
+
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
195 |
+
* Size: 100,000 training samples
|
196 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
197 |
+
* Approximate statistics based on the first 1000 samples:
|
198 |
+
| | anchor | positive | negative |
|
199 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
200 |
+
| type | string | string | string |
|
201 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 10.9 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.62 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.76 tokens</li><li>max: 55 tokens</li></ul> |
|
202 |
+
* Samples:
|
203 |
+
| anchor | positive | negative |
|
204 |
+
|:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
|
205 |
+
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
|
206 |
+
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
|
207 |
+
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
|
208 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
209 |
+
```json
|
210 |
+
{
|
211 |
+
"scale": 20.0,
|
212 |
+
"similarity_fct": "cos_sim"
|
213 |
+
}
|
214 |
+
```
|
215 |
+
|
216 |
+
### Evaluation Dataset
|
217 |
+
|
218 |
+
#### sentence-transformers/all-nli
|
219 |
+
|
220 |
+
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
221 |
+
* Size: 1,000 evaluation samples
|
222 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
223 |
+
* Approximate statistics based on the first 1000 samples:
|
224 |
+
| | anchor | positive | negative |
|
225 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
226 |
+
| type | string | string | string |
|
227 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 20.31 tokens</li><li>max: 83 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.71 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.39 tokens</li><li>max: 32 tokens</li></ul> |
|
228 |
+
* Samples:
|
229 |
+
| anchor | positive | negative |
|
230 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
|
231 |
+
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
|
232 |
+
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
|
233 |
+
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
|
234 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
235 |
+
```json
|
236 |
+
{
|
237 |
+
"scale": 20.0,
|
238 |
+
"similarity_fct": "cos_sim"
|
239 |
+
}
|
240 |
+
```
|
241 |
+
|
242 |
+
### Training Hyperparameters
|
243 |
+
#### Non-Default Hyperparameters
|
244 |
+
|
245 |
+
- `eval_strategy`: steps
|
246 |
+
- `per_device_train_batch_size`: 16
|
247 |
+
- `per_device_eval_batch_size`: 16
|
248 |
+
- `num_train_epochs`: 1
|
249 |
+
- `warmup_ratio`: 0.1
|
250 |
+
- `fp16`: True
|
251 |
+
- `batch_sampler`: no_duplicates
|
252 |
+
|
253 |
+
#### All Hyperparameters
|
254 |
+
<details><summary>Click to expand</summary>
|
255 |
+
|
256 |
+
- `overwrite_output_dir`: False
|
257 |
+
- `do_predict`: False
|
258 |
+
- `eval_strategy`: steps
|
259 |
+
- `prediction_loss_only`: True
|
260 |
+
- `per_device_train_batch_size`: 16
|
261 |
+
- `per_device_eval_batch_size`: 16
|
262 |
+
- `per_gpu_train_batch_size`: None
|
263 |
+
- `per_gpu_eval_batch_size`: None
|
264 |
+
- `gradient_accumulation_steps`: 1
|
265 |
+
- `eval_accumulation_steps`: None
|
266 |
+
- `learning_rate`: 5e-05
|
267 |
+
- `weight_decay`: 0.0
|
268 |
+
- `adam_beta1`: 0.9
|
269 |
+
- `adam_beta2`: 0.999
|
270 |
+
- `adam_epsilon`: 1e-08
|
271 |
+
- `max_grad_norm`: 1.0
|
272 |
+
- `num_train_epochs`: 1
|
273 |
+
- `max_steps`: -1
|
274 |
+
- `lr_scheduler_type`: linear
|
275 |
+
- `lr_scheduler_kwargs`: {}
|
276 |
+
- `warmup_ratio`: 0.1
|
277 |
+
- `warmup_steps`: 0
|
278 |
+
- `log_level`: passive
|
279 |
+
- `log_level_replica`: warning
|
280 |
+
- `log_on_each_node`: True
|
281 |
+
- `logging_nan_inf_filter`: True
|
282 |
+
- `save_safetensors`: True
|
283 |
+
- `save_on_each_node`: False
|
284 |
+
- `save_only_model`: False
|
285 |
+
- `restore_callback_states_from_checkpoint`: False
|
286 |
+
- `no_cuda`: False
|
287 |
+
- `use_cpu`: False
|
288 |
+
- `use_mps_device`: False
|
289 |
+
- `seed`: 42
|
290 |
+
- `data_seed`: None
|
291 |
+
- `jit_mode_eval`: False
|
292 |
+
- `use_ipex`: False
|
293 |
+
- `bf16`: False
|
294 |
+
- `fp16`: True
|
295 |
+
- `fp16_opt_level`: O1
|
296 |
+
- `half_precision_backend`: auto
|
297 |
+
- `bf16_full_eval`: False
|
298 |
+
- `fp16_full_eval`: False
|
299 |
+
- `tf32`: None
|
300 |
+
- `local_rank`: 0
|
301 |
+
- `ddp_backend`: None
|
302 |
+
- `tpu_num_cores`: None
|
303 |
+
- `tpu_metrics_debug`: False
|
304 |
+
- `debug`: []
|
305 |
+
- `dataloader_drop_last`: False
|
306 |
+
- `dataloader_num_workers`: 0
|
307 |
+
- `dataloader_prefetch_factor`: None
|
308 |
+
- `past_index`: -1
|
309 |
+
- `disable_tqdm`: False
|
310 |
+
- `remove_unused_columns`: True
|
311 |
+
- `label_names`: None
|
312 |
+
- `load_best_model_at_end`: False
|
313 |
+
- `ignore_data_skip`: False
|
314 |
+
- `fsdp`: []
|
315 |
+
- `fsdp_min_num_params`: 0
|
316 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
317 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
318 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
319 |
+
- `deepspeed`: None
|
320 |
+
- `label_smoothing_factor`: 0.0
|
321 |
+
- `optim`: adamw_torch
|
322 |
+
- `optim_args`: None
|
323 |
+
- `adafactor`: False
|
324 |
+
- `group_by_length`: False
|
325 |
+
- `length_column_name`: length
|
326 |
+
- `ddp_find_unused_parameters`: None
|
327 |
+
- `ddp_bucket_cap_mb`: None
|
328 |
+
- `ddp_broadcast_buffers`: False
|
329 |
+
- `dataloader_pin_memory`: True
|
330 |
+
- `dataloader_persistent_workers`: False
|
331 |
+
- `skip_memory_metrics`: True
|
332 |
+
- `use_legacy_prediction_loop`: False
|
333 |
+
- `push_to_hub`: False
|
334 |
+
- `resume_from_checkpoint`: None
|
335 |
+
- `hub_model_id`: None
|
336 |
+
- `hub_strategy`: every_save
|
337 |
+
- `hub_private_repo`: False
|
338 |
+
- `hub_always_push`: False
|
339 |
+
- `gradient_checkpointing`: False
|
340 |
+
- `gradient_checkpointing_kwargs`: None
|
341 |
+
- `include_inputs_for_metrics`: False
|
342 |
+
- `eval_do_concat_batches`: True
|
343 |
+
- `fp16_backend`: auto
|
344 |
+
- `push_to_hub_model_id`: None
|
345 |
+
- `push_to_hub_organization`: None
|
346 |
+
- `mp_parameters`:
|
347 |
+
- `auto_find_batch_size`: False
|
348 |
+
- `full_determinism`: False
|
349 |
+
- `torchdynamo`: None
|
350 |
+
- `ray_scope`: last
|
351 |
+
- `ddp_timeout`: 1800
|
352 |
+
- `torch_compile`: False
|
353 |
+
- `torch_compile_backend`: None
|
354 |
+
- `torch_compile_mode`: None
|
355 |
+
- `dispatch_batches`: None
|
356 |
+
- `split_batches`: None
|
357 |
+
- `include_tokens_per_second`: False
|
358 |
+
- `include_num_input_tokens_seen`: False
|
359 |
+
- `neftune_noise_alpha`: None
|
360 |
+
- `optim_target_modules`: None
|
361 |
+
- `batch_eval_metrics`: False
|
362 |
+
- `batch_sampler`: no_duplicates
|
363 |
+
- `multi_dataset_batch_sampler`: proportional
|
364 |
+
|
365 |
+
</details>
|
366 |
+
|
367 |
+
### Training Logs
|
368 |
+
| Epoch | Step | Training Loss | loss | all-nli-dev_max_accuracy |
|
369 |
+
|:-----:|:----:|:-------------:|:------:|:------------------------:|
|
370 |
+
| 0 | 0 | - | - | 0.616 |
|
371 |
+
| 0.016 | 100 | 3.2768 | 1.8053 | 0.833 |
|
372 |
+
| 0.032 | 200 | 1.1697 | 1.2878 | 0.861 |
|
373 |
+
| 0.048 | 300 | 1.372 | 1.2466 | 0.861 |
|
374 |
+
| 0.064 | 400 | 1.0476 | 1.2291 | 0.863 |
|
375 |
+
| 0.08 | 500 | 0.8588 | 1.5259 | 0.838 |
|
376 |
+
| 0.096 | 600 | 2.9781 | 3.4309 | 0.463 |
|
377 |
+
| 0.112 | 700 | 3.4982 | 3.4309 | 0.457 |
|
378 |
+
| 0.128 | 800 | 3.467 | 3.4309 | 0.479 |
|
379 |
+
| 0.144 | 900 | 3.4665 | 3.4309 | 0.452 |
|
380 |
+
| 0.16 | 1000 | 3.4664 | 3.4309 | 0.477 |
|
381 |
+
| 0.176 | 1100 | 3.4663 | 3.4309 | 0.458 |
|
382 |
+
| 0.192 | 1200 | 3.4661 | 3.4309 | 0.462 |
|
383 |
+
| 0.208 | 1300 | 3.4658 | 3.4309 | 0.45 |
|
384 |
+
| 0.224 | 1400 | 3.4661 | 3.4309 | 0.481 |
|
385 |
+
| 0.24 | 1500 | 3.4877 | 3.4309 | 0.464 |
|
386 |
+
| 0.256 | 1600 | 3.4675 | 3.4309 | 0.462 |
|
387 |
+
| 0.272 | 1700 | 3.4665 | 3.4309 | 0.488 |
|
388 |
+
| 0.288 | 1800 | 3.4667 | 3.4309 | 0.492 |
|
389 |
+
| 0.304 | 1900 | 3.4664 | 3.4309 | 0.455 |
|
390 |
+
| 0.32 | 2000 | 3.4661 | 3.4309 | 0.453 |
|
391 |
+
| 0.336 | 2100 | 3.4666 | 3.4309 | 0.477 |
|
392 |
+
| 0.352 | 2200 | 3.4683 | 3.4309 | 0.48 |
|
393 |
+
| 0.368 | 2300 | 3.4663 | 3.4309 | 0.469 |
|
394 |
+
| 0.384 | 2400 | 3.4667 | 3.4309 | 0.448 |
|
395 |
+
| 0.4 | 2500 | 3.4669 | 3.4309 | 0.499 |
|
396 |
+
| 0.416 | 2600 | 3.4661 | 3.4309 | 0.453 |
|
397 |
+
| 0.432 | 2700 | 3.4656 | 3.4309 | 0.467 |
|
398 |
+
| 0.448 | 2800 | 3.4662 | 3.4309 | 0.507 |
|
399 |
+
| 0.464 | 2900 | 3.4902 | 3.4309 | 0.473 |
|
400 |
+
| 0.48 | 3000 | 3.4663 | 3.4309 | 0.469 |
|
401 |
+
| 0.496 | 3100 | 3.554 | 3.4309 | 0.46 |
|
402 |
+
| 0.512 | 3200 | 3.4664 | 3.4309 | 0.455 |
|
403 |
+
| 0.528 | 3300 | 3.4668 | 3.4309 | 0.46 |
|
404 |
+
| 0.544 | 3400 | 3.4661 | 3.4309 | 0.492 |
|
405 |
+
| 0.56 | 3500 | 3.4667 | 3.4309 | 0.432 |
|
406 |
+
| 0.576 | 3600 | 3.4668 | 3.4309 | 0.486 |
|
407 |
+
| 0.592 | 3700 | 3.4666 | 3.4309 | 0.469 |
|
408 |
+
| 0.608 | 3800 | 3.4669 | 3.4309 | 0.473 |
|
409 |
+
| 0.624 | 3900 | 3.4658 | 3.4309 | 0.487 |
|
410 |
+
| 0.64 | 4000 | 3.4663 | 3.4309 | 0.448 |
|
411 |
+
| 0.656 | 4100 | 3.4663 | 3.4309 | 0.465 |
|
412 |
+
| 0.672 | 4200 | 3.4664 | 3.4309 | 0.484 |
|
413 |
+
| 0.688 | 4300 | 3.4663 | 3.4309 | 0.469 |
|
414 |
+
| 0.704 | 4400 | 3.4661 | 3.4309 | 0.478 |
|
415 |
+
| 0.72 | 4500 | 3.4669 | 3.4309 | 0.467 |
|
416 |
+
| 0.736 | 4600 | 3.4664 | 3.4309 | 0.455 |
|
417 |
+
| 0.752 | 4700 | 3.4664 | 3.4309 | 0.481 |
|
418 |
+
| 0.768 | 4800 | 3.4659 | 3.4309 | 0.466 |
|
419 |
+
| 0.784 | 4900 | 3.466 | 3.4309 | 0.451 |
|
420 |
+
| 0.8 | 5000 | 3.466 | 3.4309 | 0.473 |
|
421 |
+
| 0.816 | 5100 | 3.4664 | 3.4309 | 0.44 |
|
422 |
+
| 0.832 | 5200 | 3.4658 | 3.4309 | 0.497 |
|
423 |
+
| 0.848 | 5300 | 3.4664 | 3.4309 | 0.474 |
|
424 |
+
| 0.864 | 5400 | 3.4658 | 3.4309 | 0.449 |
|
425 |
+
| 0.88 | 5500 | 3.4662 | 3.4309 | 0.466 |
|
426 |
+
| 0.896 | 5600 | 3.4663 | 3.4309 | 0.476 |
|
427 |
+
| 0.912 | 5700 | 3.4667 | 3.4309 | 0.455 |
|
428 |
+
| 0.928 | 5800 | 3.4669 | 3.4309 | 0.463 |
|
429 |
+
| 0.944 | 5900 | 3.4657 | 3.4309 | 0.467 |
|
430 |
+
| 0.96 | 6000 | 3.4671 | 3.4309 | 0.456 |
|
431 |
+
| 0.976 | 6100 | 2.9471 | 3.4309 | 0.484 |
|
432 |
+
| 0.992 | 6200 | 0.6929 | 3.4309 | 0.456 |
|
433 |
+
|
434 |
+
|
435 |
+
### Framework Versions
|
436 |
+
- Python: 3.9.10
|
437 |
+
- Sentence Transformers: 3.0.0
|
438 |
+
- Transformers: 4.41.2
|
439 |
+
- PyTorch: 2.3.0+cu121
|
440 |
+
- Accelerate: 0.26.1
|
441 |
+
- Datasets: 2.16.1
|
442 |
+
- Tokenizers: 0.19.1
|
443 |
+
|
444 |
+
## Citation
|
445 |
+
|
446 |
+
### BibTeX
|
447 |
+
|
448 |
+
#### Sentence Transformers
|
449 |
+
```bibtex
|
450 |
+
@inproceedings{reimers-2019-sentence-bert,
|
451 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
452 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
453 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
454 |
+
month = "11",
|
455 |
+
year = "2019",
|
456 |
+
publisher = "Association for Computational Linguistics",
|
457 |
+
url = "https://arxiv.org/abs/1908.10084",
|
458 |
+
}
|
459 |
+
```
|
460 |
+
|
461 |
+
#### MultipleNegativesRankingLoss
|
462 |
+
```bibtex
|
463 |
+
@misc{henderson2017efficient,
|
464 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
465 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
466 |
+
year={2017},
|
467 |
+
eprint={1705.00652},
|
468 |
+
archivePrefix={arXiv},
|
469 |
+
primaryClass={cs.CL}
|
470 |
+
}
|
471 |
+
```
|
472 |
+
|
473 |
+
<!--
|
474 |
+
## Glossary
|
475 |
+
|
476 |
+
*Clearly define terms in order to be accessible across audiences.*
|
477 |
+
-->
|
478 |
+
|
479 |
+
<!--
|
480 |
+
## Model Card Authors
|
481 |
+
|
482 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
483 |
+
-->
|
484 |
+
|
485 |
+
<!--
|
486 |
+
## Model Card Contact
|
487 |
+
|
488 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
489 |
+
-->
|
checkpoint-6200/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "FacebookAI/xlm-roberta-large",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.41.2",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
checkpoint-6200/config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.0",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.3.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
checkpoint-6200/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c144211a6d3ee9fecfbfdb406e7868e4f77b2170cd8583c7fb7048ddd4e9af7
|
3 |
+
size 2239607176
|
checkpoint-6200/modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
checkpoint-6200/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:505406a46b417fdcc3e006a51951b58c3a9383b12d64924f5eab975471c8ece6
|
3 |
+
size 4471055801
|
checkpoint-6200/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d48938e7adce189a12310181758cf3272e37b64a7b983a944da8dece26d7542a
|
3 |
+
size 14244
|
checkpoint-6200/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a78525a6e10b9c5925f8336f7f8f26d7a6a28b1454f41dfa2b2beab77c11fff4
|
3 |
+
size 1064
|
checkpoint-6200/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
checkpoint-6200/sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
checkpoint-6200/special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
checkpoint-6200/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
3 |
+
size 17082987
|
checkpoint-6200/tokenizer_config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
53 |
+
"unk_token": "<unk>"
|
54 |
+
}
|
checkpoint-6200/trainer_state.json
ADDED
@@ -0,0 +1,1273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.992,
|
5 |
+
"eval_steps": 100,
|
6 |
+
"global_step": 6200,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.016,
|
13 |
+
"grad_norm": 83.78450775146484,
|
14 |
+
"learning_rate": 7.44e-06,
|
15 |
+
"loss": 3.2768,
|
16 |
+
"step": 100
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.016,
|
20 |
+
"eval_all-nli-dev_cosine_accuracy": 0.815,
|
21 |
+
"eval_all-nli-dev_dot_accuracy": 0.316,
|
22 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.804,
|
23 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.833,
|
24 |
+
"eval_all-nli-dev_max_accuracy": 0.833,
|
25 |
+
"eval_loss": 1.8052657842636108,
|
26 |
+
"eval_runtime": 8.0216,
|
27 |
+
"eval_samples_per_second": 124.664,
|
28 |
+
"eval_steps_per_second": 7.854,
|
29 |
+
"step": 100
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"epoch": 0.032,
|
33 |
+
"grad_norm": 62.54200744628906,
|
34 |
+
"learning_rate": 1.544e-05,
|
35 |
+
"loss": 1.1697,
|
36 |
+
"step": 200
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"epoch": 0.032,
|
40 |
+
"eval_all-nli-dev_cosine_accuracy": 0.842,
|
41 |
+
"eval_all-nli-dev_dot_accuracy": 0.171,
|
42 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.838,
|
43 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.861,
|
44 |
+
"eval_all-nli-dev_max_accuracy": 0.861,
|
45 |
+
"eval_loss": 1.2878086566925049,
|
46 |
+
"eval_runtime": 7.8831,
|
47 |
+
"eval_samples_per_second": 126.853,
|
48 |
+
"eval_steps_per_second": 7.992,
|
49 |
+
"step": 200
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"epoch": 0.048,
|
53 |
+
"grad_norm": 75.54035949707031,
|
54 |
+
"learning_rate": 2.344e-05,
|
55 |
+
"loss": 1.372,
|
56 |
+
"step": 300
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.048,
|
60 |
+
"eval_all-nli-dev_cosine_accuracy": 0.841,
|
61 |
+
"eval_all-nli-dev_dot_accuracy": 0.181,
|
62 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.844,
|
63 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.861,
|
64 |
+
"eval_all-nli-dev_max_accuracy": 0.861,
|
65 |
+
"eval_loss": 1.2466014623641968,
|
66 |
+
"eval_runtime": 7.8792,
|
67 |
+
"eval_samples_per_second": 126.916,
|
68 |
+
"eval_steps_per_second": 7.996,
|
69 |
+
"step": 300
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.064,
|
73 |
+
"grad_norm": 33.85651779174805,
|
74 |
+
"learning_rate": 3.136e-05,
|
75 |
+
"loss": 1.0476,
|
76 |
+
"step": 400
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.064,
|
80 |
+
"eval_all-nli-dev_cosine_accuracy": 0.848,
|
81 |
+
"eval_all-nli-dev_dot_accuracy": 0.201,
|
82 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.848,
|
83 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.863,
|
84 |
+
"eval_all-nli-dev_max_accuracy": 0.863,
|
85 |
+
"eval_loss": 1.2291330099105835,
|
86 |
+
"eval_runtime": 7.8507,
|
87 |
+
"eval_samples_per_second": 127.378,
|
88 |
+
"eval_steps_per_second": 8.025,
|
89 |
+
"step": 400
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 0.08,
|
93 |
+
"grad_norm": 27.536640167236328,
|
94 |
+
"learning_rate": 3.936e-05,
|
95 |
+
"loss": 0.8588,
|
96 |
+
"step": 500
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"epoch": 0.08,
|
100 |
+
"eval_all-nli-dev_cosine_accuracy": 0.821,
|
101 |
+
"eval_all-nli-dev_dot_accuracy": 0.213,
|
102 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.828,
|
103 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.838,
|
104 |
+
"eval_all-nli-dev_max_accuracy": 0.838,
|
105 |
+
"eval_loss": 1.5258921384811401,
|
106 |
+
"eval_runtime": 7.8331,
|
107 |
+
"eval_samples_per_second": 127.663,
|
108 |
+
"eval_steps_per_second": 8.043,
|
109 |
+
"step": 500
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 0.096,
|
113 |
+
"grad_norm": 0.15947222709655762,
|
114 |
+
"learning_rate": 4.736000000000001e-05,
|
115 |
+
"loss": 2.9781,
|
116 |
+
"step": 600
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.096,
|
120 |
+
"eval_all-nli-dev_cosine_accuracy": 0.462,
|
121 |
+
"eval_all-nli-dev_dot_accuracy": 0.363,
|
122 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.462,
|
123 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.463,
|
124 |
+
"eval_all-nli-dev_max_accuracy": 0.463,
|
125 |
+
"eval_loss": 3.4308860301971436,
|
126 |
+
"eval_runtime": 7.9535,
|
127 |
+
"eval_samples_per_second": 125.73,
|
128 |
+
"eval_steps_per_second": 7.921,
|
129 |
+
"step": 600
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.112,
|
133 |
+
"grad_norm": 0.09273126721382141,
|
134 |
+
"learning_rate": 4.9404444444444447e-05,
|
135 |
+
"loss": 3.4982,
|
136 |
+
"step": 700
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.112,
|
140 |
+
"eval_all-nli-dev_cosine_accuracy": 0.449,
|
141 |
+
"eval_all-nli-dev_dot_accuracy": 0.381,
|
142 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.449,
|
143 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.457,
|
144 |
+
"eval_all-nli-dev_max_accuracy": 0.457,
|
145 |
+
"eval_loss": 3.4308860301971436,
|
146 |
+
"eval_runtime": 7.905,
|
147 |
+
"eval_samples_per_second": 126.501,
|
148 |
+
"eval_steps_per_second": 7.97,
|
149 |
+
"step": 700
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.128,
|
153 |
+
"grad_norm": 0.047491393983364105,
|
154 |
+
"learning_rate": 4.851555555555556e-05,
|
155 |
+
"loss": 3.467,
|
156 |
+
"step": 800
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.128,
|
160 |
+
"eval_all-nli-dev_cosine_accuracy": 0.471,
|
161 |
+
"eval_all-nli-dev_dot_accuracy": 0.366,
|
162 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.471,
|
163 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.479,
|
164 |
+
"eval_all-nli-dev_max_accuracy": 0.479,
|
165 |
+
"eval_loss": 3.4308860301971436,
|
166 |
+
"eval_runtime": 7.8623,
|
167 |
+
"eval_samples_per_second": 127.188,
|
168 |
+
"eval_steps_per_second": 8.013,
|
169 |
+
"step": 800
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"epoch": 0.144,
|
173 |
+
"grad_norm": 0.05457993969321251,
|
174 |
+
"learning_rate": 4.762666666666667e-05,
|
175 |
+
"loss": 3.4665,
|
176 |
+
"step": 900
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.144,
|
180 |
+
"eval_all-nli-dev_cosine_accuracy": 0.452,
|
181 |
+
"eval_all-nli-dev_dot_accuracy": 0.342,
|
182 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.452,
|
183 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.446,
|
184 |
+
"eval_all-nli-dev_max_accuracy": 0.452,
|
185 |
+
"eval_loss": 3.4308860301971436,
|
186 |
+
"eval_runtime": 8.0107,
|
187 |
+
"eval_samples_per_second": 124.832,
|
188 |
+
"eval_steps_per_second": 7.864,
|
189 |
+
"step": 900
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.16,
|
193 |
+
"grad_norm": 0.03311806544661522,
|
194 |
+
"learning_rate": 4.673777777777778e-05,
|
195 |
+
"loss": 3.4664,
|
196 |
+
"step": 1000
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 0.16,
|
200 |
+
"eval_all-nli-dev_cosine_accuracy": 0.477,
|
201 |
+
"eval_all-nli-dev_dot_accuracy": 0.352,
|
202 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.477,
|
203 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.468,
|
204 |
+
"eval_all-nli-dev_max_accuracy": 0.477,
|
205 |
+
"eval_loss": 3.4308860301971436,
|
206 |
+
"eval_runtime": 7.9233,
|
207 |
+
"eval_samples_per_second": 126.21,
|
208 |
+
"eval_steps_per_second": 7.951,
|
209 |
+
"step": 1000
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 0.176,
|
213 |
+
"grad_norm": 0.02707391045987606,
|
214 |
+
"learning_rate": 4.584888888888889e-05,
|
215 |
+
"loss": 3.4663,
|
216 |
+
"step": 1100
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"epoch": 0.176,
|
220 |
+
"eval_all-nli-dev_cosine_accuracy": 0.458,
|
221 |
+
"eval_all-nli-dev_dot_accuracy": 0.376,
|
222 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.458,
|
223 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.452,
|
224 |
+
"eval_all-nli-dev_max_accuracy": 0.458,
|
225 |
+
"eval_loss": 3.4308860301971436,
|
226 |
+
"eval_runtime": 7.8521,
|
227 |
+
"eval_samples_per_second": 127.354,
|
228 |
+
"eval_steps_per_second": 8.023,
|
229 |
+
"step": 1100
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"epoch": 0.192,
|
233 |
+
"grad_norm": 0.030668186023831367,
|
234 |
+
"learning_rate": 4.496e-05,
|
235 |
+
"loss": 3.4661,
|
236 |
+
"step": 1200
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.192,
|
240 |
+
"eval_all-nli-dev_cosine_accuracy": 0.46,
|
241 |
+
"eval_all-nli-dev_dot_accuracy": 0.39,
|
242 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.46,
|
243 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.462,
|
244 |
+
"eval_all-nli-dev_max_accuracy": 0.462,
|
245 |
+
"eval_loss": 3.4308862686157227,
|
246 |
+
"eval_runtime": 8.0488,
|
247 |
+
"eval_samples_per_second": 124.243,
|
248 |
+
"eval_steps_per_second": 7.827,
|
249 |
+
"step": 1200
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.208,
|
253 |
+
"grad_norm": 0.04911087080836296,
|
254 |
+
"learning_rate": 4.4071111111111115e-05,
|
255 |
+
"loss": 3.4658,
|
256 |
+
"step": 1300
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 0.208,
|
260 |
+
"eval_all-nli-dev_cosine_accuracy": 0.441,
|
261 |
+
"eval_all-nli-dev_dot_accuracy": 0.338,
|
262 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.441,
|
263 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.45,
|
264 |
+
"eval_all-nli-dev_max_accuracy": 0.45,
|
265 |
+
"eval_loss": 3.4308857917785645,
|
266 |
+
"eval_runtime": 7.9015,
|
267 |
+
"eval_samples_per_second": 126.558,
|
268 |
+
"eval_steps_per_second": 7.973,
|
269 |
+
"step": 1300
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.224,
|
273 |
+
"grad_norm": 0.02693816088140011,
|
274 |
+
"learning_rate": 4.3182222222222226e-05,
|
275 |
+
"loss": 3.4661,
|
276 |
+
"step": 1400
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.224,
|
280 |
+
"eval_all-nli-dev_cosine_accuracy": 0.475,
|
281 |
+
"eval_all-nli-dev_dot_accuracy": 0.31,
|
282 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.475,
|
283 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.481,
|
284 |
+
"eval_all-nli-dev_max_accuracy": 0.481,
|
285 |
+
"eval_loss": 3.4308862686157227,
|
286 |
+
"eval_runtime": 7.9424,
|
287 |
+
"eval_samples_per_second": 125.906,
|
288 |
+
"eval_steps_per_second": 7.932,
|
289 |
+
"step": 1400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.24,
|
293 |
+
"grad_norm": 0.17906944453716278,
|
294 |
+
"learning_rate": 4.229333333333334e-05,
|
295 |
+
"loss": 3.4877,
|
296 |
+
"step": 1500
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.24,
|
300 |
+
"eval_all-nli-dev_cosine_accuracy": 0.464,
|
301 |
+
"eval_all-nli-dev_dot_accuracy": 0.358,
|
302 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.464,
|
303 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.458,
|
304 |
+
"eval_all-nli-dev_max_accuracy": 0.464,
|
305 |
+
"eval_loss": 3.4308860301971436,
|
306 |
+
"eval_runtime": 7.9335,
|
307 |
+
"eval_samples_per_second": 126.048,
|
308 |
+
"eval_steps_per_second": 7.941,
|
309 |
+
"step": 1500
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.256,
|
313 |
+
"grad_norm": 0.07473237067461014,
|
314 |
+
"learning_rate": 4.140444444444445e-05,
|
315 |
+
"loss": 3.4675,
|
316 |
+
"step": 1600
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 0.256,
|
320 |
+
"eval_all-nli-dev_cosine_accuracy": 0.462,
|
321 |
+
"eval_all-nli-dev_dot_accuracy": 0.347,
|
322 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.462,
|
323 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.457,
|
324 |
+
"eval_all-nli-dev_max_accuracy": 0.462,
|
325 |
+
"eval_loss": 3.4308860301971436,
|
326 |
+
"eval_runtime": 7.9155,
|
327 |
+
"eval_samples_per_second": 126.335,
|
328 |
+
"eval_steps_per_second": 7.959,
|
329 |
+
"step": 1600
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 0.272,
|
333 |
+
"grad_norm": 0.06472893804311752,
|
334 |
+
"learning_rate": 4.051555555555556e-05,
|
335 |
+
"loss": 3.4665,
|
336 |
+
"step": 1700
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"epoch": 0.272,
|
340 |
+
"eval_all-nli-dev_cosine_accuracy": 0.488,
|
341 |
+
"eval_all-nli-dev_dot_accuracy": 0.394,
|
342 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.488,
|
343 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.487,
|
344 |
+
"eval_all-nli-dev_max_accuracy": 0.488,
|
345 |
+
"eval_loss": 3.4308862686157227,
|
346 |
+
"eval_runtime": 7.7762,
|
347 |
+
"eval_samples_per_second": 128.597,
|
348 |
+
"eval_steps_per_second": 8.102,
|
349 |
+
"step": 1700
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"epoch": 0.288,
|
353 |
+
"grad_norm": 0.05817211791872978,
|
354 |
+
"learning_rate": 3.9626666666666664e-05,
|
355 |
+
"loss": 3.4667,
|
356 |
+
"step": 1800
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 0.288,
|
360 |
+
"eval_all-nli-dev_cosine_accuracy": 0.492,
|
361 |
+
"eval_all-nli-dev_dot_accuracy": 0.396,
|
362 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.492,
|
363 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.483,
|
364 |
+
"eval_all-nli-dev_max_accuracy": 0.492,
|
365 |
+
"eval_loss": 3.4308860301971436,
|
366 |
+
"eval_runtime": 7.8429,
|
367 |
+
"eval_samples_per_second": 127.504,
|
368 |
+
"eval_steps_per_second": 8.033,
|
369 |
+
"step": 1800
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.304,
|
373 |
+
"grad_norm": 0.06118469312787056,
|
374 |
+
"learning_rate": 3.8737777777777776e-05,
|
375 |
+
"loss": 3.4664,
|
376 |
+
"step": 1900
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 0.304,
|
380 |
+
"eval_all-nli-dev_cosine_accuracy": 0.452,
|
381 |
+
"eval_all-nli-dev_dot_accuracy": 0.377,
|
382 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.452,
|
383 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.455,
|
384 |
+
"eval_all-nli-dev_max_accuracy": 0.455,
|
385 |
+
"eval_loss": 3.4308860301971436,
|
386 |
+
"eval_runtime": 7.8193,
|
387 |
+
"eval_samples_per_second": 127.888,
|
388 |
+
"eval_steps_per_second": 8.057,
|
389 |
+
"step": 1900
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.32,
|
393 |
+
"grad_norm": 0.034288015216588974,
|
394 |
+
"learning_rate": 3.784888888888889e-05,
|
395 |
+
"loss": 3.4661,
|
396 |
+
"step": 2000
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 0.32,
|
400 |
+
"eval_all-nli-dev_cosine_accuracy": 0.446,
|
401 |
+
"eval_all-nli-dev_dot_accuracy": 0.35,
|
402 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.446,
|
403 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.453,
|
404 |
+
"eval_all-nli-dev_max_accuracy": 0.453,
|
405 |
+
"eval_loss": 3.4308860301971436,
|
406 |
+
"eval_runtime": 7.8176,
|
407 |
+
"eval_samples_per_second": 127.916,
|
408 |
+
"eval_steps_per_second": 8.059,
|
409 |
+
"step": 2000
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.336,
|
413 |
+
"grad_norm": 0.06111547723412514,
|
414 |
+
"learning_rate": 3.696e-05,
|
415 |
+
"loss": 3.4666,
|
416 |
+
"step": 2100
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.336,
|
420 |
+
"eval_all-nli-dev_cosine_accuracy": 0.469,
|
421 |
+
"eval_all-nli-dev_dot_accuracy": 0.39,
|
422 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.469,
|
423 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.477,
|
424 |
+
"eval_all-nli-dev_max_accuracy": 0.477,
|
425 |
+
"eval_loss": 3.4308862686157227,
|
426 |
+
"eval_runtime": 7.8728,
|
427 |
+
"eval_samples_per_second": 127.02,
|
428 |
+
"eval_steps_per_second": 8.002,
|
429 |
+
"step": 2100
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.352,
|
433 |
+
"grad_norm": 0.06624756008386612,
|
434 |
+
"learning_rate": 3.607111111111111e-05,
|
435 |
+
"loss": 3.4683,
|
436 |
+
"step": 2200
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.352,
|
440 |
+
"eval_all-nli-dev_cosine_accuracy": 0.478,
|
441 |
+
"eval_all-nli-dev_dot_accuracy": 0.338,
|
442 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.478,
|
443 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.48,
|
444 |
+
"eval_all-nli-dev_max_accuracy": 0.48,
|
445 |
+
"eval_loss": 3.4308860301971436,
|
446 |
+
"eval_runtime": 7.9247,
|
447 |
+
"eval_samples_per_second": 126.188,
|
448 |
+
"eval_steps_per_second": 7.95,
|
449 |
+
"step": 2200
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 0.368,
|
453 |
+
"grad_norm": 0.031209247186779976,
|
454 |
+
"learning_rate": 3.518222222222222e-05,
|
455 |
+
"loss": 3.4663,
|
456 |
+
"step": 2300
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"epoch": 0.368,
|
460 |
+
"eval_all-nli-dev_cosine_accuracy": 0.469,
|
461 |
+
"eval_all-nli-dev_dot_accuracy": 0.312,
|
462 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.469,
|
463 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.464,
|
464 |
+
"eval_all-nli-dev_max_accuracy": 0.469,
|
465 |
+
"eval_loss": 3.4308860301971436,
|
466 |
+
"eval_runtime": 7.8393,
|
467 |
+
"eval_samples_per_second": 127.562,
|
468 |
+
"eval_steps_per_second": 8.036,
|
469 |
+
"step": 2300
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"epoch": 0.384,
|
473 |
+
"grad_norm": 0.133990079164505,
|
474 |
+
"learning_rate": 3.429333333333333e-05,
|
475 |
+
"loss": 3.4667,
|
476 |
+
"step": 2400
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 0.384,
|
480 |
+
"eval_all-nli-dev_cosine_accuracy": 0.448,
|
481 |
+
"eval_all-nli-dev_dot_accuracy": 0.404,
|
482 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.448,
|
483 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.445,
|
484 |
+
"eval_all-nli-dev_max_accuracy": 0.448,
|
485 |
+
"eval_loss": 3.4308860301971436,
|
486 |
+
"eval_runtime": 8.021,
|
487 |
+
"eval_samples_per_second": 124.672,
|
488 |
+
"eval_steps_per_second": 7.854,
|
489 |
+
"step": 2400
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.4,
|
493 |
+
"grad_norm": 0.04892706498503685,
|
494 |
+
"learning_rate": 3.3404444444444444e-05,
|
495 |
+
"loss": 3.4669,
|
496 |
+
"step": 2500
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 0.4,
|
500 |
+
"eval_all-nli-dev_cosine_accuracy": 0.499,
|
501 |
+
"eval_all-nli-dev_dot_accuracy": 0.365,
|
502 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.499,
|
503 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.492,
|
504 |
+
"eval_all-nli-dev_max_accuracy": 0.499,
|
505 |
+
"eval_loss": 3.4308862686157227,
|
506 |
+
"eval_runtime": 7.8451,
|
507 |
+
"eval_samples_per_second": 127.468,
|
508 |
+
"eval_steps_per_second": 8.03,
|
509 |
+
"step": 2500
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 0.416,
|
513 |
+
"grad_norm": 0.053150493651628494,
|
514 |
+
"learning_rate": 3.2515555555555555e-05,
|
515 |
+
"loss": 3.4661,
|
516 |
+
"step": 2600
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"epoch": 0.416,
|
520 |
+
"eval_all-nli-dev_cosine_accuracy": 0.453,
|
521 |
+
"eval_all-nli-dev_dot_accuracy": 0.349,
|
522 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.453,
|
523 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.45,
|
524 |
+
"eval_all-nli-dev_max_accuracy": 0.453,
|
525 |
+
"eval_loss": 3.4308860301971436,
|
526 |
+
"eval_runtime": 7.9334,
|
527 |
+
"eval_samples_per_second": 126.05,
|
528 |
+
"eval_steps_per_second": 7.941,
|
529 |
+
"step": 2600
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 0.432,
|
533 |
+
"grad_norm": 0.09555792808532715,
|
534 |
+
"learning_rate": 3.1626666666666667e-05,
|
535 |
+
"loss": 3.4656,
|
536 |
+
"step": 2700
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.432,
|
540 |
+
"eval_all-nli-dev_cosine_accuracy": 0.466,
|
541 |
+
"eval_all-nli-dev_dot_accuracy": 0.336,
|
542 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.466,
|
543 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.467,
|
544 |
+
"eval_all-nli-dev_max_accuracy": 0.467,
|
545 |
+
"eval_loss": 3.4308860301971436,
|
546 |
+
"eval_runtime": 7.8562,
|
547 |
+
"eval_samples_per_second": 127.287,
|
548 |
+
"eval_steps_per_second": 8.019,
|
549 |
+
"step": 2700
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.448,
|
553 |
+
"grad_norm": 0.01744948886334896,
|
554 |
+
"learning_rate": 3.0737777777777785e-05,
|
555 |
+
"loss": 3.4662,
|
556 |
+
"step": 2800
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.448,
|
560 |
+
"eval_all-nli-dev_cosine_accuracy": 0.506,
|
561 |
+
"eval_all-nli-dev_dot_accuracy": 0.4,
|
562 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.506,
|
563 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.507,
|
564 |
+
"eval_all-nli-dev_max_accuracy": 0.507,
|
565 |
+
"eval_loss": 3.4308860301971436,
|
566 |
+
"eval_runtime": 7.8617,
|
567 |
+
"eval_samples_per_second": 127.199,
|
568 |
+
"eval_steps_per_second": 8.014,
|
569 |
+
"step": 2800
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.464,
|
573 |
+
"grad_norm": 0.2527749538421631,
|
574 |
+
"learning_rate": 2.986666666666667e-05,
|
575 |
+
"loss": 3.4902,
|
576 |
+
"step": 2900
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.464,
|
580 |
+
"eval_all-nli-dev_cosine_accuracy": 0.463,
|
581 |
+
"eval_all-nli-dev_dot_accuracy": 0.338,
|
582 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.463,
|
583 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.473,
|
584 |
+
"eval_all-nli-dev_max_accuracy": 0.473,
|
585 |
+
"eval_loss": 3.4308860301971436,
|
586 |
+
"eval_runtime": 7.8074,
|
587 |
+
"eval_samples_per_second": 128.083,
|
588 |
+
"eval_steps_per_second": 8.069,
|
589 |
+
"step": 2900
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"epoch": 0.48,
|
593 |
+
"grad_norm": 0.02826513536274433,
|
594 |
+
"learning_rate": 2.897777777777778e-05,
|
595 |
+
"loss": 3.4663,
|
596 |
+
"step": 3000
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 0.48,
|
600 |
+
"eval_all-nli-dev_cosine_accuracy": 0.454,
|
601 |
+
"eval_all-nli-dev_dot_accuracy": 0.338,
|
602 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.454,
|
603 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.469,
|
604 |
+
"eval_all-nli-dev_max_accuracy": 0.469,
|
605 |
+
"eval_loss": 3.4308860301971436,
|
606 |
+
"eval_runtime": 7.8421,
|
607 |
+
"eval_samples_per_second": 127.516,
|
608 |
+
"eval_steps_per_second": 8.034,
|
609 |
+
"step": 3000
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.496,
|
613 |
+
"grad_norm": 0.07985329627990723,
|
614 |
+
"learning_rate": 2.8088888888888893e-05,
|
615 |
+
"loss": 3.554,
|
616 |
+
"step": 3100
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 0.496,
|
620 |
+
"eval_all-nli-dev_cosine_accuracy": 0.456,
|
621 |
+
"eval_all-nli-dev_dot_accuracy": 0.359,
|
622 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.456,
|
623 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.46,
|
624 |
+
"eval_all-nli-dev_max_accuracy": 0.46,
|
625 |
+
"eval_loss": 3.4308860301971436,
|
626 |
+
"eval_runtime": 7.8756,
|
627 |
+
"eval_samples_per_second": 126.975,
|
628 |
+
"eval_steps_per_second": 7.999,
|
629 |
+
"step": 3100
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"epoch": 0.512,
|
633 |
+
"grad_norm": 0.1259102076292038,
|
634 |
+
"learning_rate": 2.7200000000000004e-05,
|
635 |
+
"loss": 3.4664,
|
636 |
+
"step": 3200
|
637 |
+
},
|
638 |
+
{
|
639 |
+
"epoch": 0.512,
|
640 |
+
"eval_all-nli-dev_cosine_accuracy": 0.455,
|
641 |
+
"eval_all-nli-dev_dot_accuracy": 0.257,
|
642 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.455,
|
643 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.454,
|
644 |
+
"eval_all-nli-dev_max_accuracy": 0.455,
|
645 |
+
"eval_loss": 3.4308860301971436,
|
646 |
+
"eval_runtime": 7.9019,
|
647 |
+
"eval_samples_per_second": 126.552,
|
648 |
+
"eval_steps_per_second": 7.973,
|
649 |
+
"step": 3200
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 0.528,
|
653 |
+
"grad_norm": 0.06493524461984634,
|
654 |
+
"learning_rate": 2.6311111111111115e-05,
|
655 |
+
"loss": 3.4668,
|
656 |
+
"step": 3300
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.528,
|
660 |
+
"eval_all-nli-dev_cosine_accuracy": 0.448,
|
661 |
+
"eval_all-nli-dev_dot_accuracy": 0.383,
|
662 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.448,
|
663 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.46,
|
664 |
+
"eval_all-nli-dev_max_accuracy": 0.46,
|
665 |
+
"eval_loss": 3.4308860301971436,
|
666 |
+
"eval_runtime": 7.9333,
|
667 |
+
"eval_samples_per_second": 126.051,
|
668 |
+
"eval_steps_per_second": 7.941,
|
669 |
+
"step": 3300
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.544,
|
673 |
+
"grad_norm": 0.0680716335773468,
|
674 |
+
"learning_rate": 2.5422222222222227e-05,
|
675 |
+
"loss": 3.4661,
|
676 |
+
"step": 3400
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 0.544,
|
680 |
+
"eval_all-nli-dev_cosine_accuracy": 0.492,
|
681 |
+
"eval_all-nli-dev_dot_accuracy": 0.407,
|
682 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.492,
|
683 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.481,
|
684 |
+
"eval_all-nli-dev_max_accuracy": 0.492,
|
685 |
+
"eval_loss": 3.4308860301971436,
|
686 |
+
"eval_runtime": 7.9192,
|
687 |
+
"eval_samples_per_second": 126.276,
|
688 |
+
"eval_steps_per_second": 7.955,
|
689 |
+
"step": 3400
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.56,
|
693 |
+
"grad_norm": 0.04947361350059509,
|
694 |
+
"learning_rate": 2.4533333333333334e-05,
|
695 |
+
"loss": 3.4667,
|
696 |
+
"step": 3500
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 0.56,
|
700 |
+
"eval_all-nli-dev_cosine_accuracy": 0.432,
|
701 |
+
"eval_all-nli-dev_dot_accuracy": 0.391,
|
702 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.432,
|
703 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.427,
|
704 |
+
"eval_all-nli-dev_max_accuracy": 0.432,
|
705 |
+
"eval_loss": 3.4308857917785645,
|
706 |
+
"eval_runtime": 7.8702,
|
707 |
+
"eval_samples_per_second": 127.061,
|
708 |
+
"eval_steps_per_second": 8.005,
|
709 |
+
"step": 3500
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.576,
|
713 |
+
"grad_norm": 0.07287462800741196,
|
714 |
+
"learning_rate": 2.3644444444444446e-05,
|
715 |
+
"loss": 3.4668,
|
716 |
+
"step": 3600
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.576,
|
720 |
+
"eval_all-nli-dev_cosine_accuracy": 0.482,
|
721 |
+
"eval_all-nli-dev_dot_accuracy": 0.374,
|
722 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.482,
|
723 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.486,
|
724 |
+
"eval_all-nli-dev_max_accuracy": 0.486,
|
725 |
+
"eval_loss": 3.4308860301971436,
|
726 |
+
"eval_runtime": 7.8562,
|
727 |
+
"eval_samples_per_second": 127.288,
|
728 |
+
"eval_steps_per_second": 8.019,
|
729 |
+
"step": 3600
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.592,
|
733 |
+
"grad_norm": 0.028324555605649948,
|
734 |
+
"learning_rate": 2.2755555555555557e-05,
|
735 |
+
"loss": 3.4666,
|
736 |
+
"step": 3700
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 0.592,
|
740 |
+
"eval_all-nli-dev_cosine_accuracy": 0.469,
|
741 |
+
"eval_all-nli-dev_dot_accuracy": 0.351,
|
742 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.469,
|
743 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.46,
|
744 |
+
"eval_all-nli-dev_max_accuracy": 0.469,
|
745 |
+
"eval_loss": 3.4308865070343018,
|
746 |
+
"eval_runtime": 7.879,
|
747 |
+
"eval_samples_per_second": 126.919,
|
748 |
+
"eval_steps_per_second": 7.996,
|
749 |
+
"step": 3700
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"epoch": 0.608,
|
753 |
+
"grad_norm": 0.04251887649297714,
|
754 |
+
"learning_rate": 2.186666666666667e-05,
|
755 |
+
"loss": 3.4669,
|
756 |
+
"step": 3800
|
757 |
+
},
|
758 |
+
{
|
759 |
+
"epoch": 0.608,
|
760 |
+
"eval_all-nli-dev_cosine_accuracy": 0.473,
|
761 |
+
"eval_all-nli-dev_dot_accuracy": 0.369,
|
762 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.473,
|
763 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.467,
|
764 |
+
"eval_all-nli-dev_max_accuracy": 0.473,
|
765 |
+
"eval_loss": 3.4308860301971436,
|
766 |
+
"eval_runtime": 7.9346,
|
767 |
+
"eval_samples_per_second": 126.031,
|
768 |
+
"eval_steps_per_second": 7.94,
|
769 |
+
"step": 3800
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"epoch": 0.624,
|
773 |
+
"grad_norm": 0.01685403846204281,
|
774 |
+
"learning_rate": 2.097777777777778e-05,
|
775 |
+
"loss": 3.4658,
|
776 |
+
"step": 3900
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 0.624,
|
780 |
+
"eval_all-nli-dev_cosine_accuracy": 0.487,
|
781 |
+
"eval_all-nli-dev_dot_accuracy": 0.333,
|
782 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.487,
|
783 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.486,
|
784 |
+
"eval_all-nli-dev_max_accuracy": 0.487,
|
785 |
+
"eval_loss": 3.4308860301971436,
|
786 |
+
"eval_runtime": 8.0469,
|
787 |
+
"eval_samples_per_second": 124.272,
|
788 |
+
"eval_steps_per_second": 7.829,
|
789 |
+
"step": 3900
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.64,
|
793 |
+
"grad_norm": 0.16402187943458557,
|
794 |
+
"learning_rate": 2.008888888888889e-05,
|
795 |
+
"loss": 3.4663,
|
796 |
+
"step": 4000
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 0.64,
|
800 |
+
"eval_all-nli-dev_cosine_accuracy": 0.448,
|
801 |
+
"eval_all-nli-dev_dot_accuracy": 0.355,
|
802 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.448,
|
803 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.442,
|
804 |
+
"eval_all-nli-dev_max_accuracy": 0.448,
|
805 |
+
"eval_loss": 3.4308860301971436,
|
806 |
+
"eval_runtime": 7.9755,
|
807 |
+
"eval_samples_per_second": 125.384,
|
808 |
+
"eval_steps_per_second": 7.899,
|
809 |
+
"step": 4000
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 0.656,
|
813 |
+
"grad_norm": 0.08633382618427277,
|
814 |
+
"learning_rate": 1.9200000000000003e-05,
|
815 |
+
"loss": 3.4663,
|
816 |
+
"step": 4100
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"epoch": 0.656,
|
820 |
+
"eval_all-nli-dev_cosine_accuracy": 0.463,
|
821 |
+
"eval_all-nli-dev_dot_accuracy": 0.3,
|
822 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.463,
|
823 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.465,
|
824 |
+
"eval_all-nli-dev_max_accuracy": 0.465,
|
825 |
+
"eval_loss": 3.4308860301971436,
|
826 |
+
"eval_runtime": 7.9722,
|
827 |
+
"eval_samples_per_second": 125.436,
|
828 |
+
"eval_steps_per_second": 7.902,
|
829 |
+
"step": 4100
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 0.672,
|
833 |
+
"grad_norm": 0.08357453346252441,
|
834 |
+
"learning_rate": 1.8311111111111114e-05,
|
835 |
+
"loss": 3.4664,
|
836 |
+
"step": 4200
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.672,
|
840 |
+
"eval_all-nli-dev_cosine_accuracy": 0.48,
|
841 |
+
"eval_all-nli-dev_dot_accuracy": 0.343,
|
842 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.48,
|
843 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.484,
|
844 |
+
"eval_all-nli-dev_max_accuracy": 0.484,
|
845 |
+
"eval_loss": 3.4308860301971436,
|
846 |
+
"eval_runtime": 7.9287,
|
847 |
+
"eval_samples_per_second": 126.125,
|
848 |
+
"eval_steps_per_second": 7.946,
|
849 |
+
"step": 4200
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.688,
|
853 |
+
"grad_norm": 0.20162004232406616,
|
854 |
+
"learning_rate": 1.7422222222222222e-05,
|
855 |
+
"loss": 3.4663,
|
856 |
+
"step": 4300
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.688,
|
860 |
+
"eval_all-nli-dev_cosine_accuracy": 0.451,
|
861 |
+
"eval_all-nli-dev_dot_accuracy": 0.354,
|
862 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.451,
|
863 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.469,
|
864 |
+
"eval_all-nli-dev_max_accuracy": 0.469,
|
865 |
+
"eval_loss": 3.4308860301971436,
|
866 |
+
"eval_runtime": 7.9242,
|
867 |
+
"eval_samples_per_second": 126.195,
|
868 |
+
"eval_steps_per_second": 7.95,
|
869 |
+
"step": 4300
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"epoch": 0.704,
|
873 |
+
"grad_norm": 0.17491748929023743,
|
874 |
+
"learning_rate": 1.6533333333333333e-05,
|
875 |
+
"loss": 3.4661,
|
876 |
+
"step": 4400
|
877 |
+
},
|
878 |
+
{
|
879 |
+
"epoch": 0.704,
|
880 |
+
"eval_all-nli-dev_cosine_accuracy": 0.47,
|
881 |
+
"eval_all-nli-dev_dot_accuracy": 0.367,
|
882 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.47,
|
883 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.478,
|
884 |
+
"eval_all-nli-dev_max_accuracy": 0.478,
|
885 |
+
"eval_loss": 3.4308862686157227,
|
886 |
+
"eval_runtime": 7.989,
|
887 |
+
"eval_samples_per_second": 125.172,
|
888 |
+
"eval_steps_per_second": 7.886,
|
889 |
+
"step": 4400
|
890 |
+
},
|
891 |
+
{
|
892 |
+
"epoch": 0.72,
|
893 |
+
"grad_norm": 0.1597195565700531,
|
894 |
+
"learning_rate": 1.5644444444444444e-05,
|
895 |
+
"loss": 3.4669,
|
896 |
+
"step": 4500
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 0.72,
|
900 |
+
"eval_all-nli-dev_cosine_accuracy": 0.466,
|
901 |
+
"eval_all-nli-dev_dot_accuracy": 0.375,
|
902 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.466,
|
903 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.467,
|
904 |
+
"eval_all-nli-dev_max_accuracy": 0.467,
|
905 |
+
"eval_loss": 3.4308860301971436,
|
906 |
+
"eval_runtime": 7.9327,
|
907 |
+
"eval_samples_per_second": 126.06,
|
908 |
+
"eval_steps_per_second": 7.942,
|
909 |
+
"step": 4500
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 0.736,
|
913 |
+
"grad_norm": 0.08718598634004593,
|
914 |
+
"learning_rate": 1.4755555555555556e-05,
|
915 |
+
"loss": 3.4664,
|
916 |
+
"step": 4600
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"epoch": 0.736,
|
920 |
+
"eval_all-nli-dev_cosine_accuracy": 0.44,
|
921 |
+
"eval_all-nli-dev_dot_accuracy": 0.307,
|
922 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.44,
|
923 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.455,
|
924 |
+
"eval_all-nli-dev_max_accuracy": 0.455,
|
925 |
+
"eval_loss": 3.4308862686157227,
|
926 |
+
"eval_runtime": 7.9594,
|
927 |
+
"eval_samples_per_second": 125.637,
|
928 |
+
"eval_steps_per_second": 7.915,
|
929 |
+
"step": 4600
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 0.752,
|
933 |
+
"grad_norm": 0.03150181472301483,
|
934 |
+
"learning_rate": 1.3866666666666667e-05,
|
935 |
+
"loss": 3.4664,
|
936 |
+
"step": 4700
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"epoch": 0.752,
|
940 |
+
"eval_all-nli-dev_cosine_accuracy": 0.469,
|
941 |
+
"eval_all-nli-dev_dot_accuracy": 0.336,
|
942 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.469,
|
943 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.481,
|
944 |
+
"eval_all-nli-dev_max_accuracy": 0.481,
|
945 |
+
"eval_loss": 3.4308860301971436,
|
946 |
+
"eval_runtime": 7.9652,
|
947 |
+
"eval_samples_per_second": 125.546,
|
948 |
+
"eval_steps_per_second": 7.909,
|
949 |
+
"step": 4700
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"epoch": 0.768,
|
953 |
+
"grad_norm": 0.027570225298404694,
|
954 |
+
"learning_rate": 1.2977777777777777e-05,
|
955 |
+
"loss": 3.4659,
|
956 |
+
"step": 4800
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 0.768,
|
960 |
+
"eval_all-nli-dev_cosine_accuracy": 0.461,
|
961 |
+
"eval_all-nli-dev_dot_accuracy": 0.282,
|
962 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.461,
|
963 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.466,
|
964 |
+
"eval_all-nli-dev_max_accuracy": 0.466,
|
965 |
+
"eval_loss": 3.4308862686157227,
|
966 |
+
"eval_runtime": 8.0206,
|
967 |
+
"eval_samples_per_second": 124.678,
|
968 |
+
"eval_steps_per_second": 7.855,
|
969 |
+
"step": 4800
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.784,
|
973 |
+
"grad_norm": 0.16807572543621063,
|
974 |
+
"learning_rate": 1.208888888888889e-05,
|
975 |
+
"loss": 3.466,
|
976 |
+
"step": 4900
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 0.784,
|
980 |
+
"eval_all-nli-dev_cosine_accuracy": 0.45,
|
981 |
+
"eval_all-nli-dev_dot_accuracy": 0.375,
|
982 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.45,
|
983 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.451,
|
984 |
+
"eval_all-nli-dev_max_accuracy": 0.451,
|
985 |
+
"eval_loss": 3.4308860301971436,
|
986 |
+
"eval_runtime": 7.9772,
|
987 |
+
"eval_samples_per_second": 125.358,
|
988 |
+
"eval_steps_per_second": 7.898,
|
989 |
+
"step": 4900
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.8,
|
993 |
+
"grad_norm": 0.03361041471362114,
|
994 |
+
"learning_rate": 1.1200000000000001e-05,
|
995 |
+
"loss": 3.466,
|
996 |
+
"step": 5000
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.8,
|
1000 |
+
"eval_all-nli-dev_cosine_accuracy": 0.464,
|
1001 |
+
"eval_all-nli-dev_dot_accuracy": 0.374,
|
1002 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.464,
|
1003 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.473,
|
1004 |
+
"eval_all-nli-dev_max_accuracy": 0.473,
|
1005 |
+
"eval_loss": 3.4308860301971436,
|
1006 |
+
"eval_runtime": 7.9287,
|
1007 |
+
"eval_samples_per_second": 126.123,
|
1008 |
+
"eval_steps_per_second": 7.946,
|
1009 |
+
"step": 5000
|
1010 |
+
},
|
1011 |
+
{
|
1012 |
+
"epoch": 0.816,
|
1013 |
+
"grad_norm": 0.1332545429468155,
|
1014 |
+
"learning_rate": 1.031111111111111e-05,
|
1015 |
+
"loss": 3.4664,
|
1016 |
+
"step": 5100
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 0.816,
|
1020 |
+
"eval_all-nli-dev_cosine_accuracy": 0.44,
|
1021 |
+
"eval_all-nli-dev_dot_accuracy": 0.341,
|
1022 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.44,
|
1023 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.44,
|
1024 |
+
"eval_all-nli-dev_max_accuracy": 0.44,
|
1025 |
+
"eval_loss": 3.4308860301971436,
|
1026 |
+
"eval_runtime": 7.9414,
|
1027 |
+
"eval_samples_per_second": 125.922,
|
1028 |
+
"eval_steps_per_second": 7.933,
|
1029 |
+
"step": 5100
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 0.832,
|
1033 |
+
"grad_norm": 0.029825175181031227,
|
1034 |
+
"learning_rate": 9.422222222222222e-06,
|
1035 |
+
"loss": 3.4658,
|
1036 |
+
"step": 5200
|
1037 |
+
},
|
1038 |
+
{
|
1039 |
+
"epoch": 0.832,
|
1040 |
+
"eval_all-nli-dev_cosine_accuracy": 0.496,
|
1041 |
+
"eval_all-nli-dev_dot_accuracy": 0.356,
|
1042 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.496,
|
1043 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.497,
|
1044 |
+
"eval_all-nli-dev_max_accuracy": 0.497,
|
1045 |
+
"eval_loss": 3.4308860301971436,
|
1046 |
+
"eval_runtime": 7.9321,
|
1047 |
+
"eval_samples_per_second": 126.07,
|
1048 |
+
"eval_steps_per_second": 7.942,
|
1049 |
+
"step": 5200
|
1050 |
+
},
|
1051 |
+
{
|
1052 |
+
"epoch": 0.848,
|
1053 |
+
"grad_norm": 0.023120058700442314,
|
1054 |
+
"learning_rate": 8.533333333333334e-06,
|
1055 |
+
"loss": 3.4664,
|
1056 |
+
"step": 5300
|
1057 |
+
},
|
1058 |
+
{
|
1059 |
+
"epoch": 0.848,
|
1060 |
+
"eval_all-nli-dev_cosine_accuracy": 0.464,
|
1061 |
+
"eval_all-nli-dev_dot_accuracy": 0.321,
|
1062 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.464,
|
1063 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.474,
|
1064 |
+
"eval_all-nli-dev_max_accuracy": 0.474,
|
1065 |
+
"eval_loss": 3.4308860301971436,
|
1066 |
+
"eval_runtime": 7.9178,
|
1067 |
+
"eval_samples_per_second": 126.297,
|
1068 |
+
"eval_steps_per_second": 7.957,
|
1069 |
+
"step": 5300
|
1070 |
+
},
|
1071 |
+
{
|
1072 |
+
"epoch": 0.864,
|
1073 |
+
"grad_norm": 0.10328388214111328,
|
1074 |
+
"learning_rate": 7.644444444444445e-06,
|
1075 |
+
"loss": 3.4658,
|
1076 |
+
"step": 5400
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 0.864,
|
1080 |
+
"eval_all-nli-dev_cosine_accuracy": 0.446,
|
1081 |
+
"eval_all-nli-dev_dot_accuracy": 0.309,
|
1082 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.446,
|
1083 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.449,
|
1084 |
+
"eval_all-nli-dev_max_accuracy": 0.449,
|
1085 |
+
"eval_loss": 3.4308860301971436,
|
1086 |
+
"eval_runtime": 8.0066,
|
1087 |
+
"eval_samples_per_second": 124.897,
|
1088 |
+
"eval_steps_per_second": 7.869,
|
1089 |
+
"step": 5400
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.88,
|
1093 |
+
"grad_norm": 0.03729160130023956,
|
1094 |
+
"learning_rate": 6.755555555555555e-06,
|
1095 |
+
"loss": 3.4662,
|
1096 |
+
"step": 5500
|
1097 |
+
},
|
1098 |
+
{
|
1099 |
+
"epoch": 0.88,
|
1100 |
+
"eval_all-nli-dev_cosine_accuracy": 0.466,
|
1101 |
+
"eval_all-nli-dev_dot_accuracy": 0.311,
|
1102 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.466,
|
1103 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.464,
|
1104 |
+
"eval_all-nli-dev_max_accuracy": 0.466,
|
1105 |
+
"eval_loss": 3.4308860301971436,
|
1106 |
+
"eval_runtime": 7.964,
|
1107 |
+
"eval_samples_per_second": 125.565,
|
1108 |
+
"eval_steps_per_second": 7.911,
|
1109 |
+
"step": 5500
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"epoch": 0.896,
|
1113 |
+
"grad_norm": 0.02747642807662487,
|
1114 |
+
"learning_rate": 5.866666666666667e-06,
|
1115 |
+
"loss": 3.4663,
|
1116 |
+
"step": 5600
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 0.896,
|
1120 |
+
"eval_all-nli-dev_cosine_accuracy": 0.476,
|
1121 |
+
"eval_all-nli-dev_dot_accuracy": 0.369,
|
1122 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.476,
|
1123 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.468,
|
1124 |
+
"eval_all-nli-dev_max_accuracy": 0.476,
|
1125 |
+
"eval_loss": 3.4308860301971436,
|
1126 |
+
"eval_runtime": 7.9426,
|
1127 |
+
"eval_samples_per_second": 125.903,
|
1128 |
+
"eval_steps_per_second": 7.932,
|
1129 |
+
"step": 5600
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.912,
|
1133 |
+
"grad_norm": 0.053027376532554626,
|
1134 |
+
"learning_rate": 4.977777777777778e-06,
|
1135 |
+
"loss": 3.4667,
|
1136 |
+
"step": 5700
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.912,
|
1140 |
+
"eval_all-nli-dev_cosine_accuracy": 0.455,
|
1141 |
+
"eval_all-nli-dev_dot_accuracy": 0.369,
|
1142 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.455,
|
1143 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.454,
|
1144 |
+
"eval_all-nli-dev_max_accuracy": 0.455,
|
1145 |
+
"eval_loss": 3.4308860301971436,
|
1146 |
+
"eval_runtime": 7.9874,
|
1147 |
+
"eval_samples_per_second": 125.197,
|
1148 |
+
"eval_steps_per_second": 7.887,
|
1149 |
+
"step": 5700
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 0.928,
|
1153 |
+
"grad_norm": 0.02996170148253441,
|
1154 |
+
"learning_rate": 4.088888888888889e-06,
|
1155 |
+
"loss": 3.4669,
|
1156 |
+
"step": 5800
|
1157 |
+
},
|
1158 |
+
{
|
1159 |
+
"epoch": 0.928,
|
1160 |
+
"eval_all-nli-dev_cosine_accuracy": 0.456,
|
1161 |
+
"eval_all-nli-dev_dot_accuracy": 0.229,
|
1162 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.456,
|
1163 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.463,
|
1164 |
+
"eval_all-nli-dev_max_accuracy": 0.463,
|
1165 |
+
"eval_loss": 3.4308860301971436,
|
1166 |
+
"eval_runtime": 7.9568,
|
1167 |
+
"eval_samples_per_second": 125.679,
|
1168 |
+
"eval_steps_per_second": 7.918,
|
1169 |
+
"step": 5800
|
1170 |
+
},
|
1171 |
+
{
|
1172 |
+
"epoch": 0.944,
|
1173 |
+
"grad_norm": 0.05124541372060776,
|
1174 |
+
"learning_rate": 3.2000000000000003e-06,
|
1175 |
+
"loss": 3.4657,
|
1176 |
+
"step": 5900
|
1177 |
+
},
|
1178 |
+
{
|
1179 |
+
"epoch": 0.944,
|
1180 |
+
"eval_all-nli-dev_cosine_accuracy": 0.466,
|
1181 |
+
"eval_all-nli-dev_dot_accuracy": 0.388,
|
1182 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.467,
|
1183 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.464,
|
1184 |
+
"eval_all-nli-dev_max_accuracy": 0.467,
|
1185 |
+
"eval_loss": 3.4308862686157227,
|
1186 |
+
"eval_runtime": 7.9623,
|
1187 |
+
"eval_samples_per_second": 125.591,
|
1188 |
+
"eval_steps_per_second": 7.912,
|
1189 |
+
"step": 5900
|
1190 |
+
},
|
1191 |
+
{
|
1192 |
+
"epoch": 0.96,
|
1193 |
+
"grad_norm": 0.06664357334375381,
|
1194 |
+
"learning_rate": 2.311111111111111e-06,
|
1195 |
+
"loss": 3.4671,
|
1196 |
+
"step": 6000
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 0.96,
|
1200 |
+
"eval_all-nli-dev_cosine_accuracy": 0.452,
|
1201 |
+
"eval_all-nli-dev_dot_accuracy": 0.33,
|
1202 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.452,
|
1203 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.456,
|
1204 |
+
"eval_all-nli-dev_max_accuracy": 0.456,
|
1205 |
+
"eval_loss": 3.4308862686157227,
|
1206 |
+
"eval_runtime": 7.9667,
|
1207 |
+
"eval_samples_per_second": 125.523,
|
1208 |
+
"eval_steps_per_second": 7.908,
|
1209 |
+
"step": 6000
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.976,
|
1213 |
+
"grad_norm": 0.18055689334869385,
|
1214 |
+
"learning_rate": 1.4222222222222223e-06,
|
1215 |
+
"loss": 2.9471,
|
1216 |
+
"step": 6100
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 0.976,
|
1220 |
+
"eval_all-nli-dev_cosine_accuracy": 0.479,
|
1221 |
+
"eval_all-nli-dev_dot_accuracy": 0.378,
|
1222 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.479,
|
1223 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.484,
|
1224 |
+
"eval_all-nli-dev_max_accuracy": 0.484,
|
1225 |
+
"eval_loss": 3.4308860301971436,
|
1226 |
+
"eval_runtime": 7.9406,
|
1227 |
+
"eval_samples_per_second": 125.936,
|
1228 |
+
"eval_steps_per_second": 7.934,
|
1229 |
+
"step": 6100
|
1230 |
+
},
|
1231 |
+
{
|
1232 |
+
"epoch": 0.992,
|
1233 |
+
"grad_norm": 0.10885396599769592,
|
1234 |
+
"learning_rate": 5.333333333333333e-07,
|
1235 |
+
"loss": 0.6929,
|
1236 |
+
"step": 6200
|
1237 |
+
},
|
1238 |
+
{
|
1239 |
+
"epoch": 0.992,
|
1240 |
+
"eval_all-nli-dev_cosine_accuracy": 0.452,
|
1241 |
+
"eval_all-nli-dev_dot_accuracy": 0.34,
|
1242 |
+
"eval_all-nli-dev_euclidean_accuracy": 0.452,
|
1243 |
+
"eval_all-nli-dev_manhattan_accuracy": 0.456,
|
1244 |
+
"eval_all-nli-dev_max_accuracy": 0.456,
|
1245 |
+
"eval_loss": 3.4308860301971436,
|
1246 |
+
"eval_runtime": 7.9933,
|
1247 |
+
"eval_samples_per_second": 125.105,
|
1248 |
+
"eval_steps_per_second": 7.882,
|
1249 |
+
"step": 6200
|
1250 |
+
}
|
1251 |
+
],
|
1252 |
+
"logging_steps": 100,
|
1253 |
+
"max_steps": 6250,
|
1254 |
+
"num_input_tokens_seen": 0,
|
1255 |
+
"num_train_epochs": 1,
|
1256 |
+
"save_steps": 100,
|
1257 |
+
"stateful_callbacks": {
|
1258 |
+
"TrainerControl": {
|
1259 |
+
"args": {
|
1260 |
+
"should_epoch_stop": false,
|
1261 |
+
"should_evaluate": false,
|
1262 |
+
"should_log": false,
|
1263 |
+
"should_save": true,
|
1264 |
+
"should_training_stop": false
|
1265 |
+
},
|
1266 |
+
"attributes": {}
|
1267 |
+
}
|
1268 |
+
},
|
1269 |
+
"total_flos": 0.0,
|
1270 |
+
"train_batch_size": 16,
|
1271 |
+
"trial_name": null,
|
1272 |
+
"trial_params": null
|
1273 |
+
}
|
checkpoint-6200/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e69823ce181dc26bc2db3e2da63ac6c5f79ba1c1c3395abb62624ff8fc42611
|
3 |
+
size 5432
|
final/1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
final/README.md
ADDED
@@ -0,0 +1,524 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
library_name: sentence-transformers
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- dataset_size:100K<n<1M
|
10 |
+
- loss:MultipleNegativesRankingLoss
|
11 |
+
base_model: FacebookAI/xlm-roberta-large
|
12 |
+
metrics:
|
13 |
+
- cosine_accuracy
|
14 |
+
- dot_accuracy
|
15 |
+
- manhattan_accuracy
|
16 |
+
- euclidean_accuracy
|
17 |
+
- max_accuracy
|
18 |
+
widget:
|
19 |
+
- source_sentence: The boy scowls
|
20 |
+
sentences:
|
21 |
+
- People are around a fire
|
22 |
+
- Boy playing baseball.
|
23 |
+
- The girls are at school.
|
24 |
+
- source_sentence: an eagle flies
|
25 |
+
sentences:
|
26 |
+
- A man floats up a ladder.
|
27 |
+
- He is playing a song.
|
28 |
+
- The t-shirt is white.
|
29 |
+
- source_sentence: A woman sings.
|
30 |
+
sentences:
|
31 |
+
- The woman is outdoors.
|
32 |
+
- the animal is running
|
33 |
+
- A man is playing indoors.
|
34 |
+
- source_sentence: A bird flying.
|
35 |
+
sentences:
|
36 |
+
- No one is on a canoe.
|
37 |
+
- A man is on his feet.
|
38 |
+
- Two men listen to music.
|
39 |
+
- source_sentence: There's a dock
|
40 |
+
sentences:
|
41 |
+
- The man is performing.
|
42 |
+
- Five people on a path
|
43 |
+
- The elephant sits on a dog
|
44 |
+
pipeline_tag: sentence-similarity
|
45 |
+
model-index:
|
46 |
+
- name: SentenceTransformer based on FacebookAI/xlm-roberta-large
|
47 |
+
results:
|
48 |
+
- task:
|
49 |
+
type: triplet
|
50 |
+
name: Triplet
|
51 |
+
dataset:
|
52 |
+
name: all nli dev
|
53 |
+
type: all-nli-dev
|
54 |
+
metrics:
|
55 |
+
- type: cosine_accuracy
|
56 |
+
value: 0.452
|
57 |
+
name: Cosine Accuracy
|
58 |
+
- type: dot_accuracy
|
59 |
+
value: 0.34
|
60 |
+
name: Dot Accuracy
|
61 |
+
- type: manhattan_accuracy
|
62 |
+
value: 0.456
|
63 |
+
name: Manhattan Accuracy
|
64 |
+
- type: euclidean_accuracy
|
65 |
+
value: 0.452
|
66 |
+
name: Euclidean Accuracy
|
67 |
+
- type: max_accuracy
|
68 |
+
value: 0.456
|
69 |
+
name: Max Accuracy
|
70 |
+
- task:
|
71 |
+
type: triplet
|
72 |
+
name: Triplet
|
73 |
+
dataset:
|
74 |
+
name: all nli test
|
75 |
+
type: all-nli-test
|
76 |
+
metrics:
|
77 |
+
- type: cosine_accuracy
|
78 |
+
value: 0.481
|
79 |
+
name: Cosine Accuracy
|
80 |
+
- type: dot_accuracy
|
81 |
+
value: 0.364
|
82 |
+
name: Dot Accuracy
|
83 |
+
- type: manhattan_accuracy
|
84 |
+
value: 0.48
|
85 |
+
name: Manhattan Accuracy
|
86 |
+
- type: euclidean_accuracy
|
87 |
+
value: 0.481
|
88 |
+
name: Euclidean Accuracy
|
89 |
+
- type: max_accuracy
|
90 |
+
value: 0.481
|
91 |
+
name: Max Accuracy
|
92 |
+
---
|
93 |
+
|
94 |
+
# SentenceTransformer based on FacebookAI/xlm-roberta-large
|
95 |
+
|
96 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
97 |
+
|
98 |
+
## Model Details
|
99 |
+
|
100 |
+
### Model Description
|
101 |
+
- **Model Type:** Sentence Transformer
|
102 |
+
- **Base model:** [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) <!-- at revision c23d21b0620b635a76227c604d44e43a9f0ee389 -->
|
103 |
+
- **Maximum Sequence Length:** 512 tokens
|
104 |
+
- **Output Dimensionality:** 1024 tokens
|
105 |
+
- **Similarity Function:** Cosine Similarity
|
106 |
+
- **Training Dataset:**
|
107 |
+
- [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
|
108 |
+
- **Language:** en
|
109 |
+
<!-- - **License:** Unknown -->
|
110 |
+
|
111 |
+
### Model Sources
|
112 |
+
|
113 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
114 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
115 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
116 |
+
|
117 |
+
### Full Model Architecture
|
118 |
+
|
119 |
+
```
|
120 |
+
SentenceTransformer(
|
121 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
122 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
123 |
+
)
|
124 |
+
```
|
125 |
+
|
126 |
+
## Usage
|
127 |
+
|
128 |
+
### Direct Usage (Sentence Transformers)
|
129 |
+
|
130 |
+
First install the Sentence Transformers library:
|
131 |
+
|
132 |
+
```bash
|
133 |
+
pip install -U sentence-transformers
|
134 |
+
```
|
135 |
+
|
136 |
+
Then you can load this model and run inference.
|
137 |
+
```python
|
138 |
+
from sentence_transformers import SentenceTransformer
|
139 |
+
|
140 |
+
# Download from the 🤗 Hub
|
141 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
142 |
+
# Run inference
|
143 |
+
sentences = [
|
144 |
+
"There's a dock",
|
145 |
+
'The man is performing.',
|
146 |
+
'Five people on a path',
|
147 |
+
]
|
148 |
+
embeddings = model.encode(sentences)
|
149 |
+
print(embeddings.shape)
|
150 |
+
# [3, 1024]
|
151 |
+
|
152 |
+
# Get the similarity scores for the embeddings
|
153 |
+
similarities = model.similarity(embeddings, embeddings)
|
154 |
+
print(similarities.shape)
|
155 |
+
# [3, 3]
|
156 |
+
```
|
157 |
+
|
158 |
+
<!--
|
159 |
+
### Direct Usage (Transformers)
|
160 |
+
|
161 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
162 |
+
|
163 |
+
</details>
|
164 |
+
-->
|
165 |
+
|
166 |
+
<!--
|
167 |
+
### Downstream Usage (Sentence Transformers)
|
168 |
+
|
169 |
+
You can finetune this model on your own dataset.
|
170 |
+
|
171 |
+
<details><summary>Click to expand</summary>
|
172 |
+
|
173 |
+
</details>
|
174 |
+
-->
|
175 |
+
|
176 |
+
<!--
|
177 |
+
### Out-of-Scope Use
|
178 |
+
|
179 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
180 |
+
-->
|
181 |
+
|
182 |
+
## Evaluation
|
183 |
+
|
184 |
+
### Metrics
|
185 |
+
|
186 |
+
#### Triplet
|
187 |
+
* Dataset: `all-nli-dev`
|
188 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
189 |
+
|
190 |
+
| Metric | Value |
|
191 |
+
|:-------------------|:----------|
|
192 |
+
| cosine_accuracy | 0.452 |
|
193 |
+
| dot_accuracy | 0.34 |
|
194 |
+
| manhattan_accuracy | 0.456 |
|
195 |
+
| euclidean_accuracy | 0.452 |
|
196 |
+
| **max_accuracy** | **0.456** |
|
197 |
+
|
198 |
+
#### Triplet
|
199 |
+
* Dataset: `all-nli-test`
|
200 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
201 |
+
|
202 |
+
| Metric | Value |
|
203 |
+
|:-------------------|:----------|
|
204 |
+
| cosine_accuracy | 0.481 |
|
205 |
+
| dot_accuracy | 0.364 |
|
206 |
+
| manhattan_accuracy | 0.48 |
|
207 |
+
| euclidean_accuracy | 0.481 |
|
208 |
+
| **max_accuracy** | **0.481** |
|
209 |
+
|
210 |
+
<!--
|
211 |
+
## Bias, Risks and Limitations
|
212 |
+
|
213 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
214 |
+
-->
|
215 |
+
|
216 |
+
<!--
|
217 |
+
### Recommendations
|
218 |
+
|
219 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
220 |
+
-->
|
221 |
+
|
222 |
+
## Training Details
|
223 |
+
|
224 |
+
### Training Dataset
|
225 |
+
|
226 |
+
#### sentence-transformers/all-nli
|
227 |
+
|
228 |
+
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
229 |
+
* Size: 100,000 training samples
|
230 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
231 |
+
* Approximate statistics based on the first 1000 samples:
|
232 |
+
| | anchor | positive | negative |
|
233 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
234 |
+
| type | string | string | string |
|
235 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 10.9 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.62 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.76 tokens</li><li>max: 55 tokens</li></ul> |
|
236 |
+
* Samples:
|
237 |
+
| anchor | positive | negative |
|
238 |
+
|:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
|
239 |
+
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
|
240 |
+
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
|
241 |
+
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
|
242 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
243 |
+
```json
|
244 |
+
{
|
245 |
+
"scale": 20.0,
|
246 |
+
"similarity_fct": "cos_sim"
|
247 |
+
}
|
248 |
+
```
|
249 |
+
|
250 |
+
### Evaluation Dataset
|
251 |
+
|
252 |
+
#### sentence-transformers/all-nli
|
253 |
+
|
254 |
+
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
255 |
+
* Size: 1,000 evaluation samples
|
256 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
257 |
+
* Approximate statistics based on the first 1000 samples:
|
258 |
+
| | anchor | positive | negative |
|
259 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
260 |
+
| type | string | string | string |
|
261 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 20.31 tokens</li><li>max: 83 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.71 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.39 tokens</li><li>max: 32 tokens</li></ul> |
|
262 |
+
* Samples:
|
263 |
+
| anchor | positive | negative |
|
264 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
|
265 |
+
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
|
266 |
+
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
|
267 |
+
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
|
268 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
269 |
+
```json
|
270 |
+
{
|
271 |
+
"scale": 20.0,
|
272 |
+
"similarity_fct": "cos_sim"
|
273 |
+
}
|
274 |
+
```
|
275 |
+
|
276 |
+
### Training Hyperparameters
|
277 |
+
#### Non-Default Hyperparameters
|
278 |
+
|
279 |
+
- `eval_strategy`: steps
|
280 |
+
- `per_device_train_batch_size`: 16
|
281 |
+
- `per_device_eval_batch_size`: 16
|
282 |
+
- `num_train_epochs`: 1
|
283 |
+
- `warmup_ratio`: 0.1
|
284 |
+
- `fp16`: True
|
285 |
+
- `batch_sampler`: no_duplicates
|
286 |
+
|
287 |
+
#### All Hyperparameters
|
288 |
+
<details><summary>Click to expand</summary>
|
289 |
+
|
290 |
+
- `overwrite_output_dir`: False
|
291 |
+
- `do_predict`: False
|
292 |
+
- `eval_strategy`: steps
|
293 |
+
- `prediction_loss_only`: True
|
294 |
+
- `per_device_train_batch_size`: 16
|
295 |
+
- `per_device_eval_batch_size`: 16
|
296 |
+
- `per_gpu_train_batch_size`: None
|
297 |
+
- `per_gpu_eval_batch_size`: None
|
298 |
+
- `gradient_accumulation_steps`: 1
|
299 |
+
- `eval_accumulation_steps`: None
|
300 |
+
- `learning_rate`: 5e-05
|
301 |
+
- `weight_decay`: 0.0
|
302 |
+
- `adam_beta1`: 0.9
|
303 |
+
- `adam_beta2`: 0.999
|
304 |
+
- `adam_epsilon`: 1e-08
|
305 |
+
- `max_grad_norm`: 1.0
|
306 |
+
- `num_train_epochs`: 1
|
307 |
+
- `max_steps`: -1
|
308 |
+
- `lr_scheduler_type`: linear
|
309 |
+
- `lr_scheduler_kwargs`: {}
|
310 |
+
- `warmup_ratio`: 0.1
|
311 |
+
- `warmup_steps`: 0
|
312 |
+
- `log_level`: passive
|
313 |
+
- `log_level_replica`: warning
|
314 |
+
- `log_on_each_node`: True
|
315 |
+
- `logging_nan_inf_filter`: True
|
316 |
+
- `save_safetensors`: True
|
317 |
+
- `save_on_each_node`: False
|
318 |
+
- `save_only_model`: False
|
319 |
+
- `restore_callback_states_from_checkpoint`: False
|
320 |
+
- `no_cuda`: False
|
321 |
+
- `use_cpu`: False
|
322 |
+
- `use_mps_device`: False
|
323 |
+
- `seed`: 42
|
324 |
+
- `data_seed`: None
|
325 |
+
- `jit_mode_eval`: False
|
326 |
+
- `use_ipex`: False
|
327 |
+
- `bf16`: False
|
328 |
+
- `fp16`: True
|
329 |
+
- `fp16_opt_level`: O1
|
330 |
+
- `half_precision_backend`: auto
|
331 |
+
- `bf16_full_eval`: False
|
332 |
+
- `fp16_full_eval`: False
|
333 |
+
- `tf32`: None
|
334 |
+
- `local_rank`: 0
|
335 |
+
- `ddp_backend`: None
|
336 |
+
- `tpu_num_cores`: None
|
337 |
+
- `tpu_metrics_debug`: False
|
338 |
+
- `debug`: []
|
339 |
+
- `dataloader_drop_last`: False
|
340 |
+
- `dataloader_num_workers`: 0
|
341 |
+
- `dataloader_prefetch_factor`: None
|
342 |
+
- `past_index`: -1
|
343 |
+
- `disable_tqdm`: False
|
344 |
+
- `remove_unused_columns`: True
|
345 |
+
- `label_names`: None
|
346 |
+
- `load_best_model_at_end`: False
|
347 |
+
- `ignore_data_skip`: False
|
348 |
+
- `fsdp`: []
|
349 |
+
- `fsdp_min_num_params`: 0
|
350 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
351 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
352 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
353 |
+
- `deepspeed`: None
|
354 |
+
- `label_smoothing_factor`: 0.0
|
355 |
+
- `optim`: adamw_torch
|
356 |
+
- `optim_args`: None
|
357 |
+
- `adafactor`: False
|
358 |
+
- `group_by_length`: False
|
359 |
+
- `length_column_name`: length
|
360 |
+
- `ddp_find_unused_parameters`: None
|
361 |
+
- `ddp_bucket_cap_mb`: None
|
362 |
+
- `ddp_broadcast_buffers`: False
|
363 |
+
- `dataloader_pin_memory`: True
|
364 |
+
- `dataloader_persistent_workers`: False
|
365 |
+
- `skip_memory_metrics`: True
|
366 |
+
- `use_legacy_prediction_loop`: False
|
367 |
+
- `push_to_hub`: False
|
368 |
+
- `resume_from_checkpoint`: None
|
369 |
+
- `hub_model_id`: None
|
370 |
+
- `hub_strategy`: every_save
|
371 |
+
- `hub_private_repo`: False
|
372 |
+
- `hub_always_push`: False
|
373 |
+
- `gradient_checkpointing`: False
|
374 |
+
- `gradient_checkpointing_kwargs`: None
|
375 |
+
- `include_inputs_for_metrics`: False
|
376 |
+
- `eval_do_concat_batches`: True
|
377 |
+
- `fp16_backend`: auto
|
378 |
+
- `push_to_hub_model_id`: None
|
379 |
+
- `push_to_hub_organization`: None
|
380 |
+
- `mp_parameters`:
|
381 |
+
- `auto_find_batch_size`: False
|
382 |
+
- `full_determinism`: False
|
383 |
+
- `torchdynamo`: None
|
384 |
+
- `ray_scope`: last
|
385 |
+
- `ddp_timeout`: 1800
|
386 |
+
- `torch_compile`: False
|
387 |
+
- `torch_compile_backend`: None
|
388 |
+
- `torch_compile_mode`: None
|
389 |
+
- `dispatch_batches`: None
|
390 |
+
- `split_batches`: None
|
391 |
+
- `include_tokens_per_second`: False
|
392 |
+
- `include_num_input_tokens_seen`: False
|
393 |
+
- `neftune_noise_alpha`: None
|
394 |
+
- `optim_target_modules`: None
|
395 |
+
- `batch_eval_metrics`: False
|
396 |
+
- `batch_sampler`: no_duplicates
|
397 |
+
- `multi_dataset_batch_sampler`: proportional
|
398 |
+
|
399 |
+
</details>
|
400 |
+
|
401 |
+
### Training Logs
|
402 |
+
| Epoch | Step | Training Loss | loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
|
403 |
+
|:-----:|:----:|:-------------:|:------:|:------------------------:|:-------------------------:|
|
404 |
+
| 0 | 0 | - | - | 0.616 | - |
|
405 |
+
| 0.016 | 100 | 3.2768 | 1.8053 | 0.833 | - |
|
406 |
+
| 0.032 | 200 | 1.1697 | 1.2878 | 0.861 | - |
|
407 |
+
| 0.048 | 300 | 1.372 | 1.2466 | 0.861 | - |
|
408 |
+
| 0.064 | 400 | 1.0476 | 1.2291 | 0.863 | - |
|
409 |
+
| 0.08 | 500 | 0.8588 | 1.5259 | 0.838 | - |
|
410 |
+
| 0.096 | 600 | 2.9781 | 3.4309 | 0.463 | - |
|
411 |
+
| 0.112 | 700 | 3.4982 | 3.4309 | 0.457 | - |
|
412 |
+
| 0.128 | 800 | 3.467 | 3.4309 | 0.479 | - |
|
413 |
+
| 0.144 | 900 | 3.4665 | 3.4309 | 0.452 | - |
|
414 |
+
| 0.16 | 1000 | 3.4664 | 3.4309 | 0.477 | - |
|
415 |
+
| 0.176 | 1100 | 3.4663 | 3.4309 | 0.458 | - |
|
416 |
+
| 0.192 | 1200 | 3.4661 | 3.4309 | 0.462 | - |
|
417 |
+
| 0.208 | 1300 | 3.4658 | 3.4309 | 0.45 | - |
|
418 |
+
| 0.224 | 1400 | 3.4661 | 3.4309 | 0.481 | - |
|
419 |
+
| 0.24 | 1500 | 3.4877 | 3.4309 | 0.464 | - |
|
420 |
+
| 0.256 | 1600 | 3.4675 | 3.4309 | 0.462 | - |
|
421 |
+
| 0.272 | 1700 | 3.4665 | 3.4309 | 0.488 | - |
|
422 |
+
| 0.288 | 1800 | 3.4667 | 3.4309 | 0.492 | - |
|
423 |
+
| 0.304 | 1900 | 3.4664 | 3.4309 | 0.455 | - |
|
424 |
+
| 0.32 | 2000 | 3.4661 | 3.4309 | 0.453 | - |
|
425 |
+
| 0.336 | 2100 | 3.4666 | 3.4309 | 0.477 | - |
|
426 |
+
| 0.352 | 2200 | 3.4683 | 3.4309 | 0.48 | - |
|
427 |
+
| 0.368 | 2300 | 3.4663 | 3.4309 | 0.469 | - |
|
428 |
+
| 0.384 | 2400 | 3.4667 | 3.4309 | 0.448 | - |
|
429 |
+
| 0.4 | 2500 | 3.4669 | 3.4309 | 0.499 | - |
|
430 |
+
| 0.416 | 2600 | 3.4661 | 3.4309 | 0.453 | - |
|
431 |
+
| 0.432 | 2700 | 3.4656 | 3.4309 | 0.467 | - |
|
432 |
+
| 0.448 | 2800 | 3.4662 | 3.4309 | 0.507 | - |
|
433 |
+
| 0.464 | 2900 | 3.4902 | 3.4309 | 0.473 | - |
|
434 |
+
| 0.48 | 3000 | 3.4663 | 3.4309 | 0.469 | - |
|
435 |
+
| 0.496 | 3100 | 3.554 | 3.4309 | 0.46 | - |
|
436 |
+
| 0.512 | 3200 | 3.4664 | 3.4309 | 0.455 | - |
|
437 |
+
| 0.528 | 3300 | 3.4668 | 3.4309 | 0.46 | - |
|
438 |
+
| 0.544 | 3400 | 3.4661 | 3.4309 | 0.492 | - |
|
439 |
+
| 0.56 | 3500 | 3.4667 | 3.4309 | 0.432 | - |
|
440 |
+
| 0.576 | 3600 | 3.4668 | 3.4309 | 0.486 | - |
|
441 |
+
| 0.592 | 3700 | 3.4666 | 3.4309 | 0.469 | - |
|
442 |
+
| 0.608 | 3800 | 3.4669 | 3.4309 | 0.473 | - |
|
443 |
+
| 0.624 | 3900 | 3.4658 | 3.4309 | 0.487 | - |
|
444 |
+
| 0.64 | 4000 | 3.4663 | 3.4309 | 0.448 | - |
|
445 |
+
| 0.656 | 4100 | 3.4663 | 3.4309 | 0.465 | - |
|
446 |
+
| 0.672 | 4200 | 3.4664 | 3.4309 | 0.484 | - |
|
447 |
+
| 0.688 | 4300 | 3.4663 | 3.4309 | 0.469 | - |
|
448 |
+
| 0.704 | 4400 | 3.4661 | 3.4309 | 0.478 | - |
|
449 |
+
| 0.72 | 4500 | 3.4669 | 3.4309 | 0.467 | - |
|
450 |
+
| 0.736 | 4600 | 3.4664 | 3.4309 | 0.455 | - |
|
451 |
+
| 0.752 | 4700 | 3.4664 | 3.4309 | 0.481 | - |
|
452 |
+
| 0.768 | 4800 | 3.4659 | 3.4309 | 0.466 | - |
|
453 |
+
| 0.784 | 4900 | 3.466 | 3.4309 | 0.451 | - |
|
454 |
+
| 0.8 | 5000 | 3.466 | 3.4309 | 0.473 | - |
|
455 |
+
| 0.816 | 5100 | 3.4664 | 3.4309 | 0.44 | - |
|
456 |
+
| 0.832 | 5200 | 3.4658 | 3.4309 | 0.497 | - |
|
457 |
+
| 0.848 | 5300 | 3.4664 | 3.4309 | 0.474 | - |
|
458 |
+
| 0.864 | 5400 | 3.4658 | 3.4309 | 0.449 | - |
|
459 |
+
| 0.88 | 5500 | 3.4662 | 3.4309 | 0.466 | - |
|
460 |
+
| 0.896 | 5600 | 3.4663 | 3.4309 | 0.476 | - |
|
461 |
+
| 0.912 | 5700 | 3.4667 | 3.4309 | 0.455 | - |
|
462 |
+
| 0.928 | 5800 | 3.4669 | 3.4309 | 0.463 | - |
|
463 |
+
| 0.944 | 5900 | 3.4657 | 3.4309 | 0.467 | - |
|
464 |
+
| 0.96 | 6000 | 3.4671 | 3.4309 | 0.456 | - |
|
465 |
+
| 0.976 | 6100 | 2.9471 | 3.4309 | 0.484 | - |
|
466 |
+
| 0.992 | 6200 | 0.6929 | 3.4309 | 0.456 | - |
|
467 |
+
| 1.0 | 6250 | - | - | - | 0.481 |
|
468 |
+
|
469 |
+
|
470 |
+
### Framework Versions
|
471 |
+
- Python: 3.9.10
|
472 |
+
- Sentence Transformers: 3.0.0
|
473 |
+
- Transformers: 4.41.2
|
474 |
+
- PyTorch: 2.3.0+cu121
|
475 |
+
- Accelerate: 0.26.1
|
476 |
+
- Datasets: 2.16.1
|
477 |
+
- Tokenizers: 0.19.1
|
478 |
+
|
479 |
+
## Citation
|
480 |
+
|
481 |
+
### BibTeX
|
482 |
+
|
483 |
+
#### Sentence Transformers
|
484 |
+
```bibtex
|
485 |
+
@inproceedings{reimers-2019-sentence-bert,
|
486 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
487 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
488 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
489 |
+
month = "11",
|
490 |
+
year = "2019",
|
491 |
+
publisher = "Association for Computational Linguistics",
|
492 |
+
url = "https://arxiv.org/abs/1908.10084",
|
493 |
+
}
|
494 |
+
```
|
495 |
+
|
496 |
+
#### MultipleNegativesRankingLoss
|
497 |
+
```bibtex
|
498 |
+
@misc{henderson2017efficient,
|
499 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
500 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
501 |
+
year={2017},
|
502 |
+
eprint={1705.00652},
|
503 |
+
archivePrefix={arXiv},
|
504 |
+
primaryClass={cs.CL}
|
505 |
+
}
|
506 |
+
```
|
507 |
+
|
508 |
+
<!--
|
509 |
+
## Glossary
|
510 |
+
|
511 |
+
*Clearly define terms in order to be accessible across audiences.*
|
512 |
+
-->
|
513 |
+
|
514 |
+
<!--
|
515 |
+
## Model Card Authors
|
516 |
+
|
517 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
518 |
+
-->
|
519 |
+
|
520 |
+
<!--
|
521 |
+
## Model Card Contact
|
522 |
+
|
523 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
524 |
+
-->
|
final/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "FacebookAI/xlm-roberta-large",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.41.2",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
final/config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.0",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.3.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
final/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c35c8055250a476dc32b87c601f3abe4bc9aa87098c4d6976e79dc6094a3af3
|
3 |
+
size 2239607176
|
final/modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
final/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
final/sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
final/special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
final/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
3 |
+
size 17082987
|
final/tokenizer_config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
53 |
+
"unk_token": "<unk>"
|
54 |
+
}
|
runs/Jun03_19-02-48_ruche-gpu14.cluster/events.out.tfevents.1717434207.ruche-gpu14.cluster.27296.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d25f73693ca5403fb975d98ec3e3589e1d219cdbede86b355c4441284579d1c3
|
3 |
+
size 56493
|