gargamit haipingwu commited on
Commit
64f88b6
·
verified ·
1 Parent(s): 7da0ee8

fix_import (#1)

Browse files

- fix import (b330978e4027db0529fd11c72c013fba5145c917)
- fix import (6ff8b355df43fecb64be8fb9c1ad700765b38fd3)


Co-authored-by: Haiping Wu <haipingwu@users.noreply.huggingface.co>

image_embedding_phi3_v.py DELETED
@@ -1,322 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- import torch
17
- from torch import nn
18
- from transformers import CLIPVisionConfig, CLIPVisionModel, PretrainedConfig
19
- from transformers.models.clip.modeling_clip import CLIPAttention
20
- from transformers.utils import logging
21
-
22
- try:
23
- from flash_attn import flash_attn_func
24
- except ImportError:
25
- pass
26
-
27
- logger = logging.get_logger(__name__)
28
-
29
-
30
- MAX_INPUT_ID = int(1e9)
31
-
32
- CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig(
33
- attention_dropout=0.0,
34
- dropout=0.0,
35
- hidden_act="quick_gelu",
36
- hidden_size=1024,
37
- image_size=336,
38
- initializer_factor=1.0,
39
- initializer_range=0.02,
40
- intermediate_size=4096,
41
- layer_norm_eps=1e-05,
42
- num_attention_heads=16,
43
- num_channels=3,
44
- num_hidden_layers=24,
45
- patch_size=14,
46
- projection_dim=768
47
- )
48
-
49
- class CLIPAttentionFA2(CLIPAttention):
50
- """Add flash attention 2 to CLIPAttention. (This is only used in the vision encoder)"""
51
-
52
- def forward(self,
53
- hidden_states,
54
- attention_mask=None,
55
- causal_attention_mask=None,
56
- output_attentions=False,
57
- ):
58
- """Input shape: Batch x Time x Channel"""
59
-
60
- assert attention_mask is None, "CLIPAttentionFA2 does not support attention_mask"
61
- assert causal_attention_mask is None, "CLIPAttentionFA2 does not support causal_attention_mask"
62
- assert output_attentions is False, "CLIPAttentionFA2 does not support output_attentions"
63
-
64
- bsz, tgt_len, embed_dim = hidden_states.size()
65
- query_states = self.q_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
66
- key_states = self.k_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
67
- value_states = self.v_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
68
-
69
- attn_output = flash_attn_func(
70
- query_states,
71
- key_states,
72
- value_states,
73
- dropout_p=self.dropout if self.training else 0.0,
74
- softmax_scale=self.scale,
75
- causal=False,
76
- ).reshape(bsz, tgt_len, embed_dim)
77
-
78
- attn_output = self.out_proj(attn_output)
79
- return attn_output, None
80
-
81
-
82
- class Phi3ImageEmbedding(nn.Module):
83
- """Phi3 Image embedding."""
84
-
85
- def __init__(self, config: PretrainedConfig, wte=None, **kwargs) -> None:
86
- super().__init__()
87
-
88
- # n_embed or hidden_size
89
- hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size
90
- if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'):
91
- embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop
92
- self.drop = nn.Dropout(embd_drop)
93
- else:
94
- self.drop = None
95
-
96
- self.wte = wte
97
-
98
- if isinstance(config.img_processor, dict) and config.img_processor.get('name', None) == 'clip_vision_model':
99
- assert 'model_name' in config.img_processor, 'model_name must be provided for CLIPVisionModel'
100
- assert 'image_dim_out' in config.img_processor, 'image_dim_out must be provided for CLIPVisionModel'
101
- assert 'num_img_tokens' in config.img_processor, 'num_img_tokens must be provided for CLIPVisionModel'
102
- assert config.img_processor['model_name'] == 'openai/clip-vit-large-patch14-336'
103
- clip_config = CLIP_VIT_LARGE_PATCH14_336_CONFIG
104
- self.img_processor = CLIPVisionModel(clip_config)
105
- image_dim_out = config.img_processor['image_dim_out']
106
- self.num_img_tokens = config.img_processor['num_img_tokens']
107
-
108
- # FA2 in CLIP
109
- if config._attn_implementation == 'flash_attention_2':
110
- for layer in self.img_processor.vision_model.encoder.layers:
111
- clip_fa2 = CLIPAttentionFA2(clip_config)
112
- del layer.self_attn
113
- layer.self_attn = clip_fa2
114
- else:
115
- raise NotImplementedError(f'img_processor = {config.img_processor}, not implemented')
116
-
117
- self.image_dim_out = image_dim_out
118
- self.img_sizes = None
119
-
120
- # global_gn and sub_gn for hd transform, serves as line separator
121
- self.use_hd_transform = kwargs.get('use_hd_transform', False)
122
- self.with_learnable_separator = kwargs.get('with_learnable_separator', False)
123
- self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub')
124
- # with_hd_transform and with_learnable_separator should have same value
125
- assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value'
126
- if self.with_learnable_separator:
127
- assert self.use_hd_transform, 'learnable separator is only for hd transform'
128
- # 1024 * 4, merge spatial to channel dimension
129
- self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * 4]))
130
- self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * 4]))
131
- logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}')
132
-
133
- projection_cls = kwargs.get('projection_cls', 'linear')
134
- if projection_cls == 'linear':
135
- self.img_projection = nn.Linear(image_dim_out, hidden_size)
136
- elif projection_cls == 'mlp' and self.use_hd_transform:
137
- dim_projection = hidden_size
138
- depth = 2
139
- layers = [nn.Linear(image_dim_out * 4, dim_projection)]
140
- for _ in range(1, depth):
141
- layers.extend([nn.GELU(),
142
- nn.Linear(dim_projection, dim_projection)])
143
- self.img_projection = nn.Sequential(*layers)
144
- elif projection_cls == 'mlp':
145
- dim_projection = hidden_size
146
- depth = 2
147
- layers = [nn.Linear(image_dim_out, dim_projection)]
148
- for _ in range(1, depth):
149
- layers.extend([nn.GELU(),
150
- nn.Linear(dim_projection, dim_projection)])
151
- self.img_projection = nn.Sequential(*layers)
152
- else:
153
- raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented')
154
-
155
- self.vocab_size = config.vocab_size
156
- self.img_features = None
157
-
158
- if isinstance(config.img_processor, dict):
159
- self.layer_idx = config.img_processor.get('layer_idx', -2)
160
- self.type_feature = config.img_processor.get('type_feature', 'patch')
161
- else:
162
- self.layer_idx = -2
163
- self.type_feature = 'patch'
164
-
165
-
166
- def set_img_features(self, img_features: torch.FloatTensor) -> None:
167
- self.img_features = img_features
168
-
169
- def set_img_sizes(self, img_sizes: torch.LongTensor) -> None:
170
- self.img_sizes = img_sizes
171
-
172
- def get_img_features(self, img_embeds: torch.FloatTensor) -> torch.FloatTensor:
173
- LAYER_IDX = self.layer_idx
174
- TYPE_FEATURE = self.type_feature
175
-
176
- img_processor_output = self.img_processor(img_embeds, output_hidden_states=True)
177
- img_feature = img_processor_output.hidden_states[LAYER_IDX]
178
-
179
- if TYPE_FEATURE == "patch":
180
- patch_feature = img_feature[:, 1:]
181
- return patch_feature
182
-
183
- raise NotImplementedError
184
-
185
- def forward(
186
- self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, image_sizes=None
187
- ) -> torch.FloatTensor:
188
- input_shape = input_ids.size()
189
- input_ids = input_ids.view(-1, input_shape[-1])
190
-
191
- # positions for image tokens
192
- positions = torch.nonzero((input_ids < 0) & (input_ids > -MAX_INPUT_ID), as_tuple=True)
193
- has_image = len(positions[0].tolist()) > 0
194
- input_ids = input_ids.clamp_min(0).clamp_max(self.vocab_size).detach()
195
- hidden_states = self.wte(input_ids)
196
-
197
- if has_image:
198
- assert self.use_hd_transform
199
- num_images, num_crops, c, h, w = pixel_values.shape
200
- assert c == 3 and h == w == 336
201
- img_features = self.get_img_features(pixel_values.flatten(0, 1)).reshape(
202
- num_images, num_crops, -1, self.image_dim_out
203
- )
204
- image_features_proj = self.hd_feature_transform(img_features, image_sizes)
205
- hidden_states = hidden_states.index_put(
206
- positions, image_features_proj, accumulate=False
207
- )
208
-
209
- if self.drop is not None:
210
- hidden_states = self.drop(hidden_states)
211
-
212
- return hidden_states
213
-
214
- def hd_feature_transform(self, image_features, image_sizes):
215
- """
216
- image_features: (num_images, num_crops+1, 24*24, 1024)
217
- """
218
- assert (
219
- self.hd_transform_order == 'sub_glb'
220
- ), f'hd_transform_order `{self.hd_transform_order}` not implemented'
221
- if isinstance(self.img_projection, nn.Sequential):
222
- target_device = self.img_projection[0].bias.device
223
- target_dtype = self.img_projection[0].bias.dtype
224
- else: # It's a single nn.Linear layer
225
- target_device = self.img_projection.bias.device
226
- target_dtype = self.img_projection.bias.dtype
227
-
228
- global_image_features = image_features[:, 0] # (num_images, 24*24, 1024)
229
- # global feature can be viewed as a special HD case with num_crops 1x1
230
- global_image_features_hd = self.reshape_hd_patches_2x2merge(global_image_features, 1, 1)
231
- global_image_features_hd_newline = self.add_image_newline(global_image_features_hd)
232
-
233
- all_image_embeddings = []
234
- # need a for loop to process each image because of different image sizes
235
- # (patch arrangement is different for each image)
236
- for i, img_size in enumerate(image_sizes):
237
- h, w = img_size
238
- h_crop = h // 336
239
- w_crop = w // 336
240
- num_crops = h_crop * w_crop
241
-
242
- # NOTE: real num_crops is padded
243
- # (num_crops, 24*24, 1024)
244
- sub_image_features = image_features[i, 1 : 1 + num_crops]
245
- sub_image_features_hd = self.reshape_hd_patches_2x2merge(
246
- sub_image_features, h_crop, w_crop
247
- )
248
- sub_image_features_hd_newline = self.add_image_newline(sub_image_features_hd)
249
-
250
- # [sub features, separator, global features]
251
- all_image_embeddings.extend(
252
- [
253
- sub_image_features_hd_newline.squeeze(0), # (h_crop*12*(w_crop*12+1), 4096)
254
- self.glb_GN.squeeze(0),
255
- global_image_features_hd_newline[i],
256
- ]
257
- )
258
-
259
- image_features_proj = self.img_projection(
260
- torch.cat(all_image_embeddings, dim=0).to(target_device).to(target_dtype)
261
- )
262
-
263
- return image_features_proj
264
-
265
- def reshape_hd_patches_2x2merge(self, image_features, h_crop, w_crop):
266
- """
267
- image_features: (num_images*num_crops, 24*24, 1024)
268
- output: (num_images, h_crop*12, w_crop*12, 4096), h_crop*w_crop == num_crops
269
- """
270
- N, L, C = image_features.shape
271
- assert L == 24 * 24 and C == 1024 and N % (h_crop * w_crop) == 0
272
- num_images = N // (h_crop * w_crop)
273
- H = int(L**0.5)
274
- image_features_hd = (
275
- image_features.reshape(N, H, H, C) # N, 24, 24, 1024
276
- .reshape(N, H // 2, 2, H // 2, 2, C) # N, 12, 2, 12, 2, 1024
277
- .permute(0, 1, 3, 2, 4, 5) # N, 12, 12, 2, 2, 1024
278
- .reshape(N, -1, 4 * C) # N, 144, 4096
279
- .reshape(
280
- num_images, h_crop, w_crop, H // 2, H // 2, -1
281
- ) # n_img, h_crop, w_crop, 12, 12, 4096
282
- .permute(0, 1, 3, 2, 4, 5) # n_img, h_crop, 12, w_crop, 12, 4096
283
- .reshape(
284
- num_images, h_crop * H // 2, w_crop * H // 2, 4 * C
285
- ) # n_img, h_crop*12, w_crop*12, 4096
286
- )
287
-
288
- # alternative implementation using einops
289
- # from einops import rearrange
290
- # image_features_nhwc = rearrange(
291
- # image_features,
292
- # 'N (H W) c -> N H W c',
293
- # H=H,
294
- # W=H,
295
- # )
296
- # image_features_2x2merge = rearrange(
297
- # image_features_nhwc,
298
- # 'N (h h_pool) (w w_pool) c -> N h w (h_pool w_pool c)',
299
- # h_pool=2,
300
- # w_pool=2,
301
- # )
302
- # image_features_hd = rearrange(
303
- # image_features_2x2merge,
304
- # '(n_img h_crop w_crop) h w C -> n_img (h_crop h) (w_crop w) C',
305
- # h_crop=h_crop,
306
- # w_crop=w_crop,
307
- # )
308
-
309
- return image_features_hd
310
-
311
- def add_image_newline(self, image_features_hd):
312
- """
313
- image_features_hd: (num_images, h_crop*12, w_crop*12, 4096)
314
- output: (num_images, (h_crop*12) * (w_crop*12+1), 4096)
315
- """
316
- num_images, h, w, hid_dim = image_features_hd.shape
317
- # add the newline token to the HD image feature patches
318
- newline_embeddings = self.sub_GN.expand(num_images, h, -1, -1) # (n_img, h, 1, hid_dim)
319
- image_features_hd_newline = torch.cat(
320
- [image_features_hd, newline_embeddings], dim=2
321
- ).reshape(num_images, -1, hid_dim)
322
- return image_features_hd_newline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
image_processing_phi3_v.py DELETED
@@ -1,274 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- """Image processor class for Phi3-V."""
17
-
18
- from typing import List, Optional, Union
19
-
20
- import numpy as np
21
-
22
- from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
23
- from transformers.image_transforms import (
24
- convert_to_rgb,
25
- )
26
- from transformers.image_utils import (
27
- OPENAI_CLIP_MEAN,
28
- OPENAI_CLIP_STD,
29
- ImageInput,
30
- make_list_of_images,
31
- valid_images,
32
- )
33
- from transformers.utils import TensorType, is_vision_available, logging
34
-
35
- from transformers import AutoImageProcessor
36
-
37
- logger = logging.get_logger(__name__)
38
-
39
-
40
- if is_vision_available():
41
- from PIL import Image
42
-
43
- import torch
44
- import torchvision
45
-
46
- def padding_336(b):
47
- width, height = b.size
48
- tar = int(np.ceil(height / 336) * 336)
49
- top_padding = int((tar - height)/2)
50
- bottom_padding = tar - height - top_padding
51
- left_padding = 0
52
- right_padding = 0
53
- b = torchvision.transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255])
54
-
55
- return b
56
-
57
- def calc_padded_size(width, height, padding_unit=336):
58
- target_height = int(np.ceil(height / padding_unit) * padding_unit)
59
- top_padding = int((target_height - height) / 2)
60
- bottom_padding = target_height - height - top_padding
61
- left_padding = 0
62
- right_padding = 0
63
- padded_width = width + left_padding + right_padding
64
- padded_height = height + top_padding + bottom_padding
65
- return padded_width, padded_height
66
-
67
- def HD_transform(img, hd_num=16):
68
- width, height = img.size
69
- trans = False
70
- if width < height:
71
- img = img.transpose(Image.TRANSPOSE)
72
- trans = True
73
- width, height = img.size
74
- ratio = (width/ height)
75
- scale = 1
76
- while scale*np.ceil(scale/ratio) <= hd_num:
77
- scale += 1
78
- scale -= 1
79
- new_w = int(scale * 336)
80
- new_h = int(new_w / ratio)
81
-
82
- img = torchvision.transforms.functional.resize(img, [new_h, new_w],)
83
- img = padding_336(img)
84
- width, height = img.size
85
- if trans:
86
- img = img.transpose(Image.TRANSPOSE)
87
-
88
- return img
89
-
90
- def calc_hd_transform_size(width, height, hd_num=16):
91
- transposed = False
92
- if width < height:
93
- width, height = height, width
94
- transposed = True
95
-
96
- ratio = width / height
97
- scale = 1
98
- while scale * np.ceil(scale / ratio) <= hd_num:
99
- scale += 1
100
- scale -= 1
101
-
102
- new_width = int(scale * 336)
103
- new_height = int(new_width / ratio)
104
-
105
- padded_width, padded_height = calc_padded_size(new_width, new_height)
106
-
107
- if transposed:
108
- padded_width, padded_height = padded_height, padded_width
109
-
110
- return padded_width, padded_height
111
-
112
- def pad_to_max_num_crops_tensor(images, max_crops=5):
113
- """
114
- images: B x 3 x H x W, B<=max_crops
115
- """
116
- B, _, H, W = images.shape
117
- if B < max_crops:
118
- pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
119
- images = torch.cat([images, pad], dim=0)
120
- return images
121
-
122
-
123
- class Phi3VImageProcessor(BaseImageProcessor):
124
- r"""
125
- Constructs a Phi3 image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques
126
- for processing high resolution images as explained in the [InternLM-XComposer2-4KHD](https://arxiv.org/pdf/2404.06512)
127
-
128
- Args:
129
- image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
130
- Mean to use if normalizing the image. This is a float or list of floats the length of the number of
131
- channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
132
- image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
133
- Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
134
- number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
135
- Can be overridden by the `image_std` parameter in the `preprocess` method.
136
- do_convert_rgb (`bool`, *optional*, defaults to `True`):
137
- Whether to convert the image to RGB.
138
- """
139
-
140
- model_input_names = ["pixel_values"]
141
-
142
- def __init__(
143
- self,
144
- num_crops: int = 1,
145
- image_mean: Optional[Union[float, List[float]]] = None,
146
- image_std: Optional[Union[float, List[float]]] = None,
147
- do_convert_rgb: bool = True,
148
- **kwargs,
149
- ) -> None:
150
- super().__init__(**kwargs)
151
- self.num_crops = num_crops
152
- self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
153
- self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
154
- self.do_convert_rgb = do_convert_rgb
155
-
156
- def calc_num_image_tokens(
157
- self,
158
- images: ImageInput
159
- ):
160
- """ Calculate the number of image tokens for each image.
161
- Args:
162
- images (`ImageInput`):
163
- Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
164
- passing in images with pixel values between 0 and 1, set `do_rescale=False`.
165
- """
166
- images = make_list_of_images(images)
167
-
168
- if not valid_images(images):
169
- raise ValueError(
170
- "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
171
- "torch.Tensor, tf.Tensor or jax.ndarray."
172
- )
173
-
174
- images = [image.convert('RGB') for image in images]
175
- # (H, W, C)
176
- elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
177
- shapes = [[im.size[1], im.size[0]] for im in elems]
178
- num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
179
- return num_img_tokens
180
-
181
- def calc_num_image_tokens_from_image_size(self, width, height):
182
- """
183
- Calculate the number of image tokens for a given image size.
184
- Args:
185
- width (`int`): Width of the image.
186
- height (`int`): Height of the image.
187
- """
188
- new_width, new_height = calc_hd_transform_size(width, height, hd_num=self.num_crops)
189
- num_img_tokens = int((new_height // 336 * new_width // 336 + 1) * 144 + 1 + (new_height // 336 + 1) * 12)
190
- return num_img_tokens
191
-
192
- def preprocess(
193
- self,
194
- images: ImageInput,
195
- image_mean: Optional[Union[float, List[float]]] = None,
196
- image_std: Optional[Union[float, List[float]]] = None,
197
- do_convert_rgb: bool = None,
198
- return_tensors: Optional[Union[str, TensorType]] = None,
199
- ):
200
- """
201
- Args:
202
- images (`ImageInput`):
203
- Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
204
- passing in images with pixel values between 0 and 1, set `do_rescale=False`.
205
- image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
206
- Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
207
- image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
208
- Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
209
- `True`.
210
- do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
211
- Whether to convert the image to RGB.
212
- return_tensors (`str` or `TensorType`, *optional*):
213
- The type of tensors to return. Can be one of:
214
- - Unset: Return a list of `np.ndarray`.
215
- - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
216
- - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
217
- - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
218
- - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
219
- """
220
- image_mean = image_mean if image_mean is not None else self.image_mean
221
- image_std = image_std if image_std is not None else self.image_std
222
- do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
223
-
224
- images = make_list_of_images(images)
225
-
226
- if not valid_images(images):
227
- raise ValueError(
228
- "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
229
- "torch.Tensor, tf.Tensor or jax.ndarray."
230
- )
231
-
232
- if do_convert_rgb:
233
- images = [convert_to_rgb(image) for image in images]
234
-
235
- image_sizes = []
236
- img_processor = torchvision.transforms.Compose([
237
- torchvision.transforms.ToTensor(),
238
- torchvision.transforms.Normalize(image_mean, image_std)
239
- ])
240
-
241
- # PIL images
242
- # HD_transform pad images to size of multiiply of 336, 336
243
- # convert to RGB first
244
- images = [image.convert('RGB') for image in images]
245
- elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
246
- # tensor transform and normalize
247
- hd_images = [img_processor(im) for im in elems]
248
- # create global image
249
- global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(336, 336), mode='bicubic',).to(im.dtype) for im in hd_images]
250
-
251
- # [(3, h, w)], where h, w is multiple of 336
252
- shapes = [[im.size(1), im.size(2)] for im in hd_images]
253
- num_img_tokens = [int(((h//336)*(w//336)+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
254
- # reshape to channel dimension -> (num_images, num_crops, 3, 336, 336)
255
- # (1, 3, h//336, 336, w//336, 336) -> (1, h//336, w//336, 3, 336, 336) -> (h//336*w//336, 3, 336, 336)
256
- hd_images_reshape = [im.reshape(1, 3, h//336, 336, w//336, 336).permute(0,2,4,1,3,5).reshape(-1, 3, 336, 336).contiguous() for im, (h, w) in zip(hd_images, shapes)]
257
- # concat global image and local image
258
- hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)]
259
-
260
- # pad to max_num_crops
261
- image_transformed = [pad_to_max_num_crops_tensor(im, self.num_crops+1) for im in hd_images_reshape]
262
- image_transformed = torch.stack(image_transformed, dim=0)
263
- image_sizes = [torch.LongTensor(_shapes) for _shapes in shapes]
264
- padded_images = image_transformed
265
- image_sizes = shapes
266
-
267
- data = {"pixel_values": padded_images,
268
- "image_sizes": image_sizes,
269
- "num_img_tokens": num_img_tokens
270
- }
271
-
272
- return BatchFeature(data=data, tensor_type=return_tensors)
273
-
274
- AutoImageProcessor.register("Phi3VImageProcessor", Phi3VImageProcessor)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
modeling_phi3_v.py CHANGED
@@ -45,8 +45,6 @@ from transformers.utils import (
45
  replace_return_docstrings,
46
  )
47
  from .configuration_phi3_v import Phi3VConfig
48
- from .image_embedding_phi3_v import Phi3ImageEmbedding
49
-
50
 
51
  try:
52
  from flash_attn import flash_attn_func, flash_attn_varlen_func
@@ -56,6 +54,310 @@ try:
56
  except ImportError:
57
  pass
58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  logger = logging.get_logger(__name__)
60
 
61
  _CHECKPOINT_FOR_DOC = "microsoft/Phi-3-vision-128k-instruct"
 
45
  replace_return_docstrings,
46
  )
47
  from .configuration_phi3_v import Phi3VConfig
 
 
48
 
49
  try:
50
  from flash_attn import flash_attn_func, flash_attn_varlen_func
 
54
  except ImportError:
55
  pass
56
 
57
+ import torch
58
+ from torch import nn
59
+ from transformers import CLIPVisionConfig, CLIPVisionModel, PretrainedConfig
60
+ from transformers.models.clip.modeling_clip import CLIPAttention
61
+ from transformers.utils import logging
62
+
63
+ logger = logging.get_logger(__name__)
64
+
65
+
66
+ MAX_INPUT_ID = int(1e9)
67
+
68
+ CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig(
69
+ attention_dropout=0.0,
70
+ dropout=0.0,
71
+ hidden_act="quick_gelu",
72
+ hidden_size=1024,
73
+ image_size=336,
74
+ initializer_factor=1.0,
75
+ initializer_range=0.02,
76
+ intermediate_size=4096,
77
+ layer_norm_eps=1e-05,
78
+ num_attention_heads=16,
79
+ num_channels=3,
80
+ num_hidden_layers=24,
81
+ patch_size=14,
82
+ projection_dim=768
83
+ )
84
+
85
+ class CLIPAttentionFA2(CLIPAttention):
86
+ """Add flash attention 2 to CLIPAttention. (This is only used in the vision encoder)"""
87
+
88
+ def forward(self,
89
+ hidden_states,
90
+ attention_mask=None,
91
+ causal_attention_mask=None,
92
+ output_attentions=False,
93
+ ):
94
+ """Input shape: Batch x Time x Channel"""
95
+
96
+ assert attention_mask is None, "CLIPAttentionFA2 does not support attention_mask"
97
+ assert causal_attention_mask is None, "CLIPAttentionFA2 does not support causal_attention_mask"
98
+ assert output_attentions is False, "CLIPAttentionFA2 does not support output_attentions"
99
+
100
+ bsz, tgt_len, embed_dim = hidden_states.size()
101
+ query_states = self.q_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
102
+ key_states = self.k_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
103
+ value_states = self.v_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
104
+
105
+ attn_output = flash_attn_func(
106
+ query_states,
107
+ key_states,
108
+ value_states,
109
+ dropout_p=self.dropout if self.training else 0.0,
110
+ softmax_scale=self.scale,
111
+ causal=False,
112
+ ).reshape(bsz, tgt_len, embed_dim)
113
+
114
+ attn_output = self.out_proj(attn_output)
115
+ return attn_output, None
116
+
117
+
118
+ class Phi3ImageEmbedding(nn.Module):
119
+ """Phi3 Image embedding."""
120
+
121
+ def __init__(self, config: PretrainedConfig, wte=None, **kwargs) -> None:
122
+ super().__init__()
123
+
124
+ # n_embed or hidden_size
125
+ hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size
126
+ if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'):
127
+ embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop
128
+ self.drop = nn.Dropout(embd_drop)
129
+ else:
130
+ self.drop = None
131
+
132
+ self.wte = wte
133
+
134
+ if isinstance(config.img_processor, dict) and config.img_processor.get('name', None) == 'clip_vision_model':
135
+ assert 'model_name' in config.img_processor, 'model_name must be provided for CLIPVisionModel'
136
+ assert 'image_dim_out' in config.img_processor, 'image_dim_out must be provided for CLIPVisionModel'
137
+ assert 'num_img_tokens' in config.img_processor, 'num_img_tokens must be provided for CLIPVisionModel'
138
+ assert config.img_processor['model_name'] == 'openai/clip-vit-large-patch14-336'
139
+ clip_config = CLIP_VIT_LARGE_PATCH14_336_CONFIG
140
+ self.img_processor = CLIPVisionModel(clip_config)
141
+ image_dim_out = config.img_processor['image_dim_out']
142
+ self.num_img_tokens = config.img_processor['num_img_tokens']
143
+
144
+ # FA2 in CLIP
145
+ if config._attn_implementation == 'flash_attention_2':
146
+ for layer in self.img_processor.vision_model.encoder.layers:
147
+ clip_fa2 = CLIPAttentionFA2(clip_config)
148
+ del layer.self_attn
149
+ layer.self_attn = clip_fa2
150
+ else:
151
+ raise NotImplementedError(f'img_processor = {config.img_processor}, not implemented')
152
+
153
+ self.image_dim_out = image_dim_out
154
+ self.img_sizes = None
155
+
156
+ # global_gn and sub_gn for hd transform, serves as line separator
157
+ self.use_hd_transform = kwargs.get('use_hd_transform', False)
158
+ self.with_learnable_separator = kwargs.get('with_learnable_separator', False)
159
+ self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub')
160
+ # with_hd_transform and with_learnable_separator should have same value
161
+ assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value'
162
+ if self.with_learnable_separator:
163
+ assert self.use_hd_transform, 'learnable separator is only for hd transform'
164
+ # 1024 * 4, merge spatial to channel dimension
165
+ self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * 4]))
166
+ self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * 4]))
167
+ logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}')
168
+
169
+ projection_cls = kwargs.get('projection_cls', 'linear')
170
+ if projection_cls == 'linear':
171
+ self.img_projection = nn.Linear(image_dim_out, hidden_size)
172
+ elif projection_cls == 'mlp' and self.use_hd_transform:
173
+ dim_projection = hidden_size
174
+ depth = 2
175
+ layers = [nn.Linear(image_dim_out * 4, dim_projection)]
176
+ for _ in range(1, depth):
177
+ layers.extend([nn.GELU(),
178
+ nn.Linear(dim_projection, dim_projection)])
179
+ self.img_projection = nn.Sequential(*layers)
180
+ elif projection_cls == 'mlp':
181
+ dim_projection = hidden_size
182
+ depth = 2
183
+ layers = [nn.Linear(image_dim_out, dim_projection)]
184
+ for _ in range(1, depth):
185
+ layers.extend([nn.GELU(),
186
+ nn.Linear(dim_projection, dim_projection)])
187
+ self.img_projection = nn.Sequential(*layers)
188
+ else:
189
+ raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented')
190
+
191
+ self.vocab_size = config.vocab_size
192
+ self.img_features = None
193
+
194
+ if isinstance(config.img_processor, dict):
195
+ self.layer_idx = config.img_processor.get('layer_idx', -2)
196
+ self.type_feature = config.img_processor.get('type_feature', 'patch')
197
+ else:
198
+ self.layer_idx = -2
199
+ self.type_feature = 'patch'
200
+
201
+
202
+ def set_img_features(self, img_features: torch.FloatTensor) -> None:
203
+ self.img_features = img_features
204
+
205
+ def set_img_sizes(self, img_sizes: torch.LongTensor) -> None:
206
+ self.img_sizes = img_sizes
207
+
208
+ def get_img_features(self, img_embeds: torch.FloatTensor) -> torch.FloatTensor:
209
+ LAYER_IDX = self.layer_idx
210
+ TYPE_FEATURE = self.type_feature
211
+
212
+ img_processor_output = self.img_processor(img_embeds, output_hidden_states=True)
213
+ img_feature = img_processor_output.hidden_states[LAYER_IDX]
214
+
215
+ if TYPE_FEATURE == "patch":
216
+ patch_feature = img_feature[:, 1:]
217
+ return patch_feature
218
+
219
+ raise NotImplementedError
220
+
221
+ def forward(
222
+ self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, image_sizes=None
223
+ ) -> torch.FloatTensor:
224
+ input_shape = input_ids.size()
225
+ input_ids = input_ids.view(-1, input_shape[-1])
226
+
227
+ # positions for image tokens
228
+ positions = torch.nonzero((input_ids < 0) & (input_ids > -MAX_INPUT_ID), as_tuple=True)
229
+ has_image = len(positions[0].tolist()) > 0
230
+ input_ids = input_ids.clamp_min(0).clamp_max(self.vocab_size).detach()
231
+ hidden_states = self.wte(input_ids)
232
+
233
+ if has_image:
234
+ assert self.use_hd_transform
235
+ num_images, num_crops, c, h, w = pixel_values.shape
236
+ assert c == 3 and h == w == 336
237
+ img_features = self.get_img_features(pixel_values.flatten(0, 1)).reshape(
238
+ num_images, num_crops, -1, self.image_dim_out
239
+ )
240
+ image_features_proj = self.hd_feature_transform(img_features, image_sizes)
241
+ hidden_states = hidden_states.index_put(
242
+ positions, image_features_proj, accumulate=False
243
+ )
244
+
245
+ if self.drop is not None:
246
+ hidden_states = self.drop(hidden_states)
247
+
248
+ return hidden_states
249
+
250
+ def hd_feature_transform(self, image_features, image_sizes):
251
+ """
252
+ image_features: (num_images, num_crops+1, 24*24, 1024)
253
+ """
254
+ assert (
255
+ self.hd_transform_order == 'sub_glb'
256
+ ), f'hd_transform_order `{self.hd_transform_order}` not implemented'
257
+ if isinstance(self.img_projection, nn.Sequential):
258
+ target_device = self.img_projection[0].bias.device
259
+ target_dtype = self.img_projection[0].bias.dtype
260
+ else: # It's a single nn.Linear layer
261
+ target_device = self.img_projection.bias.device
262
+ target_dtype = self.img_projection.bias.dtype
263
+
264
+ global_image_features = image_features[:, 0] # (num_images, 24*24, 1024)
265
+ # global feature can be viewed as a special HD case with num_crops 1x1
266
+ global_image_features_hd = self.reshape_hd_patches_2x2merge(global_image_features, 1, 1)
267
+ global_image_features_hd_newline = self.add_image_newline(global_image_features_hd)
268
+
269
+ all_image_embeddings = []
270
+ # need a for loop to process each image because of different image sizes
271
+ # (patch arrangement is different for each image)
272
+ for i, img_size in enumerate(image_sizes):
273
+ h, w = img_size
274
+ h_crop = h // 336
275
+ w_crop = w // 336
276
+ num_crops = h_crop * w_crop
277
+
278
+ # NOTE: real num_crops is padded
279
+ # (num_crops, 24*24, 1024)
280
+ sub_image_features = image_features[i, 1 : 1 + num_crops]
281
+ sub_image_features_hd = self.reshape_hd_patches_2x2merge(
282
+ sub_image_features, h_crop, w_crop
283
+ )
284
+ sub_image_features_hd_newline = self.add_image_newline(sub_image_features_hd)
285
+
286
+ # [sub features, separator, global features]
287
+ all_image_embeddings.extend(
288
+ [
289
+ sub_image_features_hd_newline.squeeze(0), # (h_crop*12*(w_crop*12+1), 4096)
290
+ self.glb_GN.squeeze(0),
291
+ global_image_features_hd_newline[i],
292
+ ]
293
+ )
294
+
295
+ image_features_proj = self.img_projection(
296
+ torch.cat(all_image_embeddings, dim=0).to(target_device).to(target_dtype)
297
+ )
298
+
299
+ return image_features_proj
300
+
301
+ def reshape_hd_patches_2x2merge(self, image_features, h_crop, w_crop):
302
+ """
303
+ image_features: (num_images*num_crops, 24*24, 1024)
304
+ output: (num_images, h_crop*12, w_crop*12, 4096), h_crop*w_crop == num_crops
305
+ """
306
+ N, L, C = image_features.shape
307
+ assert L == 24 * 24 and C == 1024 and N % (h_crop * w_crop) == 0
308
+ num_images = N // (h_crop * w_crop)
309
+ H = int(L**0.5)
310
+ image_features_hd = (
311
+ image_features.reshape(N, H, H, C) # N, 24, 24, 1024
312
+ .reshape(N, H // 2, 2, H // 2, 2, C) # N, 12, 2, 12, 2, 1024
313
+ .permute(0, 1, 3, 2, 4, 5) # N, 12, 12, 2, 2, 1024
314
+ .reshape(N, -1, 4 * C) # N, 144, 4096
315
+ .reshape(
316
+ num_images, h_crop, w_crop, H // 2, H // 2, -1
317
+ ) # n_img, h_crop, w_crop, 12, 12, 4096
318
+ .permute(0, 1, 3, 2, 4, 5) # n_img, h_crop, 12, w_crop, 12, 4096
319
+ .reshape(
320
+ num_images, h_crop * H // 2, w_crop * H // 2, 4 * C
321
+ ) # n_img, h_crop*12, w_crop*12, 4096
322
+ )
323
+
324
+ # alternative implementation using einops
325
+ # from einops import rearrange
326
+ # image_features_nhwc = rearrange(
327
+ # image_features,
328
+ # 'N (H W) c -> N H W c',
329
+ # H=H,
330
+ # W=H,
331
+ # )
332
+ # image_features_2x2merge = rearrange(
333
+ # image_features_nhwc,
334
+ # 'N (h h_pool) (w w_pool) c -> N h w (h_pool w_pool c)',
335
+ # h_pool=2,
336
+ # w_pool=2,
337
+ # )
338
+ # image_features_hd = rearrange(
339
+ # image_features_2x2merge,
340
+ # '(n_img h_crop w_crop) h w C -> n_img (h_crop h) (w_crop w) C',
341
+ # h_crop=h_crop,
342
+ # w_crop=w_crop,
343
+ # )
344
+
345
+ return image_features_hd
346
+
347
+ def add_image_newline(self, image_features_hd):
348
+ """
349
+ image_features_hd: (num_images, h_crop*12, w_crop*12, 4096)
350
+ output: (num_images, (h_crop*12) * (w_crop*12+1), 4096)
351
+ """
352
+ num_images, h, w, hid_dim = image_features_hd.shape
353
+ # add the newline token to the HD image feature patches
354
+ newline_embeddings = self.sub_GN.expand(num_images, h, -1, -1) # (n_img, h, 1, hid_dim)
355
+ image_features_hd_newline = torch.cat(
356
+ [image_features_hd, newline_embeddings], dim=2
357
+ ).reshape(num_images, -1, hid_dim)
358
+ return image_features_hd_newline
359
+
360
+
361
  logger = logging.get_logger(__name__)
362
 
363
  _CHECKPOINT_FOR_DOC = "microsoft/Phi-3-vision-128k-instruct"
processing_phi3_v.py CHANGED
@@ -27,7 +27,268 @@ from transformers.image_utils import ImageInput
27
  from transformers.processing_utils import ProcessorMixin
28
  from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy
29
  from transformers.utils import TensorType
30
- from .image_processing_phi3_v import Phi3VImageProcessor
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  transformers.Phi3VImageProcessor = Phi3VImageProcessor
32
 
33
  class Phi3VProcessor(ProcessorMixin):
 
27
  from transformers.processing_utils import ProcessorMixin
28
  from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy
29
  from transformers.utils import TensorType
30
+
31
+
32
+ """Image processor class for Phi3-V."""
33
+
34
+ from typing import List, Optional, Union
35
+
36
+ import numpy as np
37
+
38
+ from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
39
+ from transformers.image_transforms import (
40
+ convert_to_rgb,
41
+ )
42
+ from transformers.image_utils import (
43
+ OPENAI_CLIP_MEAN,
44
+ OPENAI_CLIP_STD,
45
+ ImageInput,
46
+ make_list_of_images,
47
+ valid_images,
48
+ )
49
+ from transformers.utils import TensorType, is_vision_available, logging
50
+
51
+ from transformers import AutoImageProcessor
52
+
53
+ logger = logging.get_logger(__name__)
54
+
55
+
56
+ if is_vision_available():
57
+ from PIL import Image
58
+
59
+ import torch
60
+ import torchvision
61
+
62
+ def padding_336(b):
63
+ width, height = b.size
64
+ tar = int(np.ceil(height / 336) * 336)
65
+ top_padding = int((tar - height)/2)
66
+ bottom_padding = tar - height - top_padding
67
+ left_padding = 0
68
+ right_padding = 0
69
+ b = torchvision.transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255])
70
+
71
+ return b
72
+
73
+ def calc_padded_size(width, height, padding_unit=336):
74
+ target_height = int(np.ceil(height / padding_unit) * padding_unit)
75
+ top_padding = int((target_height - height) / 2)
76
+ bottom_padding = target_height - height - top_padding
77
+ left_padding = 0
78
+ right_padding = 0
79
+ padded_width = width + left_padding + right_padding
80
+ padded_height = height + top_padding + bottom_padding
81
+ return padded_width, padded_height
82
+
83
+ def HD_transform(img, hd_num=16):
84
+ width, height = img.size
85
+ trans = False
86
+ if width < height:
87
+ img = img.transpose(Image.TRANSPOSE)
88
+ trans = True
89
+ width, height = img.size
90
+ ratio = (width/ height)
91
+ scale = 1
92
+ while scale*np.ceil(scale/ratio) <= hd_num:
93
+ scale += 1
94
+ scale -= 1
95
+ new_w = int(scale * 336)
96
+ new_h = int(new_w / ratio)
97
+
98
+ img = torchvision.transforms.functional.resize(img, [new_h, new_w],)
99
+ img = padding_336(img)
100
+ width, height = img.size
101
+ if trans:
102
+ img = img.transpose(Image.TRANSPOSE)
103
+
104
+ return img
105
+
106
+ def calc_hd_transform_size(width, height, hd_num=16):
107
+ transposed = False
108
+ if width < height:
109
+ width, height = height, width
110
+ transposed = True
111
+
112
+ ratio = width / height
113
+ scale = 1
114
+ while scale * np.ceil(scale / ratio) <= hd_num:
115
+ scale += 1
116
+ scale -= 1
117
+
118
+ new_width = int(scale * 336)
119
+ new_height = int(new_width / ratio)
120
+
121
+ padded_width, padded_height = calc_padded_size(new_width, new_height)
122
+
123
+ if transposed:
124
+ padded_width, padded_height = padded_height, padded_width
125
+
126
+ return padded_width, padded_height
127
+
128
+ def pad_to_max_num_crops_tensor(images, max_crops=5):
129
+ """
130
+ images: B x 3 x H x W, B<=max_crops
131
+ """
132
+ B, _, H, W = images.shape
133
+ if B < max_crops:
134
+ pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
135
+ images = torch.cat([images, pad], dim=0)
136
+ return images
137
+
138
+
139
+ class Phi3VImageProcessor(BaseImageProcessor):
140
+ r"""
141
+ Constructs a Phi3 image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques
142
+ for processing high resolution images as explained in the [InternLM-XComposer2-4KHD](https://arxiv.org/pdf/2404.06512)
143
+
144
+ Args:
145
+ image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
146
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
147
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
148
+ image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
149
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
150
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
151
+ Can be overridden by the `image_std` parameter in the `preprocess` method.
152
+ do_convert_rgb (`bool`, *optional*, defaults to `True`):
153
+ Whether to convert the image to RGB.
154
+ """
155
+
156
+ model_input_names = ["pixel_values"]
157
+
158
+ def __init__(
159
+ self,
160
+ num_crops: int = 1,
161
+ image_mean: Optional[Union[float, List[float]]] = None,
162
+ image_std: Optional[Union[float, List[float]]] = None,
163
+ do_convert_rgb: bool = True,
164
+ **kwargs,
165
+ ) -> None:
166
+ super().__init__(**kwargs)
167
+ self.num_crops = num_crops
168
+ self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
169
+ self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
170
+ self.do_convert_rgb = do_convert_rgb
171
+
172
+ def calc_num_image_tokens(
173
+ self,
174
+ images: ImageInput
175
+ ):
176
+ """ Calculate the number of image tokens for each image.
177
+ Args:
178
+ images (`ImageInput`):
179
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
180
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
181
+ """
182
+ images = make_list_of_images(images)
183
+
184
+ if not valid_images(images):
185
+ raise ValueError(
186
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
187
+ "torch.Tensor, tf.Tensor or jax.ndarray."
188
+ )
189
+
190
+ images = [image.convert('RGB') for image in images]
191
+ # (H, W, C)
192
+ elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
193
+ shapes = [[im.size[1], im.size[0]] for im in elems]
194
+ num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
195
+ return num_img_tokens
196
+
197
+ def calc_num_image_tokens_from_image_size(self, width, height):
198
+ """
199
+ Calculate the number of image tokens for a given image size.
200
+ Args:
201
+ width (`int`): Width of the image.
202
+ height (`int`): Height of the image.
203
+ """
204
+ new_width, new_height = calc_hd_transform_size(width, height, hd_num=self.num_crops)
205
+ num_img_tokens = int((new_height // 336 * new_width // 336 + 1) * 144 + 1 + (new_height // 336 + 1) * 12)
206
+ return num_img_tokens
207
+
208
+ def preprocess(
209
+ self,
210
+ images: ImageInput,
211
+ image_mean: Optional[Union[float, List[float]]] = None,
212
+ image_std: Optional[Union[float, List[float]]] = None,
213
+ do_convert_rgb: bool = None,
214
+ return_tensors: Optional[Union[str, TensorType]] = None,
215
+ ):
216
+ """
217
+ Args:
218
+ images (`ImageInput`):
219
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
220
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
221
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
222
+ Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
223
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
224
+ Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
225
+ `True`.
226
+ do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
227
+ Whether to convert the image to RGB.
228
+ return_tensors (`str` or `TensorType`, *optional*):
229
+ The type of tensors to return. Can be one of:
230
+ - Unset: Return a list of `np.ndarray`.
231
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
232
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
233
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
234
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
235
+ """
236
+ image_mean = image_mean if image_mean is not None else self.image_mean
237
+ image_std = image_std if image_std is not None else self.image_std
238
+ do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
239
+
240
+ images = make_list_of_images(images)
241
+
242
+ if not valid_images(images):
243
+ raise ValueError(
244
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
245
+ "torch.Tensor, tf.Tensor or jax.ndarray."
246
+ )
247
+
248
+ if do_convert_rgb:
249
+ images = [convert_to_rgb(image) for image in images]
250
+
251
+ image_sizes = []
252
+ img_processor = torchvision.transforms.Compose([
253
+ torchvision.transforms.ToTensor(),
254
+ torchvision.transforms.Normalize(image_mean, image_std)
255
+ ])
256
+
257
+ # PIL images
258
+ # HD_transform pad images to size of multiiply of 336, 336
259
+ # convert to RGB first
260
+ images = [image.convert('RGB') for image in images]
261
+ elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
262
+ # tensor transform and normalize
263
+ hd_images = [img_processor(im) for im in elems]
264
+ # create global image
265
+ global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(336, 336), mode='bicubic',).to(im.dtype) for im in hd_images]
266
+
267
+ # [(3, h, w)], where h, w is multiple of 336
268
+ shapes = [[im.size(1), im.size(2)] for im in hd_images]
269
+ num_img_tokens = [int(((h//336)*(w//336)+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
270
+ # reshape to channel dimension -> (num_images, num_crops, 3, 336, 336)
271
+ # (1, 3, h//336, 336, w//336, 336) -> (1, h//336, w//336, 3, 336, 336) -> (h//336*w//336, 3, 336, 336)
272
+ hd_images_reshape = [im.reshape(1, 3, h//336, 336, w//336, 336).permute(0,2,4,1,3,5).reshape(-1, 3, 336, 336).contiguous() for im, (h, w) in zip(hd_images, shapes)]
273
+ # concat global image and local image
274
+ hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)]
275
+
276
+ # pad to max_num_crops
277
+ image_transformed = [pad_to_max_num_crops_tensor(im, self.num_crops+1) for im in hd_images_reshape]
278
+ image_transformed = torch.stack(image_transformed, dim=0)
279
+ image_sizes = [torch.LongTensor(_shapes) for _shapes in shapes]
280
+ padded_images = image_transformed
281
+ image_sizes = shapes
282
+
283
+ data = {"pixel_values": padded_images,
284
+ "image_sizes": image_sizes,
285
+ "num_img_tokens": num_img_tokens
286
+ }
287
+
288
+ return BatchFeature(data=data, tensor_type=return_tensors)
289
+
290
+ AutoImageProcessor.register("Phi3VImageProcessor", Phi3VImageProcessor)
291
+
292
  transformers.Phi3VImageProcessor = Phi3VImageProcessor
293
 
294
  class Phi3VProcessor(ProcessorMixin):